Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Clin Exp Nephrol ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068295

ABSTRACT

BACKGROUND: Heart failure is the leading cause of death in patients undergoing hemodialysis (HD), with fluid overload being the most common cause. Therefore, it is important for patients undergoing HD to reduce salt intake. We recently developed a highly accurate and simple self-administered salt questionnaire. Using this salt questionnaire, we aimed to determine whether salt intake and inter-HD weight gain decrease when patients with HD are instructed to reduce their salt intake. METHODS: Seventy-eight outpatients at a maintenance HD facility were assessed for dietary salt intake using a salt questionnaire. After one month of dietary guidance, salt intake was assessed again using the salt questionnaire. RESULTS: The mean age of the patients was 72.2 ± 11.9 years; 47 (60.3%) were men, 23 had diabetic nephropathy as the primary disease, and the median HD vintage was 74 months. Salt intake significantly decreased from 8.41 ± 2.43 g/day before the salt questionnaire intervention to 7.67 ± 2.60 g/day after the intervention (p = 0.010). Changes in salt intake before and after the intervention were significantly positively correlated with changes in weight gain before the start of HD sessions with an interval of 2 days (r = 0.24, p = 0.037). Furthermore, changes in salt intake significantly and positively correlated with changes in weight gain after adjusting for age, sex, and dry weight. CONCLUSION: The salt questionnaire may be an effective tool for reducing salt intake and controlling weight gain during HD.

2.
Genomics ; 116(5): 110894, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019410

ABSTRACT

Technologies for detecting structural variation (SV) have advanced with the advent of long-read sequencing, which enables the validation of SV at a nucleotide level. Optical genome mapping (OGM), a technology based on physical mapping, can also provide comprehensive SVs analysis. We applied long-read whole genome sequencing (LRWGS) to accurately reconstruct breakpoint (BP) segments in a patient with complex chromosome 6q rearrangements that remained elusive by conventional karyotyping. Although all BPs were precisely identified by LRWGS, there were two possible ways to construct the BP segments in terms of their orders and orientations. Thus, we also used OGM analysis. Notably, OGM recognized entire inversions exceeding 500 kb in size, which LRWGS could not characterize. Consequently, here we successfully unveil the full genomic structure of this complex chromosomal 6q rearrangement and cryptic SVs through combined long-molecule genomic analyses, showcasing how LRWGS and OGM can complement each other in SV analysis.

3.
BMC Pediatr ; 24(1): 308, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711055

ABSTRACT

BACKGROUND: ASXL3-related disorder, first described in 2013, is a genetic disorder with an autosomal dominant inheritance that is caused by a heterozygous loss-of-function variant in ASXL3. The most characteristic feature is neurodevelopmental delay with consistently limited speech. Feeding difficulty is a main symptom observed in infancy. However, no adolescent case has been reported. CASE PRESENTATION: A 14-year-old girl with ASXL3-related syndrome was referred to our hospital with subacute onset of emotional lability. Limbic encephalitis was ruled out by examination; however, the patient gradually showed a lack of interest in eating, with decreased diet volume. Consequently, she experienced significant weight loss. She experienced no symptoms of bulimia, or food allergy; therefore, avoidant/restrictive food intake disorder (ARFID) was clinically suspected. CONCLUSIONS: We reported the first case of ASXL3-related disorder with adolescent onset of feeding difficulty. ARFID was considered a cause of the feeding difficulty.


Subject(s)
Abnormalities, Multiple , Facies , Feeding and Eating Disorders , Neurodevelopmental Disorders , Humans , Female , Adolescent , Feeding and Eating Disorders/etiology , Feeding and Eating Disorders/complications , Feeding and Eating Disorders/diagnosis , Repressor Proteins/genetics
4.
Article in English | MEDLINE | ID: mdl-38816190

ABSTRACT

BACKGROUND: Although pure GAA expansion is considered pathogenic in SCA27B, non-GAA repeat motif is mostly mixed into longer repeat sequences. This study aimed to unravel the complete sequencing of FGF14 repeat expansion to elucidate its repeat motifs and pathogenicity. METHODS: We screened FGF14 repeat expansion in a Japanese cohort of 460 molecularly undiagnosed adult-onset cerebellar ataxia patients and 1022 controls, together with 92 non-Japanese controls, and performed nanopore sequencing of FGF14 repeat expansion. RESULTS: In the Japanese population, the GCA motif was predominantly observed as the non-GAA motif, whereas the GGA motif was frequently detected in non-Japanese controls. The 5'-common flanking variant was observed in all Japanese GAA repeat alleles within normal length, demonstrating its meiotic stability against repeat expansion. In both patients and controls, pure GAA repeat was up to 400 units in length, whereas non-pathogenic GAA-GCA repeat was larger, up to 900 units, but they evolved from different haplotypes, as rs534066520, located just upstream of the repeat sequence, completely discriminated them. Both (GAA)≥250 and (GAA)≥200 were enriched in patients, whereas (GAA-GCA)≥200 was similarly observed in patients and controls, suggesting the pathogenic threshold of (GAA)≥200 for cerebellar ataxia. We identified 14 patients with SCA27B (3.0%), but their single-nucleotide polymorphism genotype indicated different founder alleles between Japanese and Caucasians. The low prevalence of SCA27B in Japanese may be due to the lower allele frequency of (GAA)≥250 in the Japanese population than in Caucasians (0.15% vs 0.32%-1.26%). CONCLUSIONS: FGF14 repeat expansion has unique features of pathogenicity and allelic origin, as revealed by a single ethnic study.

5.
Rinsho Ketsueki ; 65(3): 164-168, 2024.
Article in Japanese | MEDLINE | ID: mdl-38569860

ABSTRACT

Congenital protein C (PC) deficiency is one type of hereditary thrombosis. Patients with hereditary thrombosis are at high risk for thrombosis in the perioperative period, but a standard management strategy has not been established. Here we report a case of perioperative management of a fracture in a child with homozygous congenital PC deficiency. The patient was a 3-year-old boy who was diagnosed with congenital PC deficiency at birth. He sustained a traumatic supracondylar fracture of the right humerus and underwent emergency surgery. To prepare for open surgery for fixation of the fracture, warfarin was discontinued, and an activated PC (APC) concentrate was used in combination with vitamin K antagonism. However, warfarin was administered during the scheduled nail extraction because the operation was minimally invasive. No thrombotic or bleeding complications occurred in either operation. In emergency surgery in patients with congenital PC deficiency, the combination of vitamin K and APC concentrate is considered a maintenance option for PC deficiency. Postoperative PT-INR control was difficult in our patient due to the administration of vitamin K and withdrawal of warfarin, and this issue must be addressed in the future. Further case experience is desirable to standardize perioperative management.


Subject(s)
Fractures, Bone , Protein C Deficiency , Thrombosis , Child, Preschool , Humans , Infant, Newborn , Male , Anticoagulants , Fractures, Bone/complications , Protein C Deficiency/complications , Thrombosis/complications , Vitamin K , Warfarin/therapeutic use
6.
Cureus ; 16(2): e54263, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38496066

ABSTRACT

Teriparatide, a recombinant human parathyroid hormone, is an anabolic treatment for osteoporosis with a high risk of fractures. Transient hypercalcemia is an adverse effect of teriparatide and usually resolves within 16h of teriparatide administration owing to its rapid absorption and elimination. Some cases of prolonged hypercalcemia have been reported, but these improved rapidly after teriparatide discontinuation. Here, we describe a rare case of teriparatide-induced hypercalcemia concomitant with acute kidney injury that persisted for four weeks. An 83-year-old woman began taking teriparatide for a vertebral fracture. The patient was immobilized by the fracture. Three weeks later, the patient developed hypercalcemia and acute kidney injury. However, hypercalcemia persisted for four weeks despite the discontinuation of teriparatide and fluid administration. Clinicians should be aware that teriparatide can induce severe hypercalcemia, especially in the setting of immobilization, and that hypercalcemia can persist for more than 3-4 weeks in patients with decreased kidney function.

7.
J Hum Genet ; 69(3-4): 153-157, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38216729

ABSTRACT

Aromatic l-amino acid decarboxylase (AADC) deficiency is an autosomal recessive neurotransmitter disorder caused by pathogenic DOPA decarboxylase (DDC) variants. We previously reported Japanese siblings with AADC deficiency, which was confirmed by the lack of enzyme activity; however, only a heterozygous missense variant was detected. We therefore performed targeted long-read sequencing by adaptive sampling to identify any missing variants. Haplotype phasing and variant calling identified a novel deep intronic variant (c.714+255 C > A), which was predicted to potentially activate the noncanonical splicing acceptor site. Minigene assay revealed that wild-type and c.714+255 C > A alleles had different impacts on splicing. Three transcripts, including the canonical transcript, were detected from the wild-type allele, but only the noncanonical cryptic exon was produced from the variant allele, indicating that c.714+255 C > A was pathogenic. Target long-read sequencing may be used to detect hidden pathogenic variants in unresolved autosomal recessive cases with only one disclosed hit variant.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Dopa Decarboxylase , Humans , Dopa Decarboxylase/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Introns , Mutation, Missense
8.
J Hum Genet ; 69(3-4): 163-167, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38228874

ABSTRACT

The gene for ATP binding cassette subfamily A member 2 (ABCA2) is located at chromosome 9q34.3. Biallelic ABCA2 variants lead to intellectual developmental disorder with poor growth and with or without seizures or ataxia (IDPOGSA). In this study, we identified novel compound heterozygous ABCA2 variants (NM_001606.5:c.[5300-17C>A];[6379C>T]) by whole exome sequencing in a 28-year-old Korean female patient with intellectual disability. These variants included intronic and nonsense variants of paternal and maternal origin, respectively, and are absent from gnomAD. SpliceAI predicted that the intron variant creates a cryptic acceptor site. Reverse transcription-PCR using RNA extracted from a lymphoblastoid cell line of the patient confirmed two aberrant transcripts. Her clinical features are compatible with those of IDPOGSA.


Subject(s)
Intellectual Disability , Humans , Female , Adult , Intellectual Disability/genetics , Mutation , Family , Syndrome , Ataxia/genetics
9.
Nucleic Acids Res ; 52(1): 114-124, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38015437

ABSTRACT

Next-generation DNA sequencing (NGS) in short-read mode has recently been used for genetic testing in various clinical settings. NGS data accuracy is crucial in clinical settings, and several reports regarding quality control of NGS data, primarily focusing on establishing NGS sequence read accuracy, have been published thus far. Variant calling is another critical source of NGS errors that remains unexplored at the single-nucleotide level despite its established significance. In this study, we used a machine-learning-based method to establish an exome-wide benchmark of difficult-to-sequence regions at the nucleotide-residue resolution using 10 genome sequence features based on real-world NGS data accumulated in The Genome Aggregation Database (gnomAD) of the human reference genome sequence (GRCh38/hg38). The newly acquired metric, designated the 'UNMET score,' along with additional lines of structural information from the human genome, allowed us to assess the sequencing challenges within the exonic region of interest using conventional short-read NGS. Thus, the UNMET score could provide a basis for addressing potential sequential errors in protein-coding exons of the human reference genome sequence GRCh38/hg38 in clinical sequencing.


Subject(s)
Exome , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Humans , DNA , Exome/genetics , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards
10.
J Hum Genet ; 69(2): 69-77, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38012394

ABSTRACT

SLC5A6 encodes the sodium-dependent multivitamin transporter, a transmembrane protein that uptakes biotin, pantothenic acid, and lipoic acid. Biallelic SLC5A6 variants cause sodium-dependent multivitamin transporter deficiency (SMVTD) and childhood-onset biotin-responsive peripheral motor neuropathy (COMNB), which both respond well to replacement therapy with the above three nutrients. SMVTD usually presents with various symptoms in multiple organs, such as gastrointestinal hemorrhage, brain atrophy, and global developmental delay, at birth or in infancy. Without nutrient replacement therapy, SMVTD can be lethal in early childhood. COMNB is clinically milder and has a later onset than SMVTD, at approximately 10 years of age. COMNB symptoms are mostly limited to peripheral motor neuropathy. Here we report three patients from one Japanese family harboring novel compound heterozygous missense variants in SLC5A6, namely NM_021095.4:c.[221C>T];[642G>C] p.[(Ser74Phe)];[(Gln214His)]. Both variants were predicted to be deleterious through multiple lines of evidence, including amino acid conservation, in silico predictions of pathogenicity, and protein structure considerations. Drosophila analysis also showed c.221C>T to be pathogenic. All three patients had congenital brain cysts on neonatal cranial imaging, but no other morphological abnormalities. They also had a mild motor developmental delay that almost completely resolved despite no treatment. In terms of severity, their phenotypes were intermediate between SMVTD and COMNB. From these findings we propose a new SLC5A6-related disorder, spontaneously remitting developmental delay with brain cysts (SRDDBC) whose phenotypic severity is between that of SMVTD and COMNB. Further clinical and genetic evidence is needed to support our suggestion.


Subject(s)
Cysts , Symporters , Child, Preschool , Humans , Infant, Newborn , Biotin/genetics , Biotin/metabolism , Phenotype , Sodium/metabolism , Symporters/genetics , Symporters/metabolism
11.
J Hum Genet ; 69(2): 85-90, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38030753

ABSTRACT

Ubiquitin-specific protease 8 (USP8) is a deubiquitinating enzyme involved in deubiquitinating the enhanced epidermal growth factor receptor for escape from degradation. Somatic variants at a hotspot in USP8 are a cause of Cushing's disease, and a de novo germline USP8 variant at this hotspot has been described only once previously, in a girl with Cushing's disease and developmental delay. In this study, we investigated an exome-negative patient with severe developmental delay, dysmorphic features, and multiorgan dysfunction by long-read sequencing, and identified a 22-kb de novo germline deletion within USP8 (chr15:50469966-50491995 [GRCh38]). The deletion involved the variant hotspot, one rhodanese domain, and two SH3 binding motifs, and was presumed to be generated through nonallelic homologous recombination through Alu elements. Thus, the patient may have perturbation of the endosomal sorting system and mitochondrial autophagy through the USP8 defect. This is the second reported case of a germline variant in USP8.


Subject(s)
Pituitary ACTH Hypersecretion , Female , Humans , Endopeptidases/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Germ Cells/metabolism , Germ-Line Mutation/genetics , Pituitary ACTH Hypersecretion/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
12.
Intern Med ; 63(7): 1005-1008, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37558483

ABSTRACT

We encountered a 27-year-old Japanese woman with sensorineural deafness progressing to motor and sensory neuropathy. At 16 years old, she had developed weakness in her lower extremities and hearing impairment, which gradually deteriorated. At 22 years old, combined audiological, electrophysiological, and radiological examination results were consistent with auditory neuropathy spectrum disorder (ANSD). Genetic analyses identified a previously reported missense variant in the ATP1A1 gene (NM_000701.8:c.1799C>G, p.Pro600Arg). Although sensorineural deafness has been reported as a clinical manifestation of ATP1A1-related disorders, our case suggested that ANSD may underlie the pathogenesis of deafness in ATP1A1-related disorders. This case report broadens the genotype-phenotype spectrum of ATP1A1-related disorders.


Subject(s)
Charcot-Marie-Tooth Disease , Deafness , Hearing Loss, Central , Hearing Loss, Sensorineural , Female , Humans , Adolescent , Young Adult , Adult , Hearing Loss, Central/diagnosis , Hearing Loss, Central/genetics , Hearing Loss, Central/complications , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Charcot-Marie-Tooth Disease/genetics , Deafness/complications , Sodium-Potassium-Exchanging ATPase
14.
Article in English | MEDLINE | ID: mdl-37606963

ABSTRACT

OBJECTIVES: To efficiently detect somatic UBA1 variants and establish a clinical scoring system predicting patients with pathogenic variants in VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. METHODS: Eighty-nine Japanese patients with clinically suspected VEXAS syndrome were recruited [81 males and 8 females; median onset age (IQR) 69.3 years (62.1-77.6)]. Peptide nucleic acid-clamping PCR (PNA-PCR), regular PCR targeting exon 3 clustering UBA1 variants, and subsequent Sanger sequencing were conducted for variant screening. Partitioning digital PCR (pdPCR) or targeted amplicon deep sequencing (TAS) was also performed to evaluate the variant allele frequency (VAF). We developed our clinical scoring system to predict UBA1 variant-positive and ­negative patients and assessed the diagnostic value of our system using receiver operating characteristic (ROC) curve analysis. RESULTS: Forty patients with reported pathogenic UBA1 variants (40/89, 44.9%) were identified, including a case having a variant with VAF of 1.7%, using a highly sensitive method. Our clinical scoring system considering >50 years of age, cutaneous lesions, lung involvement, chondritis, and macrocytic anaemia efficiently predicted patients with UBA1 variants (the area under the curve for the scoring total was 0.908). CONCLUSIONS: Genetic screening with the combination of regular PCR and PNA-PCR detected somatic UBA1 variants with high sensitivity and specificity. Our scoring system could efficiently predict patients with UBA1 variants.

