Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(11): e9449, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36349249

ABSTRACT

Environmental variables are often the primary drivers of species' distributions as they define their niche. However, individuals, or groups of individuals, may sometimes adopt a limited range within this larger suitable habitat as a result of social and cultural processes. This is the case for Eastern Caribbean sperm whales. While environmental variables are reasonably successful in describing the general distribution of sperm whales in the region, individuals from different cultural groups have distinct distributions around the Lesser Antilles islands. Using data collected over 2 years of dedicated surveys in the Eastern Caribbean, we conducted habitat modeling and habitat suitability analyses to investigate the mechanisms responsible for such fine-scale distribution patterns. Vocal clan-specific models were dramatically more successful at predicting distribution than general species models, showing how a failure to incorporate social factors can impede accurate predictions. Habitat variation between islands did not explain vocal clan distributions, suggesting that cultural group segregation in the Eastern Caribbean sperm whale is driven by traditions of site/island fidelity (most likely maintained through conformism and homophily) rather than habitat type specialization. Our results provide evidence for the key role of cultural knowledge in shaping habitat use of sperm whales within suitable environmental conditions and highlight the importance of cultural factors in shaping sperm whale ecology. We recommend that social and cultural information be incorporated into conservation and management as culture can segregate populations on fine spatial scales in the absence of environmental variability.

2.
R Soc Open Sci ; 9(5): 211737, 2022 May.
Article in English | MEDLINE | ID: mdl-35619996

ABSTRACT

The sperm whale (Physeter macrocephalus) is a deep-diving cetacean with a global distribution and a multi-leveled, culturally segregated, social structure. While sperm whales have previously been described as 'ocean nomads', this might not be universal. We conducted surveys of sperm whales along the Lesser Antilles to document the acoustic repertoires, movements and distributions of Eastern Caribbean (EC) sperm whale cultural groups (called vocal clans). In addition to documenting a potential third vocal clan in the EC, we found strong evidence of fine-scale habitat partitioning between vocal clans with scales of horizontal movements an order of magnitude smaller than from comparable studies on Eastern Tropical Pacific sperm whales. These results suggest that sperm whales can display cultural ecological specialization and habitat partitioning on flexible spatial scales according to local conditions and broadens our perception of the ecological flexibility of the species. This study highlights the importance of incorporating multiple temporal and spatial scales to understand the impact of culture on ecological adaptability, as well as the dangers of extrapolating results across geographical areas and cultural groups.

3.
Ecol Evol ; 8(3): 1554-1572, 2018 02.
Article in English | MEDLINE | ID: mdl-29435232

ABSTRACT

Understanding what factors drive patterns of genetic diversity is a central aspect of many biological questions, ranging from the inference of historical demography to assessing the evolutionary potential of a species. However, as a larger number of datasets have become available, it is becoming clear that the relationship between the characteristics of a species and its genetic diversity is more complex than previously assumed. This may be particularly true for cetaceans, due to their relatively long lifespans, long generation times, complex social structures, and extensive ranges. In this study, we used microsatellite and mitochondrial DNA data from a systematic literature review to produce estimates of diversity for both markers across 42 cetacean species. Factors relating to demography, distribution, classification, biology, and behavior were then tested using phylogenetic methods and linear models to assess their relative influence on the genetic diversity of both marker types. The results show that while relative nuclear diversity is correlated with population size, mitochondrial diversity is not. This is particularly relevant given the widespread use of mitochondrial DNA to infer historical demography. Instead, mitochondrial diversity was mostly influenced by the range and social structure of the species. In addition to population size, habitat type (neritic vs. oceanic) had a significant correlation with relative nuclear diversity. Combined, these results show that many often-unconsidered factors are likely influencing patterns of genetic diversity in cetaceans, with implications regarding how to interpret, and what can be inferred from, existing patterns of diversity.

4.
Behav Genet ; 47(3): 324-334, 2017 05.
Article in English | MEDLINE | ID: mdl-28275880

ABSTRACT

Five species of whale with matrilineal social systems (daughters remain with mothers) have remarkably low levels of mitochondrial DNA diversity. Non-heritable matriline-level demography could reduce genetic diversity but the required conditions are not consistent with the natural histories of the matrilineal whales. The diversity of nuclear microsatellites is little reduced in the matrilineal whales arguing against bottlenecks. Selective sweeps of the mitochondrial genome are feasible causes but it is not clear why these only occurred in the matrilineal species. Cultural hitchhiking (cultural selection reducing diversity at neutral genetic loci transmitted in parallel to the culture) is supported in sperm whales which possess suitable matrilineal socio-cultural groups (coda clans). Killer whales are delineated into ecotypes which likely originated culturally. Culture, bottlenecks and selection, as well as their interactions, operating between- or within-ecotypes, may have reduced their mitochondrial diversity. The societies, cultures and genetics of false killer and two pilot whale species are insufficiently known to assess drivers of low mitochondrial diversity.


Subject(s)
Genetic Variation/genetics , Whales/genetics , Animals , DNA, Mitochondrial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...