Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 11080, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422514

ABSTRACT

Spectral photon-counting computed tomography (SPCCT) is a new technique with the capability to provide mono-energetic (monoE) images with high signal to noise ratio. We demonstrate the feasibility of SPCCT to characterize at the same time cartilage and subchondral bone cysts (SBCs) without contrast agent in osteoarthritis (OA). To achieve this goal, 10 human knee specimens (6 normal and 4 with OA) were imaged with a clinical prototype SPCCT. The monoE images at 60 keV with isotropic voxels of 250 × 250 × 250 µm3 were compared with monoE synchrotron radiation CT (SR micro-CT) images at 55 keV with isotropic voxels of 45 × 45 × 45 µm3 used as benchmark for cartilage segmentation. In the two OA knees with SBCs, the volume and density of SBCs were evaluated in SPCCT images. In 25 compartments (lateral tibial (LT), medial tibial, (MT), lateral femoral (LF), medial femoral and patella), the mean bias between SPCCT and SR micro-CT analyses were 101 ± 272 mm3 for cartilage volume and 0.33 mm ± 0.18 for mean cartilage thickness. Between normal and OA knees, mean cartilage thicknesses were found statistically different (0.005 < p < 0.04) for LT, MT and LF compartments. The 2 OA knees displayed different SBCs profiles in terms of volume, density, and distribution according to size and location. SPCCT with fast acquisitions is able to characterize cartilage morphology and SBCs. SPCCT can be used potentially as a new tool in clinical studies in OA.


Subject(s)
Bone Cysts , Cartilage, Articular , Osteoarthritis, Knee , Osteoarthritis , Humans , Knee Joint/diagnostic imaging , Cartilage/diagnostic imaging , X-Ray Microtomography/methods , Bone Cysts/diagnostic imaging , Osteoarthritis, Knee/diagnostic imaging , Cartilage, Articular/diagnostic imaging
2.
J Orthop Res ; 36(9): 2380-2391, 2018 09.
Article in English | MEDLINE | ID: mdl-29663495

ABSTRACT

One of the most important characteristic of knee osteoarthritis (OA) is the joint space (JS) width narrowing. Measurements are usually performed on two dimensional (2D) X-rays. We propose and validate a new method to assess the 3D joint space at the medial knee compartment using high resolution peripheral computed tomography images. A semi-automated method was developed to obtain a distance 3D map between femur an tibia with the following parameters: volume, minimum, maximum, mean, standard deviation, median, asymmetry, and entropy. We analyzed 71 knee specimens (mean age: 85 years), radiographs were performed for the Kellgren Lawrence (KL) score grading. In a subgroup of 41 specimens, the histopathological Outerbridge and meniscal classifications were performed and then cores were harvested from the tibial plateau in three different positions (posterior, central, and peripheral) and imaged at 10 µm of resolution to measure the cartilage thickness. Minimum, maximum, mean, and median were statistically lower and entropy higher between knee specimens classified as KL = 0 and KL = 3-4. Gr1 and 2 were statistically different from Gr3-4 for minimum, asymmetry, entropy using the Outerbridge classification and Gr1 was statistically different from Gr3-4 using the meniscal classification. Asymmetry, minimum, mean, median and entropy were significantly correlated with cartilage thickness. Parameters extracted from a 3D map of the medial joint space indicate local variations of JS and are related to local measurements of tibial cartilage thickness, and could be consequently useful to identify early OA. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:2380-2391, 2018.


Subject(s)
Imaging, Three-Dimensional/methods , Knee Joint/anatomy & histology , Meniscus/diagnostic imaging , Osteoarthritis, Knee/diagnostic imaging , Tomography, X-Ray Computed/methods , Aged , Aged, 80 and over , Cadaver , Cartilage , Cartilage, Articular/pathology , Cone-Beam Computed Tomography/methods , Female , Humans , Knee/anatomy & histology , Knee/physiology , Knee Joint/diagnostic imaging , Knee Joint/physiology , Male , Middle Aged , Osteoarthritis, Knee/pathology , Pattern Recognition, Automated , Tibia/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...