15.
J Hum Genet ; 68(12): 875-878, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37592133

ABSTRACT

Benign adult familial myoclonic epilepsy type 1 (BAFME1) is an autosomal dominant, adult-onset neurological disease caused by SAMD12 repeat expansion. In BAFME1, anticipation, such as the earlier onset of tremor and/or seizures in the next generation, was reported. This could be explained by intergenerational repeat instability, leading to larger expansions in successive generations. We report a four-generation BAFME1-affected family with anticipation. Using Nanopore long-read sequencing, detailed information regarding the sizes, configurations, and compositions of the expanded SAMD12 repeats across generations was obtained. Unexpectedly, a grandmother-mother-daughter triad showed similar repeat structures but with slight repeat expansions, despite quite variable age of onset of seizures (range: 52-14 years old), implying a complex relationship between the SAMD12 repeat expansion sequence and anticipation. This study suggests that different factor(s) from repeat expansion could modify the anticipation in BAFME1.


Subject(s)
Epilepsies, Myoclonic , Humans , Epilepsies, Myoclonic/genetics , Pedigree , Seizures
16.
Mod Rheumatol Case Rep ; 8(1): 199-204, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-37548220

ABSTRACT

We herein describe the case of a 52-year-old male patient who presented with fever, arthritis, and neutrophilic dermatosis in 2013 and subsequently experienced macrophage activation syndrome treated with high-dose glucocorticoid therapy. Due to the persistent symptoms refractory to several immunomodulatory and immunosuppressive (IS) drug therapies with dapsone, methotrexate, tacrolimus, infliximab (IFX), and tocilizumab (TCZ), he received prednisolone (PSL) ≥20 mg/day to suppress disease activity. In 2017, Epstein-Barr virus (EBV)-associated haemophagocytic lymphohistiocytosis (HLH) was diagnosed and initially treated with immunochemotherapy consisting of dexamethasone, cyclosporine (CyA), and etoposide (ET). Because of the suboptimal response to the initial therapy, cytoreduction therapy consisting of CHOP (combination chemotherapy consisting of cyclophosphamide, doxorubicin, vincristine, and PSL) was administered. This regimen improved the EBV-associated HLH. Later, the patient's condition stabilised with methylprednisolone 1 mg/day and CyA 100 mg/day. In 2022, ubiquitylation-initiating E1 enzyme (UBA1) variant analysis using Sanger sequencing of peripheral blood leukocytes detected a previously reported somatic variant (NM_003334.3: c.118-1G>C), confirming the diagnosis of vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome. The clinical course in the present case suggested the possibility that CHOP could be a potential treatment option for VEXAS syndrome, in the pathophysiology of which the expansion of clones with UBA1 variant seems to play a pivotal role.


Subject(s)
Epstein-Barr Virus Infections , Lymphohistiocytosis, Hemophagocytic , Male , Humans , Middle Aged , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/etiology , Immunosuppressive Agents/therapeutic use , Cyclosporine , Prednisolone/therapeutic use
17.
Genome Res ; 33(3): 435-447, 2023 03.
Article in English | MEDLINE | ID: mdl-37307504

ABSTRACT

Tandem repeats (TRs) are one of the largest sources of polymorphism, and their length is associated with gene regulation. Although previous studies reported several tandem repeats regulating gene splicing in cis (spl-TRs), no large-scale study has been conducted. In this study, we established a genome-wide catalog of 9537 spl-TRs with a total of 58,290 significant TR-splicing associations across 49 tissues (false discovery rate 5%) by using Genotype-Tissue expression (GTex) Project data. Regression models explaining splicing variation by using spl-TRs and other flanking variants suggest that at least some of the spl-TRs directly modulate splicing. In our catalog, two spl-TRs are known loci for repeat expansion diseases, spinocerebellar ataxia 6 (SCA6) and 12 (SCA12). Splicing alterations by these spl-TRs were compatible with those observed in SCA6 and SCA12. Thus, our comprehensive spl-TR catalog may help elucidate the pathomechanism of genetic diseases.


Subject(s)
Genetic Engineering , RNA Splicing , Humans , Polymorphism, Genetic , Tandem Repeat Sequences
18.
J Hum Genet ; 68(10): 689-697, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37308565

ABSTRACT

Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders characterized by progressive spasticity and weakness in the lower extremities. To date, a total of 88 types of SPG are known. To diagnose HSP, multiple technologies, including microarray, direct sequencing, multiplex ligation-dependent probe amplification, and short-read next-generation sequencing, are often chosen based on the frequency of HSP subtypes. Exome sequencing (ES) is commonly used. We used ES to analyze ten cases of HSP from eight families. We identified pathogenic variants in three cases (from three different families); however, we were unable to determine the cause of the other seven cases using ES. We therefore applied long-read sequencing to the seven undetermined HSP cases (from five families). We detected intragenic deletions within the SPAST gene in four families, and a deletion within PSEN1 in the remaining family. The size of the deletion ranged from 4.7 to 12.5 kb and involved 1-7 exons. All deletions were entirely included in one long read. We retrospectively performed an ES-based copy number variation analysis focusing on pathogenic deletions, but were not able to accurately detect these deletions. This study demonstrated the efficiency of long-read sequencing in detecting intragenic pathogenic deletions in ES-negative HSP patients.


Subject(s)
Adenosine Triphosphatases , Spastic Paraplegia, Hereditary , Humans , Adenosine Triphosphatases/genetics , Exome/genetics , Mutation , DNA Copy Number Variations , Retrospective Studies , Spastin/genetics , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Paraplegia/genetics
19.
Life Sci Alliance ; 6(8)2023 08.
Article in English | MEDLINE | ID: mdl-37286232

ABSTRACT

We discovered biallelic intragenic structural variations (SVs) in FGF12 by applying long-read whole genome sequencing to an exome-negative patient with developmental and epileptic encephalopathy (DEE). We also found another DEE patient carrying a biallelic (homozygous) single-nucleotide variant (SNV) in FGF12 that was detected by exome sequencing. FGF12 heterozygous recurrent missense variants with gain-of-function or heterozygous entire duplication of FGF12 are known causes of epilepsy, but biallelic SNVs/SVs have never been described. FGF12 encodes intracellular proteins interacting with the C-terminal domain of the alpha subunit of voltage-gated sodium channels 1.2, 1.5, and 1.6, promoting excitability by delaying fast inactivation of the channels. To validate the molecular pathomechanisms of these biallelic FGF12 SVs/SNV, highly sensitive gene expression analyses using lymphoblastoid cells from the patient with biallelic SVs, structural considerations, and Drosophila in vivo functional analysis of the SNV were performed, confirming loss-of-function. Our study highlights the importance of small SVs in Mendelian disorders, which may be overlooked by exome sequencing but can be detected efficiently by long-read whole genome sequencing, providing new insights into the pathomechanisms of human diseases.


Subject(s)
Epilepsy , Mutation, Missense , Humans , Epilepsy/genetics , Fibroblast Growth Factors
20.
Sci Rep ; 13(1): 9789, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328543

ABSTRACT

RAC1 at 7p22.1 encodes a RAC family small GTPase that regulates actin cytoskeleton organization and intracellular signaling pathways. Pathogenic RAC1 variants result in developmental delay and multiple anomalies. Here, exome sequencing identified a rare de novo RAC1 variant [NM_018890.4:c.118T > C p.(Tyr40His)] in a male patient. Fetal ultrasonography indicated the patient to have multiple anomalies, including persistent left superior vena cava, total anomalous pulmonary venous return, esophageal atresia, scoliosis, and right-hand polydactyly. After birth, craniofacial dysmorphism and esophagobronchial fistula were confirmed and VACTERL association was suspected. One day after birth, the patient died of respiratory failure caused by tracheal aplasia type III. The molecular mechanisms of pathogenic RAC1 variants remain largely unclear; therefore, we biochemically examined the pathophysiological significance of RAC1-p.Tyr40His by focusing on the best characterized downstream effector of RAC1, PAK1, which activates Hedgehog signaling. RAC1-p.Tyr40His interacted minimally with PAK1, and did not enable PAK1 activation. Variants in the RAC1 Switch II region consistently activate downstream signals, whereas the p.Tyr40His variant at the RAC1-PAK1 binding site and adjacent to the Switch I region may deactivate the signals. It is important to accumulate data from individuals with different RAC1 variants to gain a full understanding of their varied clinical presentations.


Subject(s)
Vena Cava, Superior , p21-Activated Kinases , Humans , Male , Binding Sites , Hedgehog Proteins/metabolism , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , Vena Cava, Superior/metabolism , Infant, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL