Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 3247, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059688

ABSTRACT

The Wnt signaling pathway is intricately connected with bone mass regulation in humans and rodent models. We designed an antibody-based platform that generates potent and selective Wnt mimetics. Using this platform, we engineer bi-specific Wnt mimetics that target Frizzled and low-density lipoprotein receptor-related proteins and evaluate their effects on bone accrual in murine models. These synthetic Wnt agonists induce rapid and robust bone building effects, and correct bone mass deficiency and bone defects in various disease models, including osteoporosis, aging, and long bone fracture. Furthermore, when these Wnt agonists are combined with antiresorptive bisphosphonates or anti-sclerostin antibody therapies, additional bone accrual/maintenance effects are observed compared to monotherapy, which could benefit individuals with severe and/or acute bone-building deficiencies. Our data support the continued development of Wnt mimetics for the treatment of diseases of low bone mineral density, including osteoporosis.


Subject(s)
Bone Density Conservation Agents/pharmacology , Bone Resorption/drug therapy , Femoral Fractures/drug therapy , Osteoporosis, Postmenopausal/drug therapy , Wnt Proteins/agonists , Aged , Aging/physiology , Animals , Bone Density/drug effects , Bone Density/physiology , Bone Density Conservation Agents/therapeutic use , Bone Resorption/physiopathology , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Synergism , Drug Therapy, Combination/methods , Female , Femoral Fractures/pathology , Femur/drug effects , Femur/injuries , Femur/pathology , Humans , Mice , Osteoporosis, Postmenopausal/physiopathology , Wnt Signaling Pathway/drug effects , Young Adult
2.
Elife ; 82019 04 15.
Article in English | MEDLINE | ID: mdl-30983567

ABSTRACT

Most bones in mammals display a limited capacity for natural large-scale repair. The ribs are a notable exception, yet the source of their remarkable regenerative ability remains unknown. Here, we identify a Sox9-expressing periosteal subpopulation that orchestrates large-scale regeneration of murine rib bones. Deletion of the obligate Hedgehog co-receptor, Smoothened, in Sox9-expressing cells prior to injury results in a near-complete loss of callus formation and rib bone regeneration. In contrast to its role in development, Hedgehog signaling is dispensable for the proliferative expansion of callus cells in response to injury. Instead, Sox9-positive lineage cells require Hh signaling to stimulate neighboring cells to differentiate via an unknown signal into a skeletal cell type with dual chondrocyte/osteoblast properties. This type of callus cell may be critical for bridging large bone injuries. Thus despite contributing to only a subset of callus cells, Sox9-positive progenitors play a major role in orchestrating large-scale bone regeneration. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Subject(s)
Cell Differentiation , Regeneration , Ribs/growth & development , Ribs/injuries , SOX9 Transcription Factor/analysis , Stem Cells/chemistry , Stem Cells/physiology , Animals , Mice
3.
Matrix Biol ; 57-58: 334-346, 2017 01.
Article in English | MEDLINE | ID: mdl-27575985

ABSTRACT

The outcome of tissue engineered organ transplants depends on the capacity of the biomaterial to promote a pro-healing response once implanted in vivo. Multiple studies, including ours, have demonstrated the possibility of using the extracellular matrix (ECM) of animal organs as platform for tissue engineering and more recently, discarded human organs have also been proposed as scaffold source. In contrast to artificial biomaterials, natural ECM has the advantage of undergoing continuous remodeling which allows adaptation to diverse conditions. It is known that natural matrices present diverse immune properties when compared to artificial biomaterials. However, how these properties compare between diseased and healthy ECM and artificial scaffolds has not yet been defined. To answer this question, we used decellularized renal ECM derived from WT mice and from mice affected by Alport Syndrome at different time-points of disease progression as a model of renal failure with extensive fibrosis. We characterized the morphology and composition of these ECMs and compared their in vitro effects on macrophage activation with that of synthetic scaffolds commonly used in the clinic (collagen type I and poly-L-(lactic) acid, PLLA). We showed that ECM derived from Alport kidneys differed in fibrous protein deposition and cytokine content when compared to ECM derived from WT kidneys. Yet, both WT and Alport renal ECM induced macrophage differentiation mainly towards a reparative (M2) phenotype, while artificial biomaterials towards an inflammatory (M1) phenotype. Anti-inflammatory properties of natural ECMs were lost when homogenized, hence three-dimensional structure of ECM seems crucial for generating an anti-inflammatory response. Together, these data support the notion that natural ECM, even if derived from diseased kidneys promote a M2 protolerogenic macrophage polarization, thus providing novel insights on the applicability of ECM obtained from discarded organs as ideal scaffold for tissue engineering.


Subject(s)
Extracellular Matrix/chemistry , Kidney/chemistry , Macrophage Activation/drug effects , Macrophages/drug effects , Nephritis, Hereditary/immunology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Collagen Type I/chemistry , Collagen Type I/pharmacology , Cytokines/biosynthesis , Disease Models, Animal , Extracellular Matrix/immunology , Extracellular Matrix/ultrastructure , Humans , Immunohistochemistry , Immunophenotyping , Kidney/immunology , Macrophages/classification , Macrophages/cytology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Nephritis, Hereditary/metabolism , Nephritis, Hereditary/pathology , Phenotype , Polyesters/chemistry , Polyesters/pharmacology , Primary Cell Culture , Tissue Engineering/methods , Tissue Scaffolds
4.
Endocrinology ; 157(1): 4-15, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26451739

ABSTRACT

Thyroid hormone plays an essential role in myogenesis, the process required for skeletal muscle development and repair, although the mechanisms have not been established. Skeletal muscle develops from the fusion of precursor myoblasts into myofibers. We have used the C2C12 skeletal muscle myoblast cell line, primary myoblasts, and mouse models of resistance to thyroid hormone (RTH) α and ß, to determine the role of thyroid hormone in the regulation of myoblast differentiation. T3, which activates thyroid hormone receptor (TR) α and ß, increased myoblast differentiation whereas GC1, a selective TRß agonist, was minimally effective. Genetic approaches confirmed that TRα plays an important role in normal myoblast proliferation and differentiation and acts through the Wnt/ß-catenin signaling pathway. Myoblasts with TRα knockdown, or derived from RTH-TRα PV (a frame-shift mutation) mice, displayed reduced proliferation and myogenic differentiation. Moreover, skeletal muscle from the TRα1PV mutant mouse had impaired in vivo regeneration after injury. RTH-TRß PV mutant mouse model skeletal muscle and derived primary myoblasts did not have altered proliferation, myogenic differentiation, or response to injury when compared with control. In conclusion, TRα plays an essential role in myoblast homeostasis and provides a potential therapeutic target to enhance skeletal muscle regeneration.


Subject(s)
Muscle Development , Muscle, Skeletal/physiology , Myoblasts, Skeletal/cytology , Regeneration , Thyroid Hormone Receptors alpha/agonists , Triiodothyronine/metabolism , Acetates/pharmacology , Animals , Cell Line , Cell Proliferation/drug effects , Cells, Cultured , Drug Resistance , Frameshift Mutation , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Muscle Development/drug effects , Muscle, Skeletal/cytology , Muscle, Skeletal/injuries , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/metabolism , Phenols/pharmacology , RNA Interference , Thyroid Hormone Receptors alpha/antagonists & inhibitors , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormone Receptors beta/agonists , Thyroid Hormone Receptors beta/genetics , Thyroid Hormone Receptors beta/metabolism , Triiodothyronine/analogs & derivatives , Triiodothyronine/pharmacology , Wnt Signaling Pathway/drug effects
5.
J Vis Exp ; (95): 52375, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25651082

ABSTRACT

This protocol introduces researchers to a new model for large-scale bone repair utilizing the mouse rib. The procedure details the following: preparation of the animal for surgery, opening the thoracic body wall, exposing the desired rib from the surrounding intercostal muscles, excising the desired section of rib without inducing a pneumothorax, and closing the incisions. Compared to the bones of the appendicular skeleton, the ribs are highly accessible. In addition, no internal or external fixator is necessary since the adjacent ribs provide a natural fixation. The surgery uses commercially available supplies, is straightforward to learn, and well-tolerated by the animal. The procedure can be carried out with or without removing the surrounding periosteum, and therefore the contribution of the periosteum to repair can be assessed. Results indicate that if the periosteum is retained, robust repair occurs in 1 - 2 months. We expect that use of this protocol will stimulate research into rib repair and that the findings will facilitate the development of new ways to stimulate bone repair in other locations around the body.


Subject(s)
Models, Animal , Orthopedic Procedures/methods , Ribs/surgery , Animals , Female , Male , Mice , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...