Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Genet ; 56(6): 1156-1167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811842

ABSTRACT

Cis-regulatory elements (CREs) interact with trans regulators to orchestrate gene expression, but how transcriptional regulation is coordinated in multi-gene loci has not been experimentally defined. We sought to characterize the CREs controlling dynamic expression of the adjacent costimulatory genes CD28, CTLA4 and ICOS, encoding regulators of T cell-mediated immunity. Tiling CRISPR interference (CRISPRi) screens in primary human T cells, both conventional and regulatory subsets, uncovered gene-, cell subset- and stimulation-specific CREs. Integration with CRISPR knockout screens and assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling identified trans regulators influencing chromatin states at specific CRISPRi-responsive elements to control costimulatory gene expression. We then discovered a critical CCCTC-binding factor (CTCF) boundary that reinforces CRE interaction with CTLA4 while also preventing promiscuous activation of CD28. By systematically mapping CREs and associated trans regulators directly in primary human T cell subsets, this work overcomes longstanding experimental limitations to decode context-dependent gene regulatory programs in a complex, multi-gene locus critical to immune homeostasis.


Subject(s)
CD28 Antigens , CTLA-4 Antigen , Chromatin , Gene Expression Regulation , Humans , CTLA-4 Antigen/genetics , CD28 Antigens/genetics , Chromatin/genetics , Chromatin/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Inducible T-Cell Co-Stimulator Protein/genetics , Inducible T-Cell Co-Stimulator Protein/metabolism , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , CRISPR-Cas Systems
2.
Sci Adv ; 6(27)2020 07.
Article in English | MEDLINE | ID: mdl-32937431

ABSTRACT

Nonviral mRNA delivery is an attractive therapeutic gene delivery strategy, as it achieves efficient protein overexpression in vivo and has a desirable safety profile. However, mRNA's short cytoplasmic half-life limits its utility to therapeutic applications amenable to repeated dosing or short-term overexpression. Here, we describe a biomaterial that enables a durable in vivo response to a single mRNA dose via an "overexpress and sequester" mechanism, whereby mRNA-transfected cells locally overexpress a growth factor that is then sequestered within the biomaterial to sustain the biologic response over time. In a murine diabetic wound model, this strategy demonstrated improved wound healing compared to delivery of a single mRNA dose alone or recombinant protein. In addition, codelivery of anti-inflammatory proteins using this biomaterial eliminated the need for mRNA chemical modification for in vivo therapeutic efficacy. The results support an approach that may be broadly applicable for single-dose delivery of mRNA without chemical modification.


Subject(s)
Biocompatible Materials , Wound Healing , Animals , Gene Transfer Techniques , Intercellular Signaling Peptides and Proteins/genetics , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Sci Rep ; 7(1): 14211, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29079806

ABSTRACT

Gene delivery to primary human cells is a technology of critical interest to both life science research and therapeutic applications. However, poor efficiencies in gene transfer and undesirable safety profiles remain key limitations in advancing this technology. Here, we describe a materials-based approach whereby application of a bioresorbable mineral coating improves microparticle-based transfection of plasmid DNA lipoplexes in several primary human cell types. In the presence of these mineral-coated microparticles (MCMs), we observed up to 4-fold increases in transfection efficiency with simultaneous reductions in cytotoxicity. We identified mechanisms by which MCMs improve transfection, as well as coating compositions that improve transfection in three-dimensional cell constructs. The approach afforded efficient transfection in primary human fibroblasts as well as mesenchymal and embryonic stem cells for both two- and three-dimensional transfection strategies. This MCM-based transfection is an advancement in gene delivery technology, as it represents a non-viral approach that enables highly efficient, localized transfection and allows for transfection of three-dimensional cell constructs.


Subject(s)
Drug Carriers/chemistry , Microspheres , Minerals/chemistry , Transfection , Cell Membrane/metabolism , DNA/chemistry , DNA/genetics , Drug Carriers/metabolism , Drug Carriers/toxicity , Fibroblasts/cytology , Fibroblasts/drug effects , Fluorides/chemistry , Humans , Lipids/chemistry , Nanostructures/chemistry , Transgenes/genetics
4.
Adv Mater ; 29(33)2017 Sep.
Article in English | MEDLINE | ID: mdl-28675637

ABSTRACT

Proteins tend to lose their biological activity due to their fragile structural conformation during formulation, storage, and delivery. Thus, the inability to stabilize proteins in controlled-release systems represents a major obstacle in drug delivery. Here, a bone mineral inspired protein stabilization strategy is presented, which uses nanostructured mineral coatings on medical devices. Proteins bound within the nanostructured coatings demonstrate enhanced stability against extreme external stressors, including organic solvents, proteases, and ethylene oxide gas sterilization. The protein stabilization effect is attributed to the maintenance of protein conformational structure, which is closely related to the nanoscale feature sizes of the mineral coatings. Basic fibroblast growth factor (bFGF) released from a nanostructured mineral coating maintains its biological activity for weeks during release, while it maintains activity for less than 7 d during release from commonly used polymeric microspheres. Delivery of the growth factors bFGF and vascular endothelial growth factor using a mineral coated surgical suture significantly improves functional Achilles tendon healing in a rabbit model, resulting in increased vascularization, more mature collagen fiber organization, and a two fold improvement in mechanical properties. The findings of this study demonstrate that biomimetic interactions between proteins and nanostructured minerals provide a new, broadly applicable mechanism to stabilize proteins in the context of drug delivery and regenerative medicine.


Subject(s)
Nanostructures , Animals , Bone and Bones , Drug Delivery Systems , Minerals , Rabbits , Vascular Endothelial Growth Factor A , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL