Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Front Physiol ; 15: 1393952, 2024.
Article in English | MEDLINE | ID: mdl-38887318

ABSTRACT

Though myosins share a structurally conserved motor domain, single amino acid variations of active site elements, including the P-loop, switch-1 and switch-2, which act as nucleotide sensors, can substantially determine the kinetic signature of a myosin, i.e., to either perform fast movement or enable long-range transport and tension generation. Switch-2 essentially contributes to the ATP hydrolysis reaction and determines product release. With few exceptions, class-1 myosin harbor a tyrosine in the switch-2 consensus sequence DIYGFE, at a position where class-2 myosins and a selection of myosins from other classes have a substitution. Here, we addressed the role of the tyrosine in switch-2 of class-1 myosins as potential determinant of the duty ratio. We generated constitutively active motor domain constructs of two class-1 myosins from the social amoeba Dictyostelium discoideum, namely, Myo1E, a high duty ratio myosin and Myo1B, a low duty ratio myosin. In Myo1E we introduced mutation Y388F and in Myo1B mutation F387Y. The detailed functional characterization by steady-state and transient kinetic experiments, combined with in vitro motility and landing assays revealed an almost reciprocal relationship of a number of critical kinetic parameters and equilibrium constants between wild-type and mutants that dictate the lifetime of the strongly actin-attached states of myosin. The Y-to-F mutation increased the duty ratio of Moy1B by almost one order of magnitude, while the introduction of the phenylalanine in switch-2 of Myo1E transformed the myosin into a low duty ratio motor. These data together with structural considerations propose a role of switch-2 in fine-tuning ADP release through a mechanism, where the class-specific tyrosine together with surrounding residues contributes to the coordination of Mg2+ and ADP. Our results highlight the importance of conserved switch-2 residues in class-1 myosins for efficient chemo-mechanical coupling, revealing that switch-2 is important to adjust the duty ratio of the amoeboid class-1 myosins for performing movement, transport or gating functions.

2.
FASEB J ; 38(1): e23400, 2024 01.
Article in English | MEDLINE | ID: mdl-38156416

ABSTRACT

Tropomyosin (Tpm) is an actin-binding protein central to muscle contraction regulation. The Tpm sequence consists of periodic repeats corresponding to seven actin-binding sites, further divided in two functionally distinct halves. To clarify the importance of the first and second halves of the actin-binding periods in regulating the interaction of myosin with actin, we introduced hypercontractile mutations D20H, E181K located in the N-terminal halves of periods 1 and 5 and hypocontractile mutations E41K, N202K located in the C-terminal halves of periods 1 and 5 of the skeletal muscle Tpm isoform Tpm2.2. Wild-type and mutant Tpms displayed similar actin-binding properties, however, as revealed by FRET experiments, the hypercontractile mutations affected the binding geometry and orientation of Tpm2.2 on actin, causing a stimulation of myosin motor performance. Contrary, the hypocontractile mutations led to an inhibition of both, actin activation of the myosin ATPase and motor activity, that was more pronounced than with wild-type Tpm2.2. Single ATP turnover kinetic experiments indicate that the introduced mutations have opposite effects on product release kinetics. While the hypercontractile Tpm2.2 mutants accelerated product release, the hypocontractile mutants decelerated product release from myosin, thus having either an activating or inhibitory influence on myosin motor performance, which agrees with the muscle disease phenotypes caused by these mutations.


Subject(s)
Muscular Diseases , Tropomyosin , Actins/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/genetics , Muscular Diseases/metabolism , Mutation , Myosins/genetics , Myosins/metabolism , Tropomyosin/chemistry , Animals
3.
Plant J ; 115(5): 1214-1230, 2023 09.
Article in English | MEDLINE | ID: mdl-37219088

ABSTRACT

Identification of protein interactors is ideally suited for the functional characterization of small molecules. 3',5'-cAMP is an evolutionary ancient signaling metabolite largely uncharacterized in plants. To tap into the physiological roles of 3',5'-cAMP, we used a chemo-proteomics approach, thermal proteome profiling (TPP), for the unbiased identification of 3',5'-cAMP protein targets. TPP measures shifts in the protein thermal stability upon ligand binding. Comprehensive proteomics analysis yielded a list of 51 proteins significantly altered in their thermal stability upon incubation with 3',5'-cAMP. The list contained metabolic enzymes, ribosomal subunits, translation initiation factors, and proteins associated with the regulation of plant growth such as CELL DIVISION CYCLE 48. To functionally validate obtained results, we focused on the role of 3',5'-cAMP in regulating the actin cytoskeleton suggested by the presence of actin among the 51 identified proteins. 3',5'-cAMP supplementation affected actin organization by inducing actin-bundling. Consistent with these results, the increase in 3',5'-cAMP levels, obtained either by feeding or by chemical modulation of 3',5'-cAMP metabolism, was sufficient to partially rescue the short hypocotyl phenotype of the actin2 actin7 mutant, severely compromised in actin level. The observed rescue was specific to 3',5'-cAMP, as demonstrated using a positional isomer 2',3'-cAMP, and true for the nanomolar 3',5'-cAMP concentrations reported for plant cells. In vitro characterization of the 3',5'-cAMP-actin pairing argues against a direct interaction between actin and 3',5'-cAMP. Alternative mechanisms by which 3',5'-cAMP would affect actin dynamics, such as by interfering with calcium signaling, are discussed. In summary, our work provides a specific resource, 3',5'-cAMP interactome, as well as functional insight into 3',5'-cAMP-mediated regulation in plants.


Subject(s)
Actin Cytoskeleton , Actins , Actins/metabolism , Actin Cytoskeleton/metabolism , Plants/metabolism , Calcium Signaling
6.
Cell Mol Life Sci ; 78(23): 7649-7662, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34694438

ABSTRACT

Oxygen on its transport route from lung to tissue mitochondria has to cross several cell membranes. The permeability value of membranes for O2 (PO2), although of fundamental importance, is controversial. Previous studies by mostly indirect methods diverge between 0.6 and 125 cm/s. Here, we use a most direct approach by observing transmembrane O2 fluxes out of 100 nm liposomes at defined transmembrane O2 gradients in a stopped-flow system. Due to the small size of the liposomes intra- as well as extraliposomal diffusion processes do not affect the overall kinetics of the O2 release process. We find, for cholesterol-free liposomes, the unexpectedly low PO2 value of 0.03 cm/s at 35 °C. This PO2 would present a serious obstacle to O2 entering or leaving the erythrocyte. Cholesterol turns out to be a novel major modifier of PO2, able to increase PO2 by an order of magnitude. With a membrane cholesterol of 45 mol% as it occurs in erythrocytes, PO2 rises to 0.2 cm/s at 35 °C. This PO2 is just sufficient to ensure complete O2 loading during passage of erythrocytes through the lung's capillary bed under the conditions of rest as well as maximal exercise.


Subject(s)
Cell Membrane Permeability , Cholesterol/metabolism , Erythrocytes/metabolism , Lipid Bilayers/metabolism , Oxygen Consumption , Oxygen/metabolism , Humans
7.
Int J Mol Sci ; 22(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374308

ABSTRACT

The actomyosin system generates mechanical work with the execution of the power stroke, an ATP-driven, two-step rotational swing of the myosin-neck that occurs post ATP hydrolysis during the transition from weakly to strongly actin-bound myosin states concomitant with Pi release and prior to ADP dissociation. The activating role of actin on product release and force generation is well documented; however, the communication paths associated with weak-to-strong transitions are poorly characterized. With the aid of mutant analyses based on kinetic investigations and simulations, we identified the W-helix as an important hub coupling the structural changes of switch elements during ATP hydrolysis to temporally controlled interactions with actin that are passed to the central transducer and converter. Disturbing the W-helix/transducer pathway increased actin-activated ATP turnover and reduced motor performance as a consequence of prolonged duration of the strongly actin-attached states. Actin-triggered Pi release was accelerated, while ADP release considerably decelerated, both limiting maximum ATPase, thus transforming myosin-2 into a high-duty-ratio motor. This kinetic signature of the mutant allowed us to define the fractional occupancies of intermediate states during the ATPase cycle providing evidence that myosin populates a cleft-closure state of strong actin interaction during the weak-to-strong transition with bound hydrolysis products before accomplishing the power stroke.


Subject(s)
Actomyosin/chemistry , Adenosine Diphosphate/chemistry , Dictyostelium/chemistry , Phosphates/chemistry , Protozoan Proteins/chemistry , Actomyosin/genetics , Adenosine Triphosphate/chemistry , Allosteric Regulation , Dictyostelium/genetics , Protozoan Proteins/genetics
8.
Int J Mol Sci ; 21(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33049993

ABSTRACT

The motor protein myosin drives a wide range of cellular and muscular functions by generating directed movement and force, fueled through adenosine triphosphate (ATP) hydrolysis. Release of the hydrolysis product adenosine diphosphate (ADP) is a fundamental and regulatory process during force production. However, details about the molecular mechanism accompanying ADP release are scarce due to the lack of representative structures. Here we solved a novel blebbistatin-bound myosin conformation with critical structural elements in positions between the myosin pre-power stroke and rigor states. ADP in this structure is repositioned towards the surface by the phosphate-sensing P-loop, and stabilized in a partially unbound conformation via a salt-bridge between Arg131 and Glu187. A 5 Å rotation separates the mechanical converter in this conformation from the rigor position. The crystallized myosin structure thus resembles a conformation towards the end of the two-step power stroke, associated with ADP release. Computationally reconstructing ADP release from myosin by means of molecular dynamics simulations further supported the existence of an equivalent conformation along the power stroke that shows the same major characteristics in the myosin motor domain as the resolved blebbistatin-bound myosin-II·ADP crystal structure, and identified a communication hub centered on Arg232 that mediates chemomechanical energy transduction.


Subject(s)
Adenosine Diphosphate/chemistry , Catalytic Domain , Heterocyclic Compounds, 4 or More Rings/chemistry , Molecular Dynamics Simulation , Myosins/chemistry , Actins/chemistry , Adenosine Triphosphate/chemistry , Crystallization , Hydrolysis , Protein Conformation, beta-Strand
9.
Biosens Bioelectron ; 169: 112616, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32979591

ABSTRACT

Inorganic phosphate (Pi)-sensing is a key application in many disciplines, and biosensors emerged as powerful analytic tools for use in environmental Pi monitoring, food quality control, basic research, and medical diagnosis. Current sensing techniques exploit either electrochemical or optical detection approaches for Pi quantification. Here, by combining the advantages of a biological Pi-receptor based on the bacterial phosphate binding protein with the principle of thermophoresis, i.e. the diffusional motion of particles in response to a temperature gradient, we developed a continuous, sensitive, and versatile method for detecting and quantifying free Pi in the subnanomolar to micromolar range in sample volumes ≤10 µL. By recording entropy-driven changes in the directed net diffusional flux of the Pi-sensor in a temperature gradient at defined time intervals, we validate the method for analyzing steady-state enzymatic reactions associated with Pi liberation in real-time for adenosine triphosphate (ATP) turnover by myosin, the actomyosin system and for insoluble, high molecular weight enzyme-protein assemblies in biopsy derived myofibrils. Particular features of the method are: (1) high Pi-sensitivity and selectivity, (2) uncoupling of the read-out signal from potential chemical and spectroscopic interferences, (3) minimal sample volumes and nanogram protein amounts, (4) possibility to run several experiments in parallel, and (5) straightforward data analysis. The present work establishes thermophoresis as powerful sensing method in microscale format for a wide range of applications, augmenting the current set of detection principles in biosensor technology.


Subject(s)
Biosensing Techniques , Phosphates , Adenosine Triphosphate , Carrier Proteins , Myosins , Phosphates/metabolism
10.
J Biol Chem ; 295(20): 7046-7059, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32273340

ABSTRACT

Myosin II is the main force-generating motor during muscle contraction. Myosin II exists as different isoforms that are involved in diverse physiological functions. One outstanding question is whether the myosin heavy chain (MHC) isoforms alone account for these distinct physiological properties. Unique sets of essential and regulatory light chains (RLCs) are known to assemble with specific MHCs, raising the intriguing possibility that light chains contribute to specialized myosin functions. Here, we asked whether different RLCs contribute to this functional diversification. To this end, we generated chimeric motors by reconstituting the MHC fast isoform (MyHC-IId) and slow isoform (MHC-I) with different light-chain variants. As a result of the RLC swapping, actin filament sliding velocity increased by ∼10-fold for the slow myosin and decreased by >3-fold for the fast myosin. Results from ensemble molecule solution kinetics and single-molecule optical trapping measurements provided in-depth insights into altered chemo-mechanical properties of the myosin motors that affect the sliding speed. Notably, we found that the mechanical output of both slow and fast myosins is sensitive to the RLC isoform. We therefore propose that RLCs are crucial for fine-tuning the myosin function.


Subject(s)
Actin Cytoskeleton/chemistry , Myosin Light Chains/chemistry , Myosin Type II/chemistry , Animals , Isoenzymes/chemistry , Optical Tweezers , Rabbits
11.
FASEB J ; 34(2): 2147-2160, 2020 02.
Article in English | MEDLINE | ID: mdl-31908005

ABSTRACT

Profilin is a major regulator of actin dynamics in multiple specific processes localized in different cellular compartments. This specificity is not only meditated by its binding to actin but also its interaction with phospholipids such as phosphatidylinositol (4,5)-bisphosphate (PIP2 ) at the membrane and a plethora of proteins containing poly-L-proline (PLP) stretches. These interactions are fine-tuned by posttranslational modifications such as phosphorylation. Several phospho-sites have already been identified for profilin1, the ubiquitously expressed isoform. However, little is known about the phosphorylation of profilin2a. Profilin2a is a neuronal isoform important for synapse function. Here, we identified several putative profilin2a phospho-sites in silico and tested recombinant phospho-mimetics with regard to their actin-, PLP-, and PIP2 -binding properties. Moreover, we assessed their impact on actin dynamics employing a pyrene-actin polymerization assay. Results indicate that distinct phospho-sites modulate specific profilin2a functions. We could identify a molecular switch site at serine residue 71 which completely abrogated actin binding-as well as other sites important for fine-tuning of different functions, for example, tyrosine 29 for PLP binding. Our findings suggest that differential profilin2a phosphorylation is a sensitive mechanism for regulating its neuronal functions. Moreover, the dysregulation of profilin2a phosphorylation may contribute to neurodegeneration.


Subject(s)
Actins/chemistry , Profilins/chemistry , Protein Multimerization , Actins/metabolism , Humans , Neurons/metabolism , Phosphatidylinositol 4,5-Diphosphate/chemistry , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphorylation , Profilins/metabolism , Protein Isoforms/chemistry , Protein Isoforms/metabolism
12.
Nat Commun ; 10(1): 4651, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604948

ABSTRACT

Mammalian oocytes assemble a bipolar acentriolar microtubule spindle to segregate chromosomes during asymmetric division. There is increasing evidence that actin in the spindle interior not only participates in spindle migration and positioning but also protects oocytes from chromosome segregation errors leading to aneuploidy. Here we show that actin is an integral component of the meiotic machinery that closely interacts with microtubules during all major events of human oocyte maturation from the time point of spindle assembly till polar body extrusion and metaphase arrest. With the aid of drugs selectively affecting cytoskeleton dynamics and transiently disturbing the integrity of the two cytoskeleton systems, we identify interdependent structural rearrangements indicative of a close communication between actin and microtubules as fundamental feature of human oocytes. Our data support a model of actin-microtubule interplay that is essential for bipolar spindle assembly and correct partitioning of the nuclear genome in human oocyte meiosis.


Subject(s)
Actins/physiology , Chromosome Segregation/physiology , Oocytes/cytology , Spindle Apparatus/metabolism , Female , Humans , Meiosis , Microtubules/physiology , Oocytes/ultrastructure , Polar Bodies/cytology , Polar Bodies/metabolism , Polar Bodies/ultrastructure , Spindle Apparatus/ultrastructure , Tubulin/metabolism
13.
Small ; 15(7): e1804313, 2019 02.
Article in English | MEDLINE | ID: mdl-30657637

ABSTRACT

Myosin family motors play diverse cellular roles. Precise insights into how the light chains contribute to the functional variabilities among myosin motors, however, remain unresolved. Here, it is demonstrated that the fast skeletal muscle myosin II isoform myosin heavy chain (MHC-IID) can be transformed into a processive motor, by simply replacing the native regulatory light chain MLC2f with the regulatory light chain variant MLC2v from the slow muscle myosin II. Single molecule kinetic analyses and optical trapping measurements of the hybrid motor reveal marked changes such as increased association rate of myosin toward adenosine triphosphate (ATP) and actin by more than twofold. The direct consequence of high adenosine diphosphate (ADP) affinity and increased actin rebinding is the altered overall actomyosin association time during the cross-bridge cycle. The data indicate that the MLC2v influences the duty ratio in the hybrid motor, suggestive of promoting interhead communication and enabling processive movement. This finding establishes that the regulatory light chain fine-tunes the motor's mechanical output that may have important implications under physiological conditions. Furthermore, the success of this approach paves the way to engineer motors from a known motor protein element to assemble highly specialized biohybrid machines for potential applications in nano-biomedicine and engineering.


Subject(s)
Muscle, Skeletal/metabolism , Myosin Type II/metabolism , Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Adenosine Triphosphate/metabolism , Animals , Humans , Kinetics , Optical Tweezers , Rabbits , Single Molecule Imaging
14.
Biotechniques ; 63(4): 187-190, 2017 10 01.
Article in English | MEDLINE | ID: mdl-29048271

ABSTRACT

Here, we present a MicroScale Thermophoresis (MST)-based assay for in vitro assessment of actin polymerization. By monitoring the thermophoretic behavior of ATTO488-labeled actin in a temperature gradient over time, we could follow polymerization in real time and resolve its three characteristic phases: nucleation, elongation, and steady-state equilibration. Titration experiments allowed us to evaluate the effects of actin-binding proteins (ABPs) on polymerization, including DNase I-induced inhibition and mDia2FH1FH2 (mDia2)-assisted acceleration of nucleation. The corresponding rates of actin filament elongation were quantitatively determined, yielding values in good agreement with those obtained using the pyrene-actin polymerization assay. Finally, we measured the effect of myosin on actin polymerization, circumventing the problems of fluorescence quenching and signal disturbance that occur with other techniques. MST is a simple and valuable research tool for investigating actin kinetics covering a wide range of molecular interactions, with low protein consumption.


Subject(s)
Actins/chemistry , Electrophoresis, Capillary/methods , Polymerization , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Adenosine Triphosphate/chemistry , Cost-Benefit Analysis , Fluoresceins/chemistry , Kinetics , Protein Binding , Temperature
15.
Traffic ; 18(12): 840-852, 2017 12.
Article in English | MEDLINE | ID: mdl-28945316

ABSTRACT

Object tracking is an instrumental tool supporting studies of cellular trafficking. There are three challenges in object tracking: the identification of targets; the precise determination of their position and boundaries; and the assembly of correct trajectories. This last challenge is particularly relevant when dealing with densely populated images with low signal-to-noise ratios-conditions that are often encountered in applications such as organelle tracking, virus particle tracking or single-molecule imaging. We have developed a set of methods that can handle a wide variety of signal complexities. They are compiled into a free software package called Diatrack. Here we review its main features and utility in a range of applications, providing a survey of the dynamic imaging field together with recommendations for effective use. The performance of our framework is shown to compare favorably to a wide selection of custom-developed algorithms, whether in terms of localization precision, processing speed or correctness of tracks.


Subject(s)
Algorithms , Protein Transport/physiology , Single Molecule Imaging , Software , Humans , Microscopy, Fluorescence/methods
16.
Cell Physiol Biochem ; 39(5): 2014-2024, 2016.
Article in English | MEDLINE | ID: mdl-27771717

ABSTRACT

BACKGROUND/AIMS: Across the mitochondrial membrane an exceptionally intense exchange of O2 and CO2 occurs. We have asked, 1) whether the CO2 permeability, PM,CO2, of this membrane is also exceptionally high, and 2) whether the mitochondrial membrane is sufficiently permeable to HCO3- to make passage of this ion an alternative pathway for exit of metabolically produced CO2. METHODS: The two permeabilities were measured using the previously published mass spectrometric 18O exchange technique to study suspensions of mitochondria freshly isolated from rat livers. The mitochondria were functionally and morphologically in excellent condition. RESULTS: The intramitochondrial CA activity was exclusively localized in the matrix. PM,CO2 of the inner mitochondrial membrane was 0.33 (SD ± 0.03) cm/s, which is the highest value reported for any biological membrane, even two times higher than PM,CO2 of the red cell membrane. PM,HCO3- was 2· 10-6 (SD ± 2· 10-6) cm/s and thus extremely low, almost 3 orders of magnitude lower than PM,HCO3- of the red cell membrane. CONCLUSION: The inner mitochondrial membrane is almost impermeable to HCO3- but extremely permeable to CO2. Since gas channels are absent, this membrane constitutes a unique example of a membrane of very high gas permeability due to its extremely low content of cholesterol.


Subject(s)
Bicarbonates/metabolism , Carbon Dioxide/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Membranes/metabolism , Oxygen/metabolism , Animals , Biological Transport , Kinetics , Liver , Male , Mass Spectrometry , Mitochondrial Membranes/chemistry , Oxygen Isotopes , Permeability , Rats , Rats, Inbred Lew
17.
Biochim Biophys Acta ; 1859(11): 1411-1428, 2016 11.
Article in English | MEDLINE | ID: mdl-27616356

ABSTRACT

A challenging question in genetics is to understand the molecular function of non-coding variants of the genome. By using differential EMSA, ChIP and functional genome analysis, we have found that changes in transcription factors (TF) apparent binding affinity and dissociation rates are responsible for allele specific assembly or disruption of master TFs: we observed that NF-KBp50, NF-KBp65 and HIF1a bind with an affinity of up to 10 fold better to the C-allele than to the T-allele of rs7901656 both in vivo and in vitro. Furthermore, we showed that NF-KBp50, p65 and HIF1a form higher order heteromultimeric complexes overlapping rs7901656, implying synergism of action among TFs governing cellular response to infection and hypoxia. With rs7901656 on the FAS gene as a paradigm, we show how allele specific transcription factor complex assembly and disruption by a causal variant contributes to disease and phenotypic diversity. This finding provides the highly needed mechanistic insight into how the molecular etiology of regulatory SNPs can be understood in functional terms.


Subject(s)
Alleles , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , NF-kappa B/metabolism , Polymorphism, Single Nucleotide , fas Receptor/genetics , Electrophoretic Mobility Shift Assay , Humans , Kinetics , Protein Binding
18.
Diabetologia ; 58(12): 2800-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26363782

ABSTRACT

AIMS/HYPOTHESIS: The LEW.1AR1-iddm rat, an animal model of human type 1 diabetes, arose through a spontaneous mutation within the inbred strain LEW.1AR1. A susceptibility locus (Iddm8) on rat chromosome 1 (RNO1) has been identified previously, which is accompanied by autoimmune diabetes and the additional phenotype of a variable CD3(+) T cell frequency. METHODS: In the present study we characterised the Iddm8 region on RNO1 in backcross strains using the genetically divergent Brown Norway (BN) and Paris (PAR) rats. Candidate genes of the Iddm8 region were sequenced for mutation analysis. RESULTS: The Iddm8 region could be subdivided by single nucleotide polymorphism (SNP) analyses. In the first region, a mutation in exon 44 of the Dock8 gene was identified resulting in an amino acid exchange in the protein from glutamine to glutamate. This exchange is unique for the LEW.1AR1-iddm rat. In the second region, a SNP was detected in exon 11 of the Vwa2 gene with an exchange from arginine to tryptophan. This SNP is also present in other rat strains. CONCLUSIONS/INTERPRETATION: The Dock8 mutation gave rise to a new type 1 diabetes rat model with very close similarity to type 1 diabetes in humans, providing a deepened insight into the impact of genes involved in diabetes development.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Guanine Nucleotide Exchange Factors/genetics , Mutation , Alleles , Amino Acid Substitution , Animals , Disease Models, Animal , Disease Susceptibility , Exons/genetics , Humans , Killer Cells, Natural , Models, Molecular , Polymorphism, Single Nucleotide , Rats , Rats, Inbred Lew , Receptor-CD3 Complex, Antigen, T-Cell/genetics , von Willebrand Factor/genetics
19.
Biomed Res Int ; 2015: 245154, 2015.
Article in English | MEDLINE | ID: mdl-25961006

ABSTRACT

Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.


Subject(s)
Adenosine Triphosphate/metabolism , Muscle Contraction , Muscle, Striated/metabolism , Myosins/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Actins/metabolism , Humans , Muscle, Striated/physiology , Muscle, Striated/ultrastructure , Myosins/ultrastructure
20.
FASEB J ; 29(5): 1780-93, 2015 May.
Article in English | MEDLINE | ID: mdl-25609423

ABSTRACT

Here we ask the following: 1) what is the CO2 permeability (Pco2) of unilamellar liposomes composed of l-α-phosphatidylcholine (PC)/l-α-phosphatidylserine (PS) = 4:1 and containing cholesterol (Chol) at levels often occurring in biologic membranes (50 mol%), and 2) does incorporation of the CO2 channel aquaporin (AQP)1 cause a significant increase in membrane Pco2? Presently, a drastic discrepancy exists between the answers to these two questions obtained from mass-spectrometric (18)O-exchange measurements (Chol reduces Pco2 100-fold, AQP1 increases Pco2 10-fold) vs. from stopped-flow approaches observing CO2 uptake (no effects of either Chol or AQP1). A novel theory of CO2 uptake by vesicles predicts that in a stopped-flow apparatus this fast process can only be resolved temporally and interpreted quantitatively, if 1) a very low CO2 partial pressure (pCO2) is used (e.g., 18 mmHg), and 2) intravesicular carbonic anhydrase (CA) activity is precisely known. With these prerequisites fulfilled, we find by stopped-flow that 1) Chol-containing vesicles possess a Pco2 = 0.01cm/s, and Chol-free vesicles exhibit ∼1 cm/s, and 2) the Pco2 of 0.01 cm/s is increased ≥ 10-fold by AQP1. Both results agree with previous mass-spectrometric results and thus resolve the apparent discrepancy between the two techniques. We confirm that biologic membranes have an intrinsically low Pco2 that can be raised when functionally necessary by incorporating protein-gas channels such as AQP1.


Subject(s)
Aquaporin 1/metabolism , Carbon Dioxide/metabolism , Cell Membrane Permeability , Cholesterol/metabolism , Liposomes/metabolism , Phosphatidylcholines/metabolism , Spectrometry, Fluorescence/methods , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...