Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Parasit Vectors ; 17(1): 187, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605410

ABSTRACT

BACKGROUND: In the context of climate change, a growing concern is that vector-pathogen or host-parasite interactions may be correlated with climatic factors, especially increasing temperatures. In the present study, we used a mosquito-microsporidian model to determine the impact of environmental factors such as temperature, humidity, wind and rainfall on the occurrence rates of opportunistic obligate microparasites (Microsporidia) in hosts from a family that includes important disease vectors (Culicidae). METHODS: In our study, 3000 adult mosquitoes collected from the field over 3 years were analysed. Mosquitoes and microsporidia were identified using PCR and sequencing of the hypervariable V5 region of the small subunit ribosomal RNA gene and a shortened fragment of the cytochrome c oxidase subunit I gene, respectively. RESULTS: DNA metabarcoding was used to identify nine mosquito species, all of which were hosts of 12 microsporidian species. The prevalence of microsporidian DNA across all mosquito samples was 34.6%. Microsporidian prevalence in mosquitoes was more frequent during warm months (> 19 °C; humidity < 65%), as was the co-occurrence of two or three microsporidian species in a single host individual. During warm months, microsporidian occurrence was noted 1.6-fold more often than during the cold periods. Among the microsporidians found in the mosquitoes, five (representing the genera Enterocytospora, Vairimorpha and Microsporidium) were positively correlated with an increase in temperature, whereas one (Hazardia sp.) was significantly correlated with a decrease in temperature. Threefold more microsporidian co-occurrences were recorded in the warm months than in the cold months. CONCLUSIONS: These results suggest that the susceptibility of mosquitoes to parasite occurrence is primarily determined by environmental conditions, such as, for example, temperatures > 19 °C and humidity not exceeding 62%. Collectively, our data provide a better understanding of the effects of the environment on microsporidian-mosquito interactions.


Subject(s)
Culicidae , Microsporidia , Animals , Culicidae/parasitology , Temperature , Humidity , Mosquito Vectors , Microsporidia/genetics , DNA
2.
Glob Chang Biol ; 30(5): e17293, 2024 May.
Article in English | MEDLINE | ID: mdl-38687495

ABSTRACT

Polar regions are relatively isolated from human activity and thus could offer insight into anthropogenic and ecological drivers of the spread of antibiotic resistance. Plasmids are of particular interest in this context given the central role that they are thought to play in the dissemination of antibiotic resistance genes (ARGs). However, plasmidomes are challenging to profile in environmental samples. The objective of this study was to compare various aspects of the plasmidome associated with glacial ice and adjacent aquatic environments across the high Arctic archipelago of Svalbard, representing a gradient of anthropogenic inputs and specific treated and untreated wastewater outflows to the sea. We accessed plasmidomes by applying enrichment cultures, plasmid isolation and shotgun Illumina sequencing of environmental samples. We examined the abundance and diversity of ARGs and other stress-response genes that might be co/cross-selected or co-transported in these environments, including biocide resistance genes (BRGs), metal resistance genes (MRGs), virulence genes (VGs) and integrons. We found striking differences between glacial ice and aquatic environments in terms of the ARGs carried by plasmids. We found a strong correlation between MRGs and ARGs in plasmids in the wastewaters and fjords. Alternatively, in glacial ice, VGs and BRGs genes were dominant, suggesting that glacial ice may be a repository of pathogenic strains. Moreover, ARGs were not found within the cassettes of integrons carried by the plasmids, which is suggestive of unique adaptive features of the microbial communities to their extreme environment. This study provides insight into the role of plasmids in facilitating bacterial adaptation to Arctic ecosystems as well as in shaping corresponding resistomes. Increasing human activity, warming of Arctic regions and associated increases in the meltwater run-off from glaciers could contribute to the release and spread of plasmid-related genes from Svalbard to the broader pool of ARGs in the Arctic Ocean.


Subject(s)
Plasmids , Plasmids/genetics , Arctic Regions , Drug Resistance, Bacterial/genetics , Svalbard , Drug Resistance, Microbial/genetics , Virulence/genetics , Wastewater/microbiology , Ice Cover/microbiology , Genes, Bacterial
4.
J Invertebr Pathol ; 201: 107990, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690679

ABSTRACT

Our study aimed to examine whether there are differences in the proliferation trend of microsporidia in mosquito larvae of the same genus (Culex spp.). DNA-barcoding and quantitative analyses were used to determine microsporidian rDNA copies in 'early' (L1 + L2) and 'late' (L3 + L4) Culex larvae in a natural population. In the study area, C. pipiens and C. torrentium larvae were infected by 'Microsporidium' sp. PL03 at similar levels. Infection by this microsporidian species probably elicits a notable immune response in C. pipiens, whereas in C. torrentium, it may evade or suppress the host immune response.


Subject(s)
Culex , Microsporidia, Unclassified , Microsporidia , Animals , Larva/genetics , Microsporidia/genetics , Cell Proliferation
5.
Chemosphere ; 316: 137717, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36610512

ABSTRACT

The applicability of herbicidal ionic liquids (HILs) as an alternative form of herbicides is currently evaluated. Yet, the available research is lacking information on the behaviour of herbicidal ionic liquids upon addition to the environment, i.e., if cations and anions act as separate moieties or remain an ionic salt. Hence, we tested degradation of five HILs with the glyphosate anion, their bioavailability in soil, toxicity towards microorganisms, impact on the biodiversity and the abundance of phnJ and soxA genes. The cations were proven to be slightly or moderately toxic. The properties of cations determined the properties of the whole formulation, which might suggest that cations and anion act as the independent mixture of ions. The mineralisation efficiencies were in the range of 15-53%; however, in the case of cations (except non-toxic choline), only 13-20% were bioavailable for degradation. The hydrophobic cations were proven to be highly sorbed, while the anion was readily available for microbial degradation regardless of its counterion. The approach to enrich test samples with isolated microorganisms specialised in glyphosate degradation resulted in higher degradation efficiencies, yet not high enough to mitigate the negative impact of cations. In addition, increased activity of enzymes participating in glyphosate degradation was observed. In the view of obtained results, the use of cationic surfactants in HILs structure is not recommended, as sorption was shown to be determining factor in HILs degradation efficiency. Moreover, obtained results indicate that corresponding ions in HILs might act as separate moieties in the environment.


Subject(s)
Herbicides , Ionic Liquids , Anions/chemistry , Cations/chemistry , Herbicides/toxicity , Herbicides/chemistry , Ionic Liquids/toxicity , Ionic Liquids/chemistry , Soil Microbiology , Glyphosate
6.
J Invertebr Pathol ; 197: 107873, 2023 03.
Article in English | MEDLINE | ID: mdl-36577478

ABSTRACT

Microsporidians (Microsporidia) are a diverse group of obligate and intracellular parasites of eukaryotes. There is evidence that the real species diversity in the phylum could be greatly underestimated, especially for microsporidians parasitic on invertebrates. Mosquitoes (Culicidae) are among very important microsporidian host groups. However, to date, no extensive survey on the prevalence of microsporidians in European mosquitoes has been performed. Here, we used mosquitoes collected in west-central Poland and a metabarcoding approach to examine the prevalence and diversity of microsporidian species among European mosquitoes. We found that up to one-third of mosquitoes in Europe may be infected with at least 13 microsporidian species belonging to the genera Amblyospora, Hazardia, Encephalitozoon, Enterocytospora, and Nosema and the holding genus Microsporidium. The lack of a difference in microsporidian prevalence between mosquito sexes implies that other factors, e.g., temperature or humidity, affect microsporidian occurrence in adult mosquitoes. Each microsporidian species was found in at least three mosquito species, which suggests that these microsporidians are polyxenic rather than monoxenic parasites. The co-occurrence of at least two different microsporidian species was found in 3.6% of host individuals. The abundance of microsporidian DNA sequences suggests interactions between co-occurring parasites; however, these results should be confirmed by microscopic and quantitative methods. In addition, further histological research is required to describe Microsporidium sp. PL01 or match its DNA to that of an already described species.


Subject(s)
Culicidae , Microsporidia , Nosema , Parasites , Animals , Microsporidia/genetics , Culicidae/parasitology , Host-Parasite Interactions , Nosema/genetics , Europe , Phylogeny
7.
Microb Ecol ; 85(1): 247-263, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34939130

ABSTRACT

The animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.


Subject(s)
Culicidae , Gastrointestinal Microbiome , Microbiota , Microsporidia , Animals , Female , Culicidae/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Microsporidia/genetics
8.
Parasit Vectors ; 15(1): 26, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35033159

ABSTRACT

BACKGROUND: Microsporidia is a large group of eukaryotic obligate intracellular spore-forming parasites, of which 17 species can cause microsporidiosis in humans. Most human-infecting microsporidians belong to the genera Enterocytozoon and Encephalitozoon. To date, only five microsporidian species, including Encephalitozoon-like, have been found in hard ticks (Ixodidae) using microscopic methods, but no sequence data are available for them. Furthermore, no widespread screening for microsporidian-infected ticks based on DNA analysis has been carried out to date. Thus, in this study, we applied a recently developed DNA metabarcoding method for efficient microsporidian DNA identification to assess the role of ticks as potential vectors of microsporidian species causing diseases in humans. METHODS: In total, 1070 (493 juvenile and 577 adult) unfed host-seeking Ixodes ricinus ticks collected at urban parks in the city of Poznan, Poland, and 94 engorged tick females fed on dogs and cats were screened for microsporidian DNA. Microsporidians were detected by PCR amplification and sequencing of the hypervariable V5 region of 18S rRNA gene (18S profiling) using the microsporidian-specific primer set. Tick species were identified morphologically and confirmed by amplification and sequencing of the shortened fragment of cytochrome c oxidase subunit I gene (mini-COI). RESULTS: All collected ticks were unambiguously assigned to I. ricinus. Potentially zoonotic Encephalitozoon intestinalis was identified in three fed ticks (3.2%) collected from three different dogs. In eight unfed host-seeking ticks (0.8%), including three males (1.1%), two females (0.7%) and three nymphs (0.7%), the new microsporidian sequence representing a species belonging to the genus Endoreticulatus was identified. CONCLUSIONS: The lack of zoonotic microsporidians in host-seeking ticks suggests that I. ricinus is not involved in transmission of human-infecting microsporidians. Moreover, a very low occurrence of the other microsporidian species in both fed and host-seeking ticks implies that mechanisms exist to defend ticks against infection with these parasites.


Subject(s)
Arachnid Vectors/microbiology , Ixodes/microbiology , Microsporidia/physiology , Animals , Base Sequence , Cat Diseases/parasitology , Cats , DNA Barcoding, Taxonomic , DNA, Fungal/chemistry , DNA, Fungal/isolation & purification , DNA, Ribosomal/chemistry , Dog Diseases/parasitology , Dogs , Electron Transport Complex IV/chemistry , Female , Male , Microsporidia/classification , Parks, Recreational , Phylogeny , Poland , Prevalence , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA , Tick Infestations/parasitology , Tick Infestations/veterinary
9.
PLoS One ; 17(1): e0262039, 2022.
Article in English | MEDLINE | ID: mdl-35020747

ABSTRACT

Insights into biodiversity and trophic webs are important for understanding ecosystem functions. Although the surfaces of glaciers are one of the most productive and biologically diverse parts of the cryosphere, the links between top consumers, their diet and microbial communities are poorly understood. In this study, for the first time we investigated the relationships between bacteria, fungi and other microeukaryotes as they relate to tardigrades, microscopic metazoans that are top consumers in cryoconite, a biologically rich and productive biogenic sediment found on glacier surfaces. Using metabarcoding (16S rDNA for bacteria, ITS1 for fungi, and 18S rDNA for other microeukaryotes), we analyzed the microbial community structures of cryoconite and compared them with the community found in both fully fed and starved tardigrades. The community structure of each microbial group (bacteria, fungi, microeukaryotes) were similar within each host group (cryoconite, fully fed tardigrades and starved tardigrades), and differed significantly between groups, as indicated by redundancy analyses. The relative number of operational taxonomic units (ZOTUs, OTUs) and the Shannon index differed significantly between cryoconite and tardigrades. Species indicator analysis highlighted a group of microbial taxa typical of both fully fed and starved tardigrades (potential commensals), like the bacteria of the genera Staphylococcus and Stenotrophomonas, as well as a group of taxa typical of both cryoconite and fully fed tardigrades (likely part of the tardigrade diet; bacteria Flavobacterium sp., fungi Preussia sp., algae Trebouxiophyceae sp.). Tardigrades are consumers of bacteria, fungi and other microeukaryotes in cryoconite and, being hosts for diverse microbes, their presence can enrich the microbiome of glaciers.


Subject(s)
Ice Cover
10.
Zoonoses Public Health ; 68(5): 538-543, 2021 08.
Article in English | MEDLINE | ID: mdl-33749156

ABSTRACT

Giardia duodenalis is a cosmopolitan flagellate that causes giardiasis, one of the most significant gastrointestinal diseases in humans. This parasite can be a serious threat to public health because it can cause waterborne outbreaks as well as sporadic infections in humans. Invasive raccoons (Procyon lotor) may play a role in disseminating Giardia into the environment and transmitting it to humans and domestic animals because they live in high densities and deposit their faces in latrines near areas used by humans. While Giardia infections have been reported from raccoons in North America, it is unknown whether they carry G. duodenalis with zoonotic assemblage A and B, which have the potential to cause illness in humans. We collected faecal samples from 66 legally harvested raccoons in Germany and Luxembourg and examined for Giardia using molecular techniques. Using a quantitative PCR based on primers specific to Giardia genetic assemblages A and B, we detected the presence of zoonotic assemblage B in 27% (95% CI, 17.0-39.6) of all examined faecal samples from raccoons, including animals sampled in buildings. We did not detect genetic assemblage A in any of the samples. Sequences obtained from the glutamate dehydrogenase and beta-giardin gene fragments from a selection of three of the positive samples showed that raccoons carried a zoonotic G. duodenalis genotype belonging to sub-assemblage BIV, which is commonly found in humans and animals worldwide. Our results suggest that free-ranging raccoons have the potential to play an increasingly important role in the epidemiology of Giardia and pose a threat to public health in Europe and other regions where this species is common and lives in close association with humans.


Subject(s)
Giardia lamblia/genetics , Giardiasis/veterinary , Raccoons/parasitology , Zoonoses , Animals , Feces/parasitology , Female , Germany/epidemiology , Giardiasis/epidemiology , Giardiasis/parasitology , Luxembourg/epidemiology , Male , Phylogeny
11.
Glob Chang Biol ; 27(7): 1349-1364, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33159820

ABSTRACT

Fungal decomposition of soil organic matter depends on soil nitrogen (N) availability. This ecosystem process is being jeopardized by changes in N inputs that have resulted from a tripling of atmospheric N deposition in the last century. Soil fungi are impacted by atmospheric N deposition due to higher N availability, as soils are acidified, or as micronutrients become increasingly limiting. Fungal communities that persist with chronic N deposition may be enriched with traits that enable them to tolerate environmental stress, which may trade-off with traits enabling organic matter decomposition. We hypothesized that fungal communities would respond to N deposition by shifting community composition and functional gene abundances toward those that tolerate stress but are weak decomposers. We sampled soils at seven eastern US hardwood forests where ambient N deposition varied from 3.2 to 12.6 kg N ha-1  year-1 , five of which also have experimental plots where atmospheric N deposition was simulated through fertilizer application treatments (25-50 kg N ha-1  year-1 ). Fungal community and functional responses to fertilizer varied across the ambient N deposition gradient. Fungal biomass and richness increased with simulated N deposition at sites with low ambient deposition and decreased at sites with high ambient deposition. Fungal functional genes involved in hydrolysis of organic matter increased with ambient N deposition while genes involved in oxidation of organic matter decreased. One of four genes involved in generalized abiotic stress tolerance increased with ambient N deposition. In summary, we found that the divergent response to simulated N deposition depended on ambient N deposition levels. Fungal biomass, richness, and oxidative enzyme potential were reduced by N deposition where ambient N deposition was high suggesting fungal communities were pushed beyond an environmental stress threshold. Fungal community structure and function responses to N enrichment depended on ambient N deposition at a regional scale.


Subject(s)
Mycobiome , Nitrogen , Ecosystem , Nitrogen/analysis , Soil , Soil Microbiology , Trees
12.
Pathogens ; 9(7)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32660015

ABSTRACT

Fungi from the Hypocreales order synthesize a range of toxic non-ribosomal cyclic peptides with antimicrobial, insecticidal and cytotoxic activities. Entomopathogenic Beauveria, Isaria and Cordyceps as well as phytopathogenic Fusarium spp. are known producers of beauvericins (BEAs), beauvenniatins (BEAEs) or enniatins (ENNs). The compounds are synthesized by beauvericin/enniatin synthase (BEAS/ESYN1), which shows significant sequence divergence among Hypocreales members. We investigated ENN, BEA and BEAE production among entomopathogenic (Beauveria, Cordyceps, Isaria) and phytopathogenic (Fusarium) fungi; BEA and ENNs were quantified using an LC-MS/MS method. Phylogenetic analysis of partial sequences of putative BEAS/ESYN1 amplicons was also made. Nineteen fungal strains were identified based on sequence analysis of amplified ITS and tef-1α regions. BEA was produced by all investigated fungi, with F. proliferatum and F. concentricum being the most efficient producers. ENNs were synthesized mostly by F. acuminatum, F. avenaceum and C. confragosa. The phylogeny reconstruction suggests that ancestral BEA biosynthesis independently diverged into biosynthesis of other compounds. The divergent positioning of three Fusarium isolates raises the possibility of parallel acquisition of cyclic depsipeptide synthases in ancient complexes within Fusarium genus. Different fungi have independently evolved NRPS genes involved in depsipeptide biosynthesis, with functional adaptation towards biosynthesis of overlapping yet diversified metabolite profiles.

13.
Mol Ecol Resour ; 20(6): 1486-1504, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32516485

ABSTRACT

DNA metabarcoding offers new perspectives, especially with regard to the high-throughput identification and diagnostics of pathogens. Microsporidia are an example of widely distributed, opportunistic and pathogenic microorganisms in which molecular identification is important for both environmental research and clinical diagnostics. We have developed a method for parallel detection of both microsporidian infection and the host species. We designed new primer sets: one specific for the classical Microsporidia (targeting the hypervariable V5 region of small subunit [ssu] rDNA), and a second one targeting a shortened fragment of the COI gene (standard metazoan DNA-barcode); both markers are well suited for next generation sequencing. Analysis of the ssu rDNA data set representing 607 microsporidian species (120 genera) indicated that the V5 region enables identification of >98% species in the data set (596/607). To test the method, we used microsporidians that infect mosquitoes in natural populations. Using mini-COI data, all field-collected mosquitoes were unambiguously assigned to seven species; among them almost 60% of specimens were positive for at least 11 different microsporidian species, including a new microsporidian ssu rDNA sequence (Microsporidium sp. PL01). Phylogenetic analysis showed that this species belongs to one of the two main clades in the Terresporidia. We found a high rate of microsporidian co-infections (9.4%). The numbers of sequence reads for the operational taxonomic units suggest that the occurrence of Nosema spp. in co-infections could benefit them; however, this observation should be retested using a more intensive host sampling. Our results show that DNA barcoding is a rapid and cost-effective method for deciphering sample diversity in greater resolution, including the hidden biodiversity that may be overlooked using classical methodology.


Subject(s)
Culicidae , DNA Barcoding, Taxonomic/methods , Microsporidia , Microsporidiosis , Animals , Culicidae/microbiology , DNA, Ribosomal , Microsporidia/genetics , Phylogeny
14.
Water Res ; 170: 115277, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31756613

ABSTRACT

The emergence and spread of resistance to antibiotics among bacteria is the most serious global threat to public health in recent and coming decades. In this study, we characterized qualitatively and quantitatively ß-lactamase and carbapenemase genes in the wastewater resistome of Central Wastewater Treatment Plant in Kozieglowy, Poland. The research concerns determination of the frequency of genes conferring resistance to ß-lactam and carbapenem antibiotics in the genomes of culturable bacteria, as well as in the wastewater metagenome at three stages of treatment: raw sewage, aeration tank, and final effluent. In the final effluent we found bacteria with genes that pose the greatest threat to public health, including genes of extended spectrum ß-lactamases - blaCTX-M, carbapenemases - blaNDM, blaVIM, blaGES, blaOXA-48, and showed that during the wastewater treatment their frequency increased. Moreover, the wastewater treatment process leads to significant increase in the relative abundance of blaTEM and blaGES genes and tend to increase the relative abundance of blaCTX-M, blaSHV and blaOXA-48 genes in the effluent metagenome. The biodiversity of bacterial populations increased during the wastewater treatment and there was a correlation between the change in the composition of bacterial populations and the variation of relative abundance of ß-lactamase and carbapenemase genes. PCR-based quantitative metagenomic analysis combined with analyses based on culture methods provided significant information on the routes of ARBs and ARGs spread through WWTP. The limited effectiveness of wastewater treatment processes in the elimination of antibiotic-resistant bacteria and resistance genes impose the need to develop an effective strategy and implement additional methods of wastewater disinfection, in order to limit the increase and the spread of antibiotic resistance in the environment.


Subject(s)
Metagenome , Wastewater , Anti-Bacterial Agents , Bacterial Proteins , Poland , beta-Lactamases
SELECTION OF CITATIONS
SEARCH DETAIL