Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Gut ; 73(9): 1441-1453, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38816188

ABSTRACT

OBJECTIVE: Hirschsprung disease (HSCR) is a severe congenital disorder affecting 1:5000 live births. HSCR results from the failure of enteric nervous system (ENS) progenitors to fully colonise the gastrointestinal tract during embryonic development. This leads to aganglionosis in the distal bowel, resulting in disrupted motor activity and impaired peristalsis. Currently, the only viable treatment option is surgical resection of the aganglionic bowel. However, patients frequently suffer debilitating, lifelong symptoms, with multiple surgical procedures often necessary. Hence, alternative treatment options are crucial. An attractive strategy involves the transplantation of ENS progenitors generated from human pluripotent stem cells (hPSCs). DESIGN: ENS progenitors were generated from hPSCs using an accelerated protocol and characterised, in detail, through a combination of single-cell RNA sequencing, protein expression analysis and calcium imaging. We tested ENS progenitors' capacity to integrate and affect functional responses in HSCR colon, after ex vivo transplantation to organotypically cultured patient-derived colonic tissue, using organ bath contractility. RESULTS: We found that our protocol consistently gives rise to high yields of a cell population exhibiting transcriptional and functional hallmarks of early ENS progenitors. Following transplantation, hPSC-derived ENS progenitors integrate, migrate and form neurons/glia within explanted human HSCR colon samples. Importantly, the transplanted HSCR tissue displayed significantly increased basal contractile activity and increased responses to electrical stimulation compared with control tissue. CONCLUSION: Our findings demonstrate, for the first time, the potential of hPSC-derived ENS progenitors to repopulate and increase functional responses in human HSCR patient colonic tissue.


Subject(s)
Colon , Enteric Nervous System , Hirschsprung Disease , Hirschsprung Disease/surgery , Hirschsprung Disease/therapy , Humans , Pluripotent Stem Cells , Stem Cell Transplantation/methods , Cell Differentiation
2.
Nat Commun ; 15(1): 3745, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702304

ABSTRACT

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Subject(s)
Cell Differentiation , DNA Copy Number Variations , N-Myc Proto-Oncogene Protein , Neural Crest , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Neural Crest/metabolism , Neural Crest/pathology , Female , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Chromosome Aberrations , Human Embryonic Stem Cells/metabolism , Transcriptome , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
3.
Development ; 151(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38223992

ABSTRACT

The generation of the post-cranial embryonic body relies on the coordinated production of spinal cord neurectoderm and presomitic mesoderm cells from neuromesodermal progenitors (NMPs). This process is orchestrated by pro-neural and pro-mesodermal transcription factors that are co-expressed in NMPs together with Hox genes, which are essential for axial allocation of NMP derivatives. NMPs reside in a posterior growth region, which is marked by the expression of Wnt, FGF and Notch signalling components. Although the importance of Wnt and FGF in influencing the induction and differentiation of NMPs is well established, the precise role of Notch remains unclear. Here, we show that the Wnt/FGF-driven induction of NMPs from human embryonic stem cells (hESCs) relies on Notch signalling. Using hESC-derived NMPs and chick embryo grafting, we demonstrate that Notch directs a pro-mesodermal character at the expense of neural fate. We show that Notch also contributes to activation of HOX gene expression in human NMPs, partly in a non-cell-autonomous manner. Finally, we provide evidence that Notch exerts its effects via the establishment of a negative-feedback loop with FGF signalling.


Subject(s)
Body Patterning , Genes, Homeobox , Animals , Chick Embryo , Humans , Body Patterning/genetics , Cell Differentiation/genetics , Mesoderm/metabolism , Spinal Cord , Gene Expression , Gene Expression Regulation, Developmental
4.
Elife ; 112022 09 26.
Article in English | MEDLINE | ID: mdl-36154671

ABSTRACT

The neural crest (NC) is an important multipotent embryonic cell population and its impaired specification leads to various developmental defects, often in an anteroposterior (A-P) axial level-specific manner. The mechanisms underlying the correct A-P regionalisation of human NC cells remain elusive. Recent studies have indicated that trunk NC cells, the presumed precursors of childhood tumour neuroblastoma, are derived from neuromesodermal-potent progenitors of the postcranial body. Here we employ human embryonic stem cell differentiation to define how neuromesodermal progenitor (NMP)-derived NC cells acquire a posterior axial identity. We show that TBXT, a pro-mesodermal transcription factor, mediates early posterior NC/spinal cord regionalisation together with WNT signalling effectors. This occurs by TBXT-driven chromatin remodelling via its binding in key enhancers within HOX gene clusters and other posterior regulator-associated loci. This initial posteriorisation event is succeeded by a second phase of trunk HOX gene control that marks the differentiation of NMPs toward their TBXT-negative NC/spinal cord derivatives and relies predominantly on FGF signalling. Our work reveals a previously unknown role of TBXT in influencing posterior NC fate and points to the existence of temporally discrete, cell type-dependent modes of posterior axial identity control.


Subject(s)
Mesoderm , Neural Crest , Cell Differentiation/genetics , Humans , Transcription Factors/metabolism , Wnt Signaling Pathway
5.
Dev Biol ; 489: 110-117, 2022 09.
Article in English | MEDLINE | ID: mdl-35718236

ABSTRACT

The production of the tissues that make up the mammalian embryonic trunk takes place in a head-tail direction, via the differentiation of posteriorly-located axial progenitor populations. These include bipotent neuromesodermal progenitors (NMPs), which generate both spinal cord neurectoderm and presomitic mesoderm, the precursor of the musculoskeleton. Over the past few years, a number of studies have described the derivation of NMP-like cells from mouse and human pluripotent stem cells (PSCs). In turn, these have greatly facilitated the establishment of PSC differentiation protocols aiming to give rise efficiently to posterior mesodermal and neural cell types, which have been particularly challenging to produce using previous approaches. Moreover, the advent of 3-dimensional-based culture systems incorporating distinct axial progenitor-derived cell lineages has opened new avenues toward the functional dissection of early patterning events and cell vs non-cell autonomous effects. Here, we provide a brief overview of the applications of these cell types in disease modelling and cell therapy and speculate on their potential uses in the future.


Subject(s)
Body Patterning , Neural Stem Cells , Animals , Body Patterning/physiology , Cell Differentiation/physiology , Cell Lineage , Humans , Mammals , Mesoderm , Mice
6.
Biochem Soc Trans ; 50(1): 499-511, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35015077

ABSTRACT

The neural crest (NC) is a multipotent cell population which can give rise to a vast array of derivatives including neurons and glia of the peripheral nervous system, cartilage, cardiac smooth muscle, melanocytes and sympathoadrenal cells. An attractive strategy to model human NC development and associated birth defects as well as produce clinically relevant cell populations for regenerative medicine applications involves the in vitro generation of NC from human pluripotent stem cells (hPSCs). However, in vivo, the potential of NC cells to generate distinct cell types is determined by their position along the anteroposterior (A-P) axis and, therefore the axial identity of hPSC-derived NC cells is an important aspect to consider. Recent advances in understanding the developmental origins of NC and the signalling pathways involved in its specification have aided the in vitro generation of human NC cells which are representative of various A-P positions. Here, we explore recent advances in methodologies of in vitro NC specification and axis patterning using hPSCs.


Subject(s)
Neural Crest , Pluripotent Stem Cells , Cell Differentiation , Humans , Neural Crest/metabolism , Neurons
7.
Curr Protoc ; 1(9): e244, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34547185

ABSTRACT

The ability to generate spinal cord motor neurons from human pluripotent stem cells (hPSCs) is of great use for modelling motor neuron-based diseases and cell-replacement therapies. A key step in the design of hPSC differentiation strategies aiming to produce motor neurons involves induction of the appropriate anteroposterior (A-P) axial identity, an important factor influencing motor neuron subtype specification, functionality, and disease vulnerability. Most current protocols for induction of motor neurons from hPSCs produce predominantly cells of a mixed hindbrain/cervical axial identity marked by expression of Hox paralogous group (PG) members 1-5, but are inefficient in generating high numbers of more posterior thoracic/lumbosacral Hox PG(8-13)+ spinal cord motor neurons. Here, we describe a protocol for efficient generation of thoracic spinal cord cells and motor neurons from hPSCs. This step-wise protocol relies on the initial generation of a neuromesodermal-potent axial progenitor population, which is differentiated first to produce posterior ventral spinal cord progenitors and subsequently to produce posterior motor neurons exhibiting a predominantly thoracic axial identity. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Differentiation of neuromesodermal progenitors Basic Protocol 2: Posterior ventral spinal cord progenitor differentiation Basic Protocol 3: Posterior motor neuron differentiation.


Subject(s)
Pluripotent Stem Cells , Cell Differentiation , Humans , Motor Neurons , Neurogenesis , Spinal Cord
8.
Curr Protoc ; 1(6): e137, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34102038

ABSTRACT

The intrinsic innervation of the gastrointestinal (GI) tract is comprised of enteric neurons and glia, which are buried within the wall of the bowel and organized into two concentric plexuses that run along the length of the gut forming the enteric nervous system (ENS). The ENS regulates vital GI functions including gut motility, blood flow, fluid secretion, and absorption and thus maintains gut homeostasis. During vertebrate development it originates predominantly from the vagal neural crest (NC), a multipotent cell population that emerges from the caudal hindbrain region, migrates to and within the gut to ultimately generate neurons and glia in response to gut-derived signals. Loss of GI innervation due to congenital or acquired defects in ENS development causes enteric neuropathies which lack curative treatment. Human pluripotent stem cells (hPSCs) offer a promising in vitro source of enteric neurons for modeling human ENS development and pathology and potential use in cell therapy applications. Here we describe in detail a differentiation strategy for the derivation of enteric neural progenitors and neurons from hPSCs through a vagal NC intermediate. Using a combination of instructive signals and retinoic acid in a dose/time dependent manner, vagal NC cells commit into the ENS lineage and develop into enteric neurons and glia upon culture in neurotrophic media. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of vagal neural crest/early ENS progenitors from hPSCs Basic Protocol 2: Differentiation of hPSC-derived vagal NC/early ENS progenitors to enteric neurons and glia.


Subject(s)
Enteric Nervous System , Pluripotent Stem Cells , Cell Differentiation , Humans , Neural Crest , Neurons
9.
Development ; 148(6)2021 03 23.
Article in English | MEDLINE | ID: mdl-33658223

ABSTRACT

The anteroposterior axial identity of motor neurons (MNs) determines their functionality and vulnerability to neurodegeneration. Thus, it is a crucial parameter in the design of strategies aiming to produce MNs from human pluripotent stem cells (hPSCs) for regenerative medicine/disease modelling applications. However, the in vitro generation of posterior MNs corresponding to the thoracic/lumbosacral spinal cord has been challenging. Although the induction of cells resembling neuromesodermal progenitors (NMPs), the bona fide precursors of the spinal cord, offers a promising solution, the progressive specification of posterior MNs from these cells is not well defined. Here, we determine the signals guiding the transition of human NMP-like cells toward thoracic ventral spinal cord neurectoderm. We show that combined WNT-FGF activities drive a posterior dorsal pre-/early neural state, whereas suppression of TGFß-BMP signalling pathways promotes a ventral identity and neural commitment. Based on these results, we define an optimised protocol for the generation of thoracic MNs that can efficiently integrate within the neural tube of chick embryos. We expect that our findings will facilitate the comparison of hPSC-derived spinal cord cells of distinct axial identities.


Subject(s)
Cell Differentiation/genetics , Mesoderm/growth & development , Neural Stem Cells/metabolism , Spinal Cord/growth & development , Animals , Body Patterning/genetics , Bone Morphogenetic Proteins/genetics , Cell Lineage/genetics , Chick Embryo , Fibroblast Growth Factors/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Mesoderm/metabolism , Motor Neurons/metabolism , Neural Stem Cells/cytology , Pluripotent Stem Cells/cytology , Signal Transduction/genetics , Spinal Cord/metabolism , Transforming Growth Factor beta/genetics , Wnt Proteins/genetics
10.
Development ; 148(4)2021 02 16.
Article in English | MEDLINE | ID: mdl-33593754

ABSTRACT

The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.


Subject(s)
Biology , Body Patterning , Gastrulation/physiology , Germ Layers/embryology , Animals , Ectoderm/embryology , Endoderm/embryology , Gene Expression Regulation, Developmental , Germ Layers/innervation , Humans , In Vitro Techniques , Mesoderm/embryology , Mesoderm/innervation , Muscle, Skeletal , Stem Cells
11.
Stem Cell Reports ; 15(3): 557-565, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32857978

ABSTRACT

The enteric nervous system (ENS) is derived primarily from the vagal neural crest, a migratory multipotent cell population emerging from the dorsal neural tube between somites 1 and 7. Defects in the development and function of the ENS cause a range of enteric neuropathies, including Hirschsprung disease. Little is known about the signals that specify early ENS progenitors, limiting progress in the generation of enteric neurons from human pluripotent stem cells (hPSCs) to provide tools for disease modeling and regenerative medicine for enteric neuropathies. We describe the efficient and accelerated generation of ENS progenitors from hPSCs, revealing that retinoic acid is critical for the acquisition of vagal axial identity and early ENS progenitor specification. These ENS progenitors generate enteric neurons in vitro and, following in vivo transplantation, achieved long-term colonization of the ENS in adult mice. Thus, hPSC-derived ENS progenitors may provide the basis for cell therapy for defects in the ENS.


Subject(s)
Enteric Nervous System/cytology , Neural Crest/cytology , Neural Stem Cells/cytology , Tretinoin/pharmacology , Animals , Cell Line , Humans , Mice , Neural Stem Cells/drug effects , Neurons/cytology , Neurons/drug effects , Signal Transduction/drug effects , Time Factors , Vagus Nerve/cytology
12.
Phys Biol ; 17(6): 065009, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32585646

ABSTRACT

The deluge of single-cell data obtained by sequencing, imaging and epigenetic markers has led to an increasingly detailed description of cell state. However, it remains challenging to identify how cells transition between different states, in part because data are typically limited to snapshots in time. A prerequisite for inferring cell state transitions from such snapshots is to distinguish whether transitions are coupled to cell divisions. To address this, we present two minimal branching process models of cell division and differentiation in a well-mixed population. These models describe dynamics where differentiation and division are coupled or uncoupled. For each model, we derive analytic expressions for each subpopulation's mean and variance and for the likelihood, allowing exact Bayesian parameter inference and model selection in the idealised case of fully observed trajectories of differentiation and division events. In the case of snapshots, we present a sample path algorithm and use this to predict optimal temporal spacing of measurements for experimental design. We then apply this methodology to an in vitro dataset assaying the clonal growth of epiblast stem cells in culture conditions promoting self-renewal or differentiation. Here, the larger number of cell states necessitates approximate Bayesian computation. For both culture conditions, our inference supports the model where cell state transitions are coupled to division. For culture conditions promoting differentiation, our analysis indicates a possible shift in dynamics, with these processes becoming more coupled over time.


Subject(s)
Cell Differentiation , Cell Division , Embryonic Stem Cells/physiology , Algorithms , Bayes Theorem , Models, Biological , Probability
13.
Curr Protoc Stem Cell Biol ; 49(1): e81, 2019 06.
Article in English | MEDLINE | ID: mdl-30688409

ABSTRACT

The neural crest (NC) is a multipotent embryonic cell population that generates various cell types in an axial position-dependent manner. Cranial NC cells give rise to mesoectodermal derivatives, melanocytes, neurons, and glia whereas the vagal NC generates the enteric nervous system and trunk NC cells produce sympathetic neurons and neuroendocrine cells. An attractive approach for studying human NC biology and modeling NC-associated developmental disorders (neurocristopathies) involves the in vitro production of NC cells from human pluripotent stem cells (hPSCs). However, most conventional differentiation protocols generate predominantly cranial NC cells but fail to induce trunk NC cells. Here we describe a detailed protocol for the efficient in vitro generation of trunk NC cells and their derivatives from hPSCs. This relies on the induction of an intermediate cell population that exhibits neural and mesodermal potential, resembling the embryonic neuromesodermal progenitors, which generate the postcranial body axis in vivo. © 2019 by John Wiley & Sons, Inc.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation/physiology , Neural Crest/cytology , Neurons/cytology , Pluripotent Stem Cells/cytology , Sympathetic Nervous System/cytology , Cells, Cultured , Humans
14.
Elife ; 72018 08 10.
Article in English | MEDLINE | ID: mdl-30095409

ABSTRACT

The neural crest (NC) is a multipotent embryonic cell population that generates distinct cell types in an axial position-dependent manner. The production of NC cells from human pluripotent stem cells (hPSCs) is a valuable approach to study human NC biology. However, the origin of human trunk NC remains undefined and current in vitro differentiation strategies induce only a modest yield of trunk NC cells. Here we show that hPSC-derived axial progenitors, the posteriorly-located drivers of embryonic axis elongation, give rise to trunk NC cells and their derivatives. Moreover, we define the molecular signatures associated with the emergence of human NC cells of distinct axial identities in vitro. Collectively, our findings indicate that there are two routes toward a human post-cranial NC state: the birth of cardiac and vagal NC is facilitated by retinoic acid-induced posteriorisation of an anterior precursor whereas trunk NC arises within a pool of posterior axial progenitors.


Subject(s)
Cell Differentiation , Neural Crest/physiology , Pluripotent Stem Cells/physiology , Biomarkers , Cells, Cultured , Humans
15.
J Cell Sci ; 131(18)2018 09 20.
Article in English | MEDLINE | ID: mdl-30154213

ABSTRACT

The cytokine leukaemia inhibitory factor (LIF) promotes self-renewal of mouse embryonic stem cells (ESCs) through activation of the transcription factor Stat3. However, the contribution of other ancillary pathways stimulated by LIF in ESCs, such as the MAPK and PI3K pathways, is less well understood. We show here that naive-type mouse ESCs express high levels of a novel effector of the MAPK and PI3K pathways. This effector is an isoform of the Gab1 (Grb2-associated binder protein 1) adaptor protein that lacks the N-terminal pleckstrin homology (PH) membrane-binding domain. Although not essential for rapid unrestricted growth of ESCs under optimal conditions, the novel Gab1 variant (Gab1ß) is required for LIF-mediated cell survival under conditions of limited nutrient availability. This enhanced survival is absolutely dependent upon a latent palmitoylation site that targets Gab1ß directly to ESC membranes. These results show that constitutive association of Gab1 with membranes through a novel mechanism promotes LIF-dependent survival of murine ESCs in nutrient-poor conditions.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Embryonic Stem Cells/metabolism , Leukemia Inhibitory Factor/metabolism , Animals , Cells, Cultured , Signal Transduction
16.
Article in English | MEDLINE | ID: mdl-29786554

ABSTRACT

We describe the production of a human induced pluripotent stem cell (iPSC) line, SFCi55-ZsGr, that has been engineered to express the fluorescent reporter gene, ZsGreen, in a constitutive manner. The CAG-driven ZsGreen expression cassette was inserted into the AAVS1 locus and a high level of expression was observed in undifferentiated iPSCs and in cell lineages derived from all three germ layers including haematopoietic cells, hepatocytes and neurons. We demonstrate efficient production of terminally differentiated macrophages from the SFCi55-ZsGreen iPSC line and show that they are indistinguishable from those generated from their parental SFCi55 iPSC line in terms of gene expression, cell surface marker expression and phagocytic activity. The high level of ZsGreen expression had no effect on the ability of macrophages to be activated to an M(LPS + IFNγ), M(IL10) or M(IL4) phenotype nor on their plasticity, assessed by their ability to switch from one phenotype to another. Thus, targeting of the AAVS1 locus in iPSCs allows for the production of fully functional, fluorescently tagged human macrophages that can be used for in vivo tracking in disease models. The strategy also provides a platform for the introduction of factors that are predicted to modulate and/or stabilize macrophage function.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.


Subject(s)
Cell Differentiation , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Induced Pluripotent Stem Cells/physiology , Macrophages/metabolism , Cell Lineage/physiology , Germ Layers/growth & development , Humans
17.
BMC Dev Biol ; 15: 35, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26453549

ABSTRACT

BACKGROUND: Pluripotent cells are present in early embryos until the levels of the pluripotency regulator Oct4 drop at the beginning of somitogenesis. Elevating Oct4 levels in explanted post-pluripotent cells in vitro restores their pluripotency. Cultured pluripotent cells can participate in normal development when introduced into host embryos up to the end of gastrulation. In contrast, pluripotent cells efficiently seed malignant teratocarcinomas in adult animals. In humans, extragonadal teratomas and teratocarcinomas are most frequently found in the sacrococcygeal region of neonates, suggesting that these tumours originate from cells in the posterior of the embryo that either reactivate or fail to switch off their pluripotent status. However, experimental models for the persistence or reactivation of pluripotency during embryonic development are lacking. METHODS: We manually injected embryonic stem cells into conceptuses at E9.5 to test whether the presence of pluripotent cells at this stage correlates with teratocarcinoma formation. We then examined the effects of reactivating embryonic Oct4 expression ubiquitously or in combination with Nanog within the primitive streak (PS)/tail bud (TB) using a transgenic mouse line and embryo chimeras carrying a PS/TB-specific heterologous gene expression cassette respectively. RESULTS: Here, we show that pluripotent cells seed teratomas in post-gastrulation embryos. However, at these stages, induced ubiquitous expression of Oct4 does not lead to restoration of pluripotency (indicated by Nanog expression) and tumour formation in utero, but instead causes a severe phenotype in the extending anteroposterior axis. Use of a more restricted T(Bra) promoter transgenic system enabling inducible ectopic expression of Oct4 and Nanog specifically in the posteriorly-located primitive streak (PS) and tail bud (TB) led to similar axial malformations to those induced by Oct4 alone. These cells underwent induction of pluripotency marker expression in Epiblast Stem Cell (EpiSC) explants derived from somitogenesis-stage embryos, but no teratocarcinoma formation was observed in vivo. CONCLUSIONS: Our findings show that although pluripotent cells with teratocarcinogenic potential can be produced in vitro by the overexpression of pluripotency regulators in explanted somitogenesis-stage somatic cells, the in vivo induction of these genes does not yield tumours. This suggests a restrictive regulatory role of the embryonic microenvironment in the induction of pluripotency.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Stem Cells/metabolism , Teratoma/metabolism , Teratoma/pathology , Animals , Embryo, Mammalian/pathology , Fetal Proteins/metabolism , Homeodomain Proteins/genetics , Humans , Mice , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/metabolism , T-Box Domain Proteins/metabolism , Tail/embryology
18.
F1000Res ; 4: 100, 2015.
Article in English | MEDLINE | ID: mdl-26401264

ABSTRACT

Retrospective clonal analysis in the mouse has demonstrated that the posterior spinal cord neurectoderm and paraxial mesoderm share a common bipotent progenitor. These neuromesodermal progenitors (NMPs) are the source of new axial structures during embryonic rostrocaudal axis elongation and are marked by the simultaneous co-expression of the transcription factors T(Brachyury) (T(Bra)) and Sox2. NMP-like cells have recently been derived from pluripotent stem cells in vitro following combined stimulation of Wnt and fibroblast growth factor (FGF) signaling. Under these conditions the majority of cultures consist of T(Bra)/Sox2 co-expressing cells after 48-72 hours of differentiation. Although the capacity of these cells to generate posterior neural and paraxial mesoderm derivatives has been demonstrated at the population level, it is unknown whether a single in vitro-derived NMP can give rise to both neural and mesodermal cells. Here we demonstrate that T(Bra) positive cells obtained from mouse epiblast stem cells (EpiSCs) after culture in NMP-inducing conditions can generate both neural and mesodermal clones. This finding suggests that, similar to their embryonic counterparts, in vitro-derived NMPs are truly bipotent and can thus be exploited as a model for studying the molecular basis of developmental cell fate decisions.

20.
PLoS Biol ; 12(8): e1001937, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25157815

ABSTRACT

Cells of the spinal cord and somites arise from shared, dual-fated precursors, located towards the posterior of the elongating embryo. Here we show that these neuromesodermal progenitors (NMPs) can readily be generated in vitro from mouse and human pluripotent stem cells by activating Wnt and Fgf signalling, timed to emulate in vivo development. Similar to NMPs in vivo, these cells co-express the neural factor Sox2 and the mesodermal factor Brachyury and differentiate into neural and paraxial mesoderm in vitro and in vivo. The neural cells produced by NMPs have spinal cord but not anterior neural identity and can differentiate into spinal cord motor neurons. This is consistent with the shared origin of spinal cord and somites and the distinct ontogeny of the anterior and posterior nervous system. Systematic analysis of the transcriptome during differentiation identifies the molecular correlates of each of the cell identities and the routes by which they are obtained. Moreover, we take advantage of the system to provide evidence that Brachyury represses neural differentiation and that signals from mesoderm are not necessary to induce the posterior identity of spinal cord cells. This indicates that the mesoderm inducing and posteriorising functions of Wnt signalling represent two molecularly separate activities. Together the data illustrate how reverse engineering normal developmental mechanisms allows the differentiation of specific cell types in vitro and the analysis of previous difficult to access aspects of embryo development.


Subject(s)
Body Patterning , Mesoderm/cytology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Spinal Cord/cytology , Spinal Cord/embryology , Wnt Signaling Pathway , Animals , Cell Differentiation , Cell Line , Chick Embryo , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fetal Proteins/metabolism , Fibroblast Growth Factors/metabolism , Germ Layers/cytology , Humans , Mice , T-Box Domain Proteins/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL