Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Virol ; 95(7)2021 03 10.
Article in English | MEDLINE | ID: mdl-33441339

ABSTRACT

Adenovirus (Ad) is being explored for use in the prevention and treatment of a variety of infectious diseases and cancers. Ad with a deletion in early region 3 (ΔE3) provokes a stronger immune response than Ad with deletions in early regions 1 and E3 (ΔE1/ΔE3). The ΔE1/ΔE3 Ads are more popular because they can carry a larger transgene and because of the deleted E1 (E1A and E1B), are perceived safer for clinical use. Ad with a deletion in E1B55K (ΔE1B55K) has been in phase III clinical trials for use in cancer therapy in the US and has been approved for use in head and neck tumor therapy in China, demonstrating that Ad containing E1A are safe for clinical use. We have shown previously that ΔE1B55K Ad, even while promoting lower levels of an inserted transgene, promoted similar levels of transgene-specific immune responses as a ΔE3 Ad. Products of the Ad early region 4 (E4) limit the ability of cells to mount an innate immune response. Using this knowledge, we deleted the Ad E4 open reading frames 1-4 (E4orf1-4) from the ΔE1B55K Ad. Here, we show that innate cytokine network genes are elevated in the ΔE4 Ad-infected cells beyond that of ΔE3 Ad-infected cells. Further, in immunized mice the IgG2a subclass was favored as was the IgG1 subclass in immunized nonhuman primates. Thus, Ad E4 impacts immune responses in cells, in immunized mice, and immunized nonhuman primates. These Ad may offer advantages that are beneficial for clinical use.Importance: Adenovirus (Ad) is being explored for use in the prevention and treatment of a variety of infectious diseases and cancers. Here we provide evidence in cells, mice, and nonhuman primates supporting the notion that Ad early gene-products limit specific immune responses. Ad constructed with deletions in early genes and expressing HIV envelope protein was shown to induce greater HIV-specific cellular immune responses and higher titer antibodies compared to the parental Ad with the early genes. In addition to eliciting enhanced immunity, the deleted Ad possesses more space for insertion of additional or larger transgenes needed for targeting other infectious agents or cancers.

2.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: mdl-32967951

ABSTRACT

An efficacious human immunodeficiency virus (HIV) vaccine will likely require induction of both mucosal and systemic immune responses. We compared the immunogenicity and protective efficacy of two mucosal/systemic vaccine regimens and investigated their effects on the rectal microbiome. Rhesus macaques were primed twice mucosally with replication-competent adenovirus type 5 host range mutant (Ad5hr)-simian immunodeficiency virus (SIV) recombinants and boosted twice intramuscularly with ALVAC-SIV recombinant plus SIV gp120 protein or with DNA for SIV genes and rhesus interleukin-12 plus SIV gp120 protein. Controls received empty Ad5hr vector and alum adjuvant only. Both regimens elicited strong, comparable mucosal and systemic cellular and humoral immunity. Prevaccination rectal microbiomes of males and females differed and significantly changed over the course of immunization, most strongly in females after Ad5hr immunizations. Following repeated low-dose intrarectal SIV challenges, both vaccine groups exhibited modestly but significantly reduced acute viremia. Male and female controls exhibited similar acute viral loads; however, vaccinated females, but not males, exhibited lower levels of acute viremia, compared to same-sex controls. Few differences in adaptive immune responses were observed between the sexes. Striking differences in correlations of the rectal microbiome of males and females with acute viremia and immune responses associated with protection were seen and point to effects of the microbiome on vaccine-induced immunity and viremia control. Our study clearly demonstrates direct effects of a mucosal SIV vaccine regimen on the rectal microbiome and validates our previously reported SIV vaccine-induced sex bias. Sex and the microbiome are critical factors that should not be overlooked in vaccine design and evaluation.IMPORTANCE Differences in HIV pathogenesis between males and females, including immunity postinfection, have been well documented, as have steroid hormone effects on the microbiome, which is known to influence mucosal immune responses. Few studies have applied this knowledge to vaccine trials. We investigated two SIV vaccine regimens combining mucosal priming immunizations and systemic protein boosting. We again report a vaccine-induced sex bias, with female rhesus macaques but not males displaying significantly reduced acute viremia. The vaccine regimens, especially the mucosal primes, significantly altered the rectal microbiome. The greatest effects were in females. Striking differences between female and male macaques in correlations of prevalent rectal bacteria with viral loads and potentially protective immune responses were observed. Effects of the microbiome on vaccine-induced immunity and viremia control require further study by microbiome transfer. However, the findings presented highlight the critical importance of considering effects of sex and the microbiome in vaccine design and evaluation.


Subject(s)
Immunization, Secondary/methods , Macaca mulatta/immunology , Microbiota/drug effects , Rectum/microbiology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Viremia/immunology , AIDS Vaccines/immunology , Adenoviridae/genetics , Animals , Female , Immunity, Humoral , Immunity, Mucosal , Male , Microbiota/physiology , Rectum/immunology , SAIDS Vaccines/immunology
3.
J Virol ; 93(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30463978

ABSTRACT

T follicular helper (TFH) cells are fundamental in germinal center (GC) maturation and selection of antigen-specific B cells within secondary lymphoid organs. GC-resident TFH cells have been fully characterized in human immunodeficiency virus (HIV) infection. However, the role of GC TFH cells in GC B cell responses following various simian immunodeficiency virus (SIV) vaccine regimens in rhesus macaques (RMs) has not been fully investigated. We characterized GC TFH cells of RMs over the course of a mucosal/systemic vaccination regimen to elucidate GC formation and SIV humoral response generation. Animals were mucosally primed twice with replicating adenovirus type 5 host range mutant (Ad5hr)-SIV recombinants and systemically boosted with ALVAC-SIVM766Gag/Pro/gp120-TM and SIVM766&CG7V gD-gp120 proteins formulated in alum hydroxide (ALVAC/Env) or DNA encoding SIVenv/SIVGag/rhesus interleukin 12 (IL-12) plus SIVM766&CG7V gD-gp120 proteins formulated in alum phosphate (DNA&Env). Lymph nodes were biopsied in macaque subgroups prevaccination and at day 3, 7, or 14 after the 2nd Ad5hr-SIV prime and the 2nd vector/Env boost. Evaluations of GC TFH and GC B cell dynamics including correlation analyses supported a significant role for early GC TFH cells in providing B cell help during initial phases of GC formation. GC TFH responses at day 3 post-mucosal priming were consistent with generation of Env-specific memory B cells in GCs and elicitation of prolonged Env-specific humoral immunity in the rectal mucosa. GC Env-specific memory B cell responses elicited early post-systemic boosting correlated significantly with decreased viremia postinfection. Our results highlight the importance of early GC TFH cell responses for robust GC maturation and generation of long-lasting SIV-specific humoral responses at mucosal and systemic sites. Further investigation of GC TFH cell dynamics should facilitate development of an efficacious HIV vaccine.IMPORTANCE The modest HIV protection observed in the human RV144 vaccine trial associated antibody responses with vaccine efficacy. T follicular helper (TFH) cells are CD4+ T cells that select antibody secreting cells with high antigenic affinity in germinal centers (GCs) within secondary lymphoid organs. To evaluate the role of TFH cells in eliciting prolonged virus-specific humoral responses, we vaccinated rhesus macaques with a combined mucosal prime/systemic boost regimen followed by repeated low-dose intrarectal challenges with SIV, mimicking human exposure to HIV-1. Although the vaccine regimen did not prevent SIV infection, decreased viremia was observed in the immunized macaques. Importantly, vaccine-induced TFH responses elicited at day 3 postimmunization and robust GC maturation were strongly associated. Further, early TFH-dependent SIV-specific B cell responses were also correlated with decreased viremia. Our findings highlight the contribution of early vaccine-induced GC TFH responses to elicitation of SIV-specific humoral immunity and implicate their participation in SIV control.


Subject(s)
Simian Immunodeficiency Virus/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/physiology , Animals , Antibodies, Viral/immunology , Antibody Formation , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Germinal Center/immunology , Immunity, Humoral/immunology , Immunization/methods , Lymph Nodes/immunology , Macaca mulatta/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Vaccination/methods , Viremia/immunology
4.
J Virol ; 92(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30021899

ABSTRACT

An effective human immunodeficiency virus (HIV) vaccine has yet to be developed, and defining immune correlates of protection against HIV infection is of paramount importance to inform future vaccine design. The complement system is a component of innate immunity that can directly lyse pathogens and shape adaptive immunity. To determine if complement lysis of simian immunodeficiency virus (SIV) and/or SIV-infected cells represents a protective immune correlate against SIV infection, sera from previously vaccinated and challenged rhesus macaques were analyzed for the induction of antibody-dependent complement-mediated lysis (ADCML). Importantly, the vaccine regimen, consisting of a replication-competent adenovirus type 5 host-range mutant SIV recombinant prime followed by a monomeric gp120 or oligomeric gp140 boost, resulted in overall delayed SIV acquisition only in females. Here, sera from all vaccinated animals induced ADCML of SIV and SIV-infected cells efficiently, regardless of sex. A modest correlation of SIV lysis with a reduced infection rate in males but not females, together with a reduced peak viremia in all animals boosted with gp140, suggested a potential for influencing protective efficacy. Gag-specific IgG and gp120-specific IgG and IgM correlated with SIV lysis in females, while Env-specific IgM correlated with SIV-infected cell lysis in males, indicating sex differences in vaccine-induced antibody characteristics and function. In fact, gp120/gp140-specific antibody functional correlates between antibody-dependent cellular cytotoxicity, antibody-dependent phagocytosis, and ADCML as well as the gp120-specific IgG glycan profiles and the corresponding ADCML correlations varied depending on the sex of the vaccinees. Overall, these data suggest that sex influences vaccine-induced antibody function, which should be considered in the design of globally effective HIV vaccines in the future.IMPORTANCE An HIV vaccine would thwart the spread of HIV infection and save millions of lives. Unfortunately, the immune responses conferring universal protection from HIV infection are poorly defined. The innate immune system, including the complement system, is an evolutionarily conserved, basic means of protection from infection. Complement can prevent infection by directly lysing incoming pathogens. We found that vaccination against SIV in rhesus macaques induces antibodies that are capable of directing complement lysis of SIV and SIV-infected cells in both sexes. We also found sex differences in vaccine-induced antibody species and their functions. Overall, our data suggest that sex affects vaccine-induced antibody characteristics and function and that males and females might require different immune responses to protect against HIV infection. This information could be used to generate highly effective HIV vaccines for both sexes in the future.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Complement System Proteins/immunology , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/drug effects , Adenoviruses, Simian/genetics , Adenoviruses, Simian/immunology , Animals , Complement System Proteins/agonists , Complement System Proteins/genetics , Cytotoxicity, Immunologic , Female , Gene Expression Regulation , Gene Products, env/administration & dosage , Gene Products, env/genetics , Gene Products, env/immunology , Immune Sera/chemistry , Immunization, Secondary/methods , Immunoglobulin G/biosynthesis , Immunoglobulin M/biosynthesis , Macaca mulatta , Male , Membrane Glycoproteins/administration & dosage , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , SAIDS Vaccines/genetics , SAIDS Vaccines/immunology , Sex Factors , Signal Transduction , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Vaccines, Synthetic , Viral Envelope Proteins/administration & dosage , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
5.
J Immunol ; 197(12): 4686-4695, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27815422

ABSTRACT

γδ T cells act as a first line of defense against invading pathogens. However, despite their abundance in mucosal tissue, little information is available about their functionality in this compartment in the context of HIV/SIV infection. In this study, we evaluated the frequency, phenotype, and functionality of Vδ1 and Vδ2 T cells from blood, rectum, and the female reproductive tract (FRT) of rhesus macaques to determine whether these cells contribute to control of SIV infection. No alteration in the peripheral Vδ1/Vδ2 ratio in SIV-infected macaques was observed. However, CD8+ and CD4+CD8+ Vδ1 T cells were expanded along with upregulation of NKG2D, CD107, and granzyme B, suggesting cytotoxic function. In contrast, Vδ2 T cells showed a reduced ability to produce the inflammatory cytokine IFN-γ. In the FRT of SIV+ macaques, Vδ1 and Vδ2 showed comparable levels across vaginal, ectocervical, and endocervical tissues; however, endocervical Vδ2 T cells showed higher inflammatory profiles than the two other regions. No sex difference was seen in the rectal Vδ1/Vδ2 ratio. Several peripheral Vδ1 and/or Vδ2 T cell subpopulations expressing IFN-γ and/or NKG2D were positively correlated with decreased plasma viremia. Notably, Vδ2 CD8+ T cells of the endocervix were negatively correlated with chronic viremia. Overall, our results suggest that a robust Vδ1 and Vδ2 T cell response in blood and the FRT of SIV-infected macaques contribute to control of viremia.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Genitalia, Female/immunology , HIV Infections/immunology , Mucous Membrane/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/physiology , Animals , Blood Circulation , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , Communicable Disease Control , Cytotoxicity, Immunologic , Female , Genitalia, Female/virology , Humans , Immunity, Mucosal , Interferon-gamma/metabolism , Lymphocyte Activation , Macaca mulatta , Male , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Viremia
6.
J Immunol ; 197(6): 2316-24, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27534560

ABSTRACT

An established sex bias in HIV pathogenesis is linked to immune responses. Recently we reported a vaccine-induced sex bias: vaccinated female but not male rhesus macaques exhibited delayed SIV acquisition. This outcome was correlated with SIV Env-specific rectal IgA, rectal memory B cells, and total rectal plasma cells. To uncover additional contributing factors, using samples from the same study, we investigated memory B cell population dynamics in blood, bone marrow, and rectal tissue during immunization and postchallenge; IgG subtypes and Ab avidity; and regulatory B (Breg) cell frequency and function. Few sex differences were seen in Env-specific memory B cell, plasmablast, or plasma cell frequencies in the three compartments. Males had higher IgG Ab titers and avidity indices than females. However, females had elevated levels of Env-specific IgG1, IgG2, and IgG3 Abs compared with males. gp140-specific IgG3 Abs of females but not males were correlated with Ab-dependent cell-mediated cytotoxicity activity against gp120 targets (p = 0.026) and with Ab-dependent phagocytic activity (p = 0.010). IgG3 Ab of females but not males also correlated with decreased peak viremia (p = 0.028). Peripheral blood CD19(+)CD25(+) Breg cells suppressed T cell proliferation compared with CD19(+)CD25(-) cells (p = 0.031) and exhibited increased IL-10 mRNA expression (p = 0.031). Male macaques postvaccination (p = 0.018) and postinfection (p = 0.0048) exhibited higher Breg frequencies than females. Moreover, male Breg frequencies correlated with peak viremia (p = 0.0071). Our data suggest that vaccinated females developed better Ab quality, contributing to better functionality. The elevated Breg frequencies in males may have facilitated SIV acquisition.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin G/blood , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Affinity , Female , Immunoglobulin G/immunology , Immunologic Memory , Interleukin-10/immunology , Lymphocyte Activation , Macaca mulatta , Phagocytosis , Simian Acquired Immunodeficiency Syndrome/prevention & control , Vaccination , Viremia/immunology
7.
PLoS One ; 11(7): e0158505, 2016.
Article in English | MEDLINE | ID: mdl-27391605

ABSTRACT

Type 5 human adenoviruses (Ad5) deleted of genes encoding the early region 1B 55-kDa (E1B55K) protein including Onyx-015 (dl1520) and H101 are best known for their oncolytic potential. As a vaccine vector the E1B55K deletion may allow for the insertion of a transgene nearly 1,000 base pairs larger than now possible. This has the potential of extending the application for which the vectors are clinically known. However, the immune priming ability of E1B55K-deleted vectors is unknown, undermining our ability to gauge their usefulness in vaccine applications. For this reason, we created an E1B55K-deleted Ad5 vector expressing full-length single chain HIVBaLgp120 attached to a flexible linker and the first two domains of rhesus CD4 (rhFLSC) in exchange for the E3 region. In cell-based experiments the E1B55K-deleted vector promoted higher levels of innate immune signals including chemokines, cytokines, and the NKG2D ligands MIC A/B compared to an E1B55K wild-type vector expressing the same immunogen. Based on these results we evaluated the immune priming ability of the E1B55K-deleted vector in mice. The E1B55K-deleted vector promoted similar levels of Ad5-, HIVgp120, and rhFLSC-specific cellular and humoral immune responses as the E1B55K wild-type vector. In pre-clinical HIV-vaccine studies the wild-type vector has been employed as part of a very effective prime-boost strategy. This study demonstrates that E1B55K-deleted adenoviruses may serve as effective vaccine delivery vectors.


Subject(s)
Adenoviridae/genetics , Viral Vaccines/supply & distribution , A549 Cells , Adenoviruses, Human/genetics , Animals , Blotting, Western , Cell Line , Chlorocebus aethiops , Enzyme-Linked Immunosorbent Assay , Female , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Oncolytic Viruses/genetics , T-Lymphocytes/metabolism , Vaccines, DNA/genetics , Viral Proteins/genetics
8.
J Immunol ; 196(4): 1700-10, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26773147

ABSTRACT

Measurement of Ag-specific T follicular helper (TFH) cell activity in rhesus macaques has not previously been reported. Given that rhesus macaques are the animal model of choice for evaluating protective efficacy of HIV/SIV vaccine candidates and that TFH cells play a pivotal role in aiding B cell maturation, quantifying vaccine induction of HIV/SIV-specific TFH cells would greatly benefit vaccine development. In this study, we quantified SIV Env-specific IL-21-producing TFH cells for the first time, to our knowledge, in a nonhuman primate vaccine study. Macaques were primed twice mucosally with adenovirus 5 host range mutant recombinants encoding SIV Env, Rev, Gag, and Nef followed by two i.m. boosts with monomeric SIV gp120 or oligomeric SIV gp140 proteins. At 2 wk after the second protein boost, we obtained lymph node biopsy specimens and quantified the frequency of total and SIV Env-specific IL-21(+) TFH cells and total germinal center B cells, the size and number of germinal centers, and the frequency of SIV-specific Ab-secreting cells in B cell zones. Multiple correlation analyses established the importance of TFH for development of B cell responses in systemic and mucosally localized compartments, including blood, bone marrow, and rectum. Our results suggest that the SIV-specific TFH cells, initially induced by replicating adenovirus-recombinant priming, are long lived. The multiple correlations of SIV Env-specific TFH cells with systemic and mucosal SIV-specific B cell responses indicate that this cell population should be further investigated in HIV vaccine development as a novel correlate of immunity.


Subject(s)
Gene Products, env/immunology , Germinal Center/immunology , Lymph Nodes/immunology , SAIDS Vaccines/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , B-Lymphocytes/immunology , Flow Cytometry , Fluorescent Antibody Technique , Immunohistochemistry , Macaca mulatta , Microscopy, Confocal , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology
9.
PLoS Negl Trop Dis ; 9(10): e0004143, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26506532

ABSTRACT

BACKGROUND: The ability of Taenia solium to modulate the immune system likely contributes to their longevity in the human host. We tested the hypothesis that the nature of the immune response is related to the location of parasite and clinical manifestations of infection. METHODOLOGY: Peripheral blood mononuclear cells (PBMC) were obtained from untreated patients with neurocysticercosis (NCC), categorized as having parenchymal or subarachnoid infection by the presence of cysts exclusively within the parenchyma or in subarachnoid spaces of the brain, and from uninfected (control) individuals matched by age and gender to each patient. Using multiplex detection technology, sera from NCC patients and controls and cytokine production by PBMC after T. solium antigen (TsAg) stimulation were assayed for levels of inflammatory and regulatory cytokines. PBMC were phenotyped by flow cytometry ex vivo and following in vitro stimulation with TsAg. PRINCIPAL FINDINGS: Sera from patients with parenchymal NCC demonstrated significantly higher Th1 (IFN-γ/IL-12) and Th2 (IL-4/IL-13) cytokine responses and trends towards higher levels of IL-1ß/IL-8/IL-5 than those obtained from patients with subarachnoid NCC. Also higher in vitro antigen-driven TNF-ß secretion was detected in PBMC supernatants from parenchymal than in subarachnoid NCC. In contrast, there was a significantly higher IL-10 response to TsAg stimulation in patients with subarachnoid NCC compared to parenchymal NCC. Although no differences in regulatory T cells (Tregs) frequencies were found ex vivo, there was a trend towards greater expansion of Tregs upon TsAg stimulation in subarachnoid than in parenchymal NCC when data were normalized for the corresponding controls. CONCLUSIONS/SIGNIFICANCE: T. solium infection of the subarachnoid space is associated with an enhanced regulatory immune response compared to infection in the parenchyma. The resulting anti-inflammatory milieu may represent a parasite strategy to maintain a permissive environment in the host or diminish inflammatory damage from the host immune response in the central nervous system.


Subject(s)
Blood/immunology , Leukocytes, Mononuclear/immunology , Neurocysticercosis/immunology , Neurocysticercosis/pathology , Taenia solium/immunology , Adult , Animals , Cytokines/metabolism , Female , Flow Cytometry , Humans , Immunophenotyping , Male , Middle Aged , T-Lymphocyte Subsets/immunology , Young Adult
10.
PLoS Pathog ; 11(8): e1005101, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26267144

ABSTRACT

Many viral infections, including HIV, exhibit sex-based pathogenic differences. However, few studies have examined vaccine-related sex differences. We compared immunogenicity and protective efficacy of monomeric SIV gp120 with oligomeric SIV gp140 in a pre-clinical rhesus macaque study and explored a subsequent sex bias in vaccine outcome. Each immunization group (16 females, 8 males) was primed twice mucosally with replication-competent Ad-recombinants encoding SIVsmH4env/rev, SIV239gag and SIV239nefΔ1-13 and boosted twice intramuscularly with SIVmac239 monomeric gp120 or oligomeric gp140 in MF59 adjuvant. Controls (7 females, 5 males) received empty Ad and MF59. Up to 9 weekly intrarectal challenges with low-dose SIVmac251 were administered until macaques became infected. We assessed vaccine-induced binding, neutralizing, and non-neutralizing antibodies, Env-specific memory B cells and plasmablasts/plasma cells (PB/PC) in bone marrow and rectal tissue, mucosal Env-specific antibodies, and Env-specific T-cells. Post-challenge, only one macaque (gp140-immunized) remained uninfected. However, SIV acquisition was significantly delayed in vaccinated females but not males, correlated with Env-specific IgA in rectal secretions, rectal Env-specific memory B cells, and PC in rectal tissue. These results extend previous correlations of mucosal antibodies and memory B cells with protective efficacy. The gp140 regimen was more immunogenic, stimulating elevated gp140 and cyclic V2 binding antibodies, ADCC and ADCP activities, bone marrow Env-specific PB/PC, and rectal gp140-specific IgG. However, immunization with gp120, the form of envelope immunogen used in RV144, the only vaccine trial to show some efficacy, provided more significant acquisition delay. Further over 40 weeks of follow-up, no gp120 immunized macaques met euthanasia criteria in contrast to 7 gp140-immunized and 2 control animals. Although males had higher binding antibodies than females, ADCC and ADCP activities were similar. The complex challenge outcomes may reflect differences in IgG subtypes, Fc glycosylation, Fc-R polymorphisms, and/or the microbiome, key areas for future studies. This first demonstration of a sex-difference in SIV vaccine-induced protection emphasizes the need for sex-balancing in vaccine trials. Our results highlight the importance of mucosal immunity and memory B cells at the SIV exposure site for protection.


Subject(s)
B-Lymphocytes/immunology , Intestinal Mucosa/immunology , SAIDS Vaccines/immunology , Sex Factors , Simian Acquired Immunodeficiency Syndrome/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Immunity, Cellular/immunology , Immunity, Mucosal/immunology , Macaca mulatta , Male , Rectum , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology
11.
Virology ; 471-473: 81-92, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25461534

ABSTRACT

To target the HIV CD4i envelope epitope, we primed rhesus macaques with replicating Ad-rhFLSC (HIV-1BaLgp120 linked to macaque CD4 D1 and D2), with or without Ad-SIVgag and Ad-SIVnef. Macaques were boosted with rhFLSC protein. Memory T-cells in PBMC, bronchoalveolar lavage and rectal tissue, antibodies with neutralizing and ADCC activity, and Env-specific secretory IgA in rectal secretions were elicited. Although protective neutralizing antibody levels were induced, SHIVSF162P4 acquisition following rectal challenge was not prevented. Rapid declines in serum ADCC activity, Env-specific memory B cells in PBMC and bone marrow, and systemic and mucosal memory T cells were observed immediately post-challenge together with delayed anamnestic responses. Innate immune signaling resulting from persisting Ad replication and the TLR-4 booster adjuvant may have been in conflict and reoriented adaptive immunity. A different adjuvant paired with replicating Ad, or a longer post-prime interval allowing vector clearance before boosting might foster persistent T- and B-cell memory.


Subject(s)
AIDS Vaccines/immunology , CD4 Antigens/immunology , Epitopes/immunology , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Animals , Antibody-Dependent Cell Cytotoxicity/physiology , B-Lymphocytes/physiology , Female , HIV Antibodies/analysis , HIV Antibodies/biosynthesis , HIV Antibodies/immunology , HIV Infections/prevention & control , HIV-1/genetics , HIV-1/metabolism , Macaca mulatta , Male , Rectum/immunology , T-Lymphocytes/physiology , Viral Load
12.
Viruses ; 6(8): 3129-58, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25196380

ABSTRACT

An efficacious HIV vaccine is urgently needed to curb the AIDS pandemic. The modest protection elicited in the phase III clinical vaccine trial in Thailand provided hope that this goal might be achieved. However, new approaches are necessary for further advances. As HIV is transmitted primarily across mucosal surfaces, development of immunity at these sites is critical, but few clinical vaccine trials have targeted these sites or assessed vaccine-elicited mucosal immune responses. Pre-clinical studies in non-human primate models have facilitated progress in mucosal vaccine development by evaluating candidate vaccine approaches, developing methodologies for collecting and assessing mucosal samples, and providing clues to immune correlates of protective immunity for further investigation. In this review we have focused on non-human primate studies which have provided important information for future design of vaccine strategies, targeting of mucosal inductive sites, and assessment of mucosal immunity. Knowledge gained in these studies will inform mucosal vaccine design and evaluation in human clinical trials.


Subject(s)
AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , HIV Infections/prevention & control , Primates , AIDS Vaccines/isolation & purification , Administration, Mucosal , Animals , Disease Models, Animal , Drug Discovery/methods , Drug Discovery/trends , Humans
13.
Clin Immunol ; 153(2): 308-22, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24907411

ABSTRACT

Combinatorial HIV/SIV vaccine approaches targeting multiple arms of the immune system might improve protective efficacy. We compared SIV-specific humoral immunity induced in rhesus macaques by five vaccine regimens. Systemic regimens included ALVAC-SIVenv priming and Env boosting (ALVAC/Env); DNA immunization; and DNA plus Env co-immunization (DNA&Env). RepAd/Env combined mucosal replication-competent Ad-env priming with systemic Env boosting. A Peptide/Env regimen, given solely intrarectally, included HIV/SIV peptides followed by MVA-env and Env boosts. Serum antibodies mediating neutralizing, phagocytic and ADCC activities were induced by ALVAC/Env, RepAd/Env and DNA&Env vaccines. Memory B cells and plasma cells were maintained in the bone marrow. RepAd/Env vaccination induced early SIV-specific IgA in rectal secretions before Env boosting, although mucosal IgA and IgG responses were readily detected at necropsy in ALVAC/Env, RepAd/Env, DNA&Env and DNA vaccinated animals. Our results suggest that combined RepAd priming with ALVAC/Env or DNA&Env regimen boosting might induce potent, functional, long-lasting systemic and mucosal SIV-specific antibodies.


Subject(s)
Immunity, Mucosal/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Vaccination/methods , AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Drug Therapy, Combination , Enzyme-Linked Immunospot Assay , Gene Products, env/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Macaca mulatta , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Time Factors , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
14.
J Immunol Methods ; 412: 78-84, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24953216

ABSTRACT

The ability to elicit potent and long-lasting broadly neutralizing HIV envelope (Env)-specific antibodies has become a key goal for HIV vaccine development. Consequently, the ability to rapidly and efficiently monitor development of memory B cells in pre-clinical and clinical vaccine trails is critical for continued progress in vaccine design. We have developed an improved flow cytometry-based method for the rapid and efficient identification of gp120-specific memory B cells in peripheral blood, bone marrow, and mucosal tissues which allows their direct staining without the need for prior cell sorting or enrichment. We demonstrate staining of both HIV and SIV Env-specific memory B cells in PBMC, bone marrow, and rectal tissue of vaccinated and infected rhesus macaques. Validation of the method is illustrated by statistically significant correlations with memory B cell levels quantified by ELISPOT assay and with serum binding antibody titers determined by ELISA. In addition to quantification, this method will bring the power of flow cytometry to the study of homing and trafficking of Env-specific memory B cells.


Subject(s)
AIDS Vaccines/immunology , B-Lymphocytes/immunology , Flow Cytometry/methods , HIV/immunology , Immunologic Memory , Simian Acquired Immunodeficiency Syndrome/diagnosis , Simian Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Viral/immunology , Enzyme-Linked Immunospot Assay , Humans , Intestinal Mucosa/immunology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , Vaccination
15.
Retrovirology ; 11: 8, 2014 Jan 20.
Article in English | MEDLINE | ID: mdl-24444350

ABSTRACT

BACKGROUND: A key goal for HIV-1 envelope immunogen design is the induction of cross-reactive neutralizing antibodies (nAbs). As AIDS vaccine recipients will not be exposed to strains exactly matching any immunogens due to multiple HIV-1 quasispecies circulating in the human population worldwide, heterologous SHIV challenges are essential for realistic vaccine efficacy testing in primates. We assessed whether polyclonal IgG, isolated from rhesus monkeys (RMs) with high-titer nAbs (termed SHIVIG), could protect RMs against the R5-tropic tier-2 SHIV-2873Nip, which was heterologous to the viruses or HIV-1 envelopes that had elicited SHIVIG. RESULTS: SHIVIG demonstrated binding to HIV Gag, Tat, and Env of different clades and competed with the broadly neutralizing antibodies b12, VRC01, 4E10, and 17b. SHIVIG neutralized tier 1 and tier 2 viruses, including SHIV-2873Nip. NK-cell depletion decreased the neutralizing activity of SHIVIG 20-fold in PBMC assays. Although SHIVIG neutralized SHIV-2873Nip in vitro, this polyclonal IgG preparation failed to prevent acquisition after repeated intrarectal low-dose virus challenges, but at a dose of 400 mg/kg, it significantly lowered peak viremia (P = 0.001). Unexpectedly, single-genome analysis revealed a higher number of transmitted variants at the low dose of 25 mg/kg, implying increased acquisition at low SHIVIG levels. In vitro, SHIVIG demonstrated complement-mediated Ab-dependent enhancement of infection (C'-ADE) at concentrations similar to those observed in plasmas of RMs treated with 25 mg/kg of SHIVIG. CONCLUSION: Our primate model data suggest a dual role for polyclonal anti-HIV-1 Abs depending on plasma levels upon virus encounter.


Subject(s)
Acquired Immunodeficiency Syndrome/prevention & control , Antibodies, Neutralizing/administration & dosage , Cross Protection , HIV Antibodies/administration & dosage , HIV-1/immunology , Immunization, Passive/methods , Immunoglobulin G/administration & dosage , Acquired Immunodeficiency Syndrome/virology , Animals , Disease Models, Animal , Macaca mulatta , Simian Immunodeficiency Virus/immunology , Treatment Outcome
16.
Vaccine ; 32(7): 872-80, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24374153

ABSTRACT

It is becoming increasingly obvious that evaluation of a vaccine aimed at preventing HIV infection should include assessment of induced immunity at mucosal sites of viral entry. Among the most salient immune responses are viral-specific antibodies. A recent report on IgA-secreting plasma cells in human duodenal explants prompted us to examine similar duodenal and rectal biopsies of rhesus macaques, a key animal model for pre-clinical HIV/SIV vaccine studies, and characterize the local resident B-cells. Here we report that non-human primate rectal explants possess similar levels of B-cells as duodenal explants. We characterize the antibody isotype expression on mucosal memory B-cells and show for the first time that the B-cell memory subsets of the duodenum and rectum are distinct from those of PBMC, not only by essentially lacking CD27(+) cells, as previously reported for uninfected macaques (Titanji et al., 2010), but also in being mostly IgD(-). SIV- and SHIV-infected macaques had fewer total IgA-secreting cells in rectal tissue compared to naïve macaques. As expected, the fractions of B-cells with surface expression of IgA were dominant in the rectal and duodenal explants whereas in PBMC IgG surface expression was dominant among IgD(-) B-cells. Mucosal antibody secreting cells were found to be predominantly plasma cells/plasma blasts based on their lack of response to stimulation. Importantly, short-term culture of rectal explants of SIV- and SHIV-positive animals led to secretion of Env-specific IgA into the culture supernatant which could be easily measured by ELISA. Collection of such culture supernatant over several days allows for accumulation of mucosal antibody in amounts that should enable antibody purification, characterization, and use in functional assays. Rectal explants can be readily obtained and unequivocally identify the mucosal tissue as the source of antibody. Overall they facilitate evaluation of mucosal vaccines.


Subject(s)
Duodenum/immunology , Immunoglobulin A/biosynthesis , Immunologic Memory , Plasma Cells/immunology , Rectum/immunology , Animals , Biopsy , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
17.
PLoS Negl Trop Dis ; 7(9): e2424, 2013.
Article in English | MEDLINE | ID: mdl-24040434

ABSTRACT

BACKGROUND: Brucellosis, a zoonotic infection caused by one of the Gram-negative intracellular bacteria of the Brucella genus, is an ongoing public health problem in Perú. While most patients who receive standard antibiotic treatment recover, 5-40% suffer a brucellosis relapse. In this study, we examined the ex vivo immune cytokine profiles of recovered patients with a history of acute and relapsing brucellosis. METHODOLOGY/PRINCIPAL FINDINGS: Blood was taken from healthy control donors, patients with a history of acute brucellosis, or patients with a history of relapsing brucellosis. Peripheral blood mononuclear cells were isolated and remained in culture without stimulation or were stimulated with a panel of toll-like receptor agonists or heat-killed Brucella melitensis (HKBM) isolates. Innate immune cytokine gene expression and protein secretion were measured by quantitative real-time polymerase chain reaction and a multiplex bead-based immunoassay, respectively. Acute and relapse patients demonstrated consistently elevated cytokine gene expression and secretion levels compared to controls. Notably, these include: basal and stimulus-induced expression of GM-CSF, TNF-α, and IFN-γ in response to LPS and HKBM; basal secretion of IL-6, IL-8, and TNF-α; and HKBM or Rev1-induced secretion of IL-1ß, IL-2, GM-CSF, IFN-Υ, and TNF-α. Although acute and relapse patients were largely indistinguishable by their cytokine gene expression profiles, we identified a robust cytokine secretion signature that accurately discriminates acute from relapse patients. This signature consists of basal IL-6 secretion, IL-1ß, IL-2, and TNF-α secretion in response to LPS and HKBM, and IFN-γ secretion in response to HKBM. CONCLUSIONS/SIGNIFICANCE: This work demonstrates that informative cytokine variations in brucellosis patients can be detected using an ex vivo assay system and used to identify patients with differing infection histories. Targeted diagnosis of this signature may allow for better follow-up care of brucellosis patients through improved identification of patients at risk for relapse.


Subject(s)
Brucella melitensis/immunology , Brucellosis/immunology , Cytokines/biosynthesis , Cytokines/metabolism , Immunity, Innate , Leukocytes, Mononuclear/immunology , Adult , Cells, Cultured , Culture Media/chemistry , Female , Gene Expression Profiling , Humans , Immunoassay , In Vitro Techniques , Male , Middle Aged , Peru , Real-Time Polymerase Chain Reaction , Recurrence , Risk Assessment
18.
Parasitol Res ; 112(10): 3569-78, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23982308

ABSTRACT

This study examines the carbohydrate composition of Taenia solium whole oncosphere antigens (WOAs), in order to improve the understanding of the antigenicity of the T. solium. Better knowledge of oncosphere antigens is crucial to accurately diagnose previous exposure to T. solium eggs and thus predict the development of neurocysticercosis. A set of seven lectins conjugates with wide carbohydrate specificity were used on parasite fixations and somatic extracts. Lectin fluorescence revealed that D-mannose, D-glucose, D-galactose and N-acetyl-D-galactosamine residues were the most abundant constituents of carbohydrate chains on the surface of T. solium oncosphere. Lectin blotting showed that posttranslational modification with N-glycosylation was abundant while little evidence of O-linked carbohydrates was observed. Chemical oxidation and enzymatic deglycosylation in situ were performed to investigate the immunoreactivity of the carbohydrate moieties. Linearizing or removing the carbohydrate moieties from the protein backbones did not diminish the immunoreactivity of these antigens, suggesting that a substantial part of the host immune response against T. solium oncosphere is directed against the peptide epitopes on the parasite antigens. Finally, using carbohydrate probes, we demonstrated for the first time that the presence of several lectins on the surface of the oncosphere was specific to carbohydrates found in intestinal mucus, suggesting a possible role in initial attachment of the parasite to host cells.


Subject(s)
Antigens, Helminth/immunology , Carbohydrates/chemistry , Helminth Proteins/chemistry , Taenia solium/metabolism , Animals , Antibodies, Helminth/immunology , Antibody Specificity , Antigens, Helminth/chemistry , Antigens, Helminth/metabolism , Gene Expression Regulation/physiology , Helminth Proteins/genetics , Helminth Proteins/metabolism , Lectins , Swine , Taenia solium/genetics
19.
PLoS One ; 8(1): e54564, 2013.
Article in English | MEDLINE | ID: mdl-23358528

ABSTRACT

BACKGROUND: Cachexia is a hallmark of pulmonary tuberculosis and is associated with poor prognosis. A better understanding of the mechanisms behind such weight loss could reveal targets for therapeutic intervention. The role of appetite-regulatory hormones in tuberculosis is unknown. METHODS AND FINDINGS: 41 subjects with newly-diagnosed pulmonary TB (cases) were compared to 82 healthy controls. We measured appetite, body mass index (BMI), % body fat (BF), plasma peptide YY (PYY), leptin, ghrelin, and resistin for all subjects. Measurements were taken at baseline for controls and at treatment days 0, 30, and 60 for cases. Baseline appetite, BMI, and BF were lower in cases than in controls and improved during treatment. PYY, ghrelin, and resistin were significantly elevated in cases and fell during treatment. Leptin was lower in cases and rose with treatment. Appetite was inversely related to PYY in cases. High pre-treatment PYY predicted reduced gains in appetite and BF. PYY was the strongest independent predictor of appetite in cases across all time points. CONCLUSIONS: Appetite-regulatory hormones are altered in TB patients. As hormones normalize during treatment, appetite is restored and nutritional status improves. High baseline PYY is an indicator of poor prognosis for improvement in appetite and nutrition during treatment. Wasting in TB patients may partly be mediated by upregulation of PYY with resulting appetite suppression.


Subject(s)
Appetite/physiology , Cachexia/physiopathology , Gastrointestinal Hormones/physiology , Tuberculosis, Pulmonary/physiopathology , Cohort Studies , Humans , Nutritional Status
20.
J Immunol ; 189(4): 1878-85, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22798665

ABSTRACT

Control of infectious disease may be accomplished by successful vaccination or by complex immunologic and genetic factors favoring Ag-specific multicellular immune responses. Using a rhesus macaque model, we evaluated Ag-specific T cell-dependent NK cell immune responses in SIV-infected macaques, designated "controlling" or "noncontrolling" based on long-term chronic viremia levels, to determine whether NK cell effector functions contribute to control of SIV infection. We observed that Gag stimulation of macaque PBMCs induced subset-specific NK cell responses in SIV-controlling but not SIV-noncontrolling animals, as well as that circulatory NK cell responses were dependent on Ag-specific IL-2 production by CD4(+) central memory T cells. NK cell activation was blocked by anti-IL-2-neutralizing Ab and by CD4(+) T cell depletion, which abrogated the Gag-specific responses. Among tissue-resident cells, splenic and circulatory NK cells displayed similar activation profiles, whereas liver and mucosal NK cells displayed a decreased activation profile, similar in SIV-controlling and -noncontrolling macaques. Lack of T cell-dependent NK cell function was rescued in SIV-noncontrolling macaques through drug-mediated control of viremia. Our results indicate that control of disease progression in SIV-controlling macaques is associated with cooperation between Ag-specific CD4(+) T cells and NK cell effector function, which highlight the importance of such cell-to-cell cooperativity in adaptive immunity and suggest that this interaction should be further investigated in HIV vaccine development and other prophylactic vaccine approaches.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Communication/immunology , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cytokines/biosynthesis , Cytokines/immunology , Flow Cytometry , Killer Cells, Natural/metabolism , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/metabolism , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...