Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Bioprocess Biosyst Eng ; 47(9): 1555-1570, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38916653

ABSTRACT

Biosurfactants (BSFs) are molecules produced by microorganisms from various carbon sources, with applications in bioremediation and petroleum recovery. However, the production cost limits large-scale applications. This study optimized BSFs production by Bacillus velezensis (strain MO13) using residual glycerin as a substrate. The spherical quadratic central composite design (CCD) model was used to standardize carbon source concentration (30 g/L), temperature (34 °C), pH (7.2), stirring (239 rpm), and aeration (0.775 vvm) in a 5-L bioreactor. Maximum BSFs production reached 1527.6 mg/L of surfactins and 176.88 mg/L of iturins, a threefold increase through optimization. Microbial development, substrate consumption, concentration of BSFs, and surface tension were also evaluated on the bioprocess dynamics. Mass spectrometry Q-TOF-MS identified five surfactin and two iturin isoforms produced by B. velezensis MO13. This study demonstrates significant progress on BSF production using industrial waste as a microbial substrate, surpassing reported concentrations in the literature.


Subject(s)
Bacillus , Glycerol , Lipopeptides , Surface-Active Agents , Bacillus/metabolism , Surface-Active Agents/metabolism , Surface-Active Agents/chemistry , Lipopeptides/biosynthesis , Lipopeptides/chemistry , Glycerol/metabolism , Bioreactors
2.
J Appl Microbiol ; 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36626785

ABSTRACT

AIMS: To evaluate the antimicrobial activity and to determine the pharmacodynamic characteristics of three 8-hydroxyquinoline derivatives (8-HQs) against Pythium insidiosum, the causative agent of pythiosis. METHODS AND RESULTS: Antimicrobial activity was tested by broth microdilution and MTT assays. The antimicrobial mode of action was investigated using sorbitol protection assay, ergosterol binding assay, and scanning electron microscopy. Clioquinol, PH151, and PH153 were active against all isolates, with MIC values ranging from 0.25 to 2 µg ml-1. They also showed a time- and dose-dependent antimicrobial effect, damaging the P. insidiosum cell wall. CONCLUSIONS: Together, these results reinforce the potential of 8-HQs for developing new drugs to treat pythiosis.

3.
Genet Mol Biol ; 44(3): e20200390, 2021.
Article in English | MEDLINE | ID: mdl-34352067

ABSTRACT

Cryptococcus neoformans and Cryptococcus gattii are the etiological agents of cryptococcosis, a high mortality disease. The development of such disease depends on the interaction of fungal cells with macrophages, in which they can reside and replicate. In order to dissect the molecular mechanisms by which cryptococcal cells modulate the activity of macrophages, a genome-scale comparative analysis of transcriptional changes in macrophages exposed to Cryptococcus spp. was conducted. Altered expression of nearly 40 genes was detected in macrophages exposed to cryptococcal cells. The major processes were associated with the mTOR pathway, whose associated genes exhibited decreased expression in macrophages incubated with cryptococcal cells. Phosphorylation of p70S6K and GSK-3ß was also decreased in macrophages incubated with fungal cells. In this way, Cryptococci presence could drive the modulation of mTOR pathway in macrophages possibly to increase the survival of the pathogen.

4.
Arch Pharm (Weinheim) ; 353(10): e2000133, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32638423

ABSTRACT

Cryptococcosis, caused by Cryptococcus spp., is an invasive fungal infection of the central nervous system, associated with high mortality, affecting mainly immunocompromised patients. Due to the development of resistance to the current therapy, there is an urgent need for less toxic and more effective antifungal agents. In this study, we describe the antifungal activity against Cryptococcus spp. of an aqueous seed extract from Allamanda polyantha (ASEAP) and two iridoids, plumieride and plumieridine, isolated from this extract with an antifungal activity. The capsule formation and the morphological alterations were evaluated using fluorescent microscopy. The cytotoxic activity was also investigated. The minimal inhibitory concentration (MIC) values of ASEAP for Cryptococcus gattii were 70 and 36 µg/ml (for the R265 and R272 strains, respectively) and 563 µg/ml for Cryptococcus neoformans H99. ASEAP inhibited C. neoformans H99 capsule formation, an important virulence factor, and decreased the cell body size for both the C. gattii strains. H99 cells also presented morphological alterations, with defects in bud detachment and nuclear fragmentation. Plumieride and plumieridine presented higher MIC values than ASEAP, indicating that other compounds might contribute to antifungal activity and/or that combination of the compounds results in a higher antifungal activity.


Subject(s)
Antifungal Agents/pharmacology , Apocynaceae/chemistry , Cryptococcus neoformans/drug effects , Plant Extracts/pharmacology , Antifungal Agents/isolation & purification , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Iridoids/isolation & purification , Iridoids/pharmacology , Microbial Sensitivity Tests , Plant Extracts/chemistry , Seeds
5.
Fungal Biol ; 124(7): 629-638, 2020 07.
Article in English | MEDLINE | ID: mdl-32540186

ABSTRACT

In nature, microorganisms often exhibit competitive behavior for nutrients and limited space, allowing them to alter the virulence determinants of pathogens. The human pathogenic yeast Cryptococcus neoformans can be found organized in biofilms, a complex community composed of an extracellular matrix which confers protection against predation. The aim of this study was to evaluate and characterize antagonistic interactions between two cohabiting microorganisms: C. neoformans and the bacteria Serratia marcescens. The interaction of S. marcescens with C. neoformans expressed a negative effect on biofilm formation, polysaccharide capsule, production of urease, and melanization of the yeast. These findings evidence that competition in mixed communities can result in dominance by one species, with direct impact on the physiological modulation of virulence determinants. Such an approach is key for understating the response of communities to the presence of competitors and, ultimately, rationally designing communities to prevent and treat certain diseases.


Subject(s)
Biofilms , Cryptococcus neoformans , Microbial Interactions , Serratia marcescens , Cryptococcus neoformans/pathogenicity , Cryptococcus neoformans/physiology , Microbial Interactions/physiology , Serratia marcescens/pathogenicity , Serratia marcescens/physiology , Virulence Factors/metabolism
6.
Sci Rep ; 10(1): 2362, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32047210

ABSTRACT

Phenotypic heterogeneity is an important trait for the development and survival of many microorganisms including the yeast Cryptococcus spp., a deadly pathogen spread worldwide. Here, we have applied scanning electron microscopy (SEM) to define four Cryptococcus spp. capsule morphotypes, namely Regular, Spiky, Bald, and Phantom. These morphotypes were persistently observed in varying proportions among yeast isolates. To assess the distribution of such morphotypes we implemented an automated pipeline capable of (1) identifying potentially cell-associated objects in the SEM-derived images; (2) computing object-level features; and (3) classifying these objects into their corresponding classes. The machine learning approach used a Random Forest (RF) classifier whose overall accuracy reached 85% on the test dataset, with per-class specificity above 90%, and sensitivity between 66 and 94%. Additionally, the RF model indicates that structural and texture features, e.g., object area, eccentricity, and contrast, are most relevant for classification. The RF results agree with the observed variation in these features, consistently also with visual inspection of SEM images. Finally, our work introduces morphological variants of Cryptococcus spp. capsule. These can be promptly identified and characterized using computational models so that future work may unveil morphological associations with yeast virulence.


Subject(s)
Anatomic Variation , Cryptococcus/ultrastructure , Fungal Capsules/ultrastructure , Machine Learning , Microscopy, Electron, Scanning/methods , Cryptococcus/genetics , Phenotype
7.
Sci Rep ; 10(1): 1340, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992807

ABSTRACT

Microorganisms represent the most abundant biomass on the planet; however, because of several cultivation technique limitations, most of this genetic patrimony has been inaccessible. Due to the advent of metagenomic methodologies, such limitations have been overcome. Prevailing over these limitations enabled the genetic pool of non-cultivable microorganisms to be exploited for improvements in the development of biotechnological products. By utilising a metagenomic approach, we identified a new gene related to biosurfactant production and hydrocarbon degradation. Environmental DNA was extracted from soil samples collected on the banks of the Jundiaí River (Natal, Brazil), and a metagenomic library was constructed. Functional screening identified the clone 3C6, which was positive for the biosurfactant protein and revealed an open reading frame (ORF) with high similarity to sequences encoding a hypothetical protein from species of the family Halobacteriaceae. This protein was purified and exhibited biosurfactant activity. Due to these properties, this protein was named metagenomic biosurfactant protein 1 (MBSP1). In addition, E. coli RosettaTM (DE3) strain cells transformed with the MBSP1 clone showed an increase in aliphatic hydrocarbon degradation. In this study, we described a single gene encoding a protein with marked tensoactive properties that can be produced in a host cell, such as Escherichia coli, without substrate dependence. Furthermore, MBSP1 has been demonstrated as the first protein with these characteristics described in the Archaea or Bacteria domains.


Subject(s)
Bacterial Proteins/metabolism , Halobacteriaceae/metabolism , Lipid Metabolism , Oils/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Halobacteriaceae/classification , Halobacteriaceae/genetics , Hydrocarbons/metabolism , Open Reading Frames , Phylogeny , Protein Conformation , Structure-Activity Relationship , Surface-Active Agents/metabolism
8.
Biomolecules ; 9(12)2019 12 05.
Article in English | MEDLINE | ID: mdl-31817559

ABSTRACT

Cryptococcus neoformans is an encapsulated yeast responsible for more than 180,000 deaths per year. The standard therapeutic approach against cryptococcosis is a combination of amphotericin B with flucytosine. In countries where cryptococcosis is most prevalent, 5-fluorocytosine is rarely available, and amphotericin B requires intravenous administration. C. neoformans biofilm formation is related to increased drug resistance, which is an important outcome for hospitalized patients. Here, we describe new molecules with anti-cryptococcal activity. A collection of 66 semisynthetic derivatives of ursolic acid and betulinic acid was tested against mature biofilms of C. neoformans at 25 µM. Out of these, eight derivatives including terpenes, benzazoles, flavonoids, and quinolines were able to cause damage and eradicate mature biofilms. Four terpene compounds demonstrated significative growth inhibition of C. neoformans. Our study identified a pentacyclic triterpenoid derived from betulinic acid (LAFIS13) as a potential drug for anti-cryptococcal treatment. This compound appears to be highly active with low toxicity at minimal inhibitory concentration and capable of biofilm eradication.


Subject(s)
Biofilms/drug effects , Cryptococcosis/prevention & control , Cryptococcus neoformans/physiology , Pentacyclic Triterpenes/pharmacology , Cell Line , Cryptococcosis/microbiology , Cryptococcus neoformans/drug effects , Drug Resistance, Fungal/drug effects , Humans , Microbial Sensitivity Tests , Molecular Structure , Pentacyclic Triterpenes/chemistry , Triterpenes/chemistry , Betulinic Acid , Ursolic Acid
9.
J Proteome Res ; 18(11): 3885-3895, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31502459

ABSTRACT

Cryptococcus gattii is the causative agent of cryptococcosis infection that can lead to pneumonia and meningitis in immunocompetent individuals. The molecular basis of the pathogenic process and impact on the host biochemistry are poorly understood and remain largely unknown. In this context, a comparative proteomic analysis was performed to investigate the response of the host during an infection caused by C. gattii. Lungs of experimentally infected rats were analyzed by shotgun proteomics to identify differentially expressed proteins induced by C. gattii clinical strain. The proteomic results were characterized using bioinformatic tools, and subsequently, the molecular findings were validated in cell culture and lungs of infected animals. A dramatic change was observed in protein expression triggered by C. gattii infection, especially related to energy metabolism. The main pathways affected include aerobic glycolysis cycle, TCA cycle, and pyrimidine and purine metabolism. Analyses in human lung fibroblast cells confirmed the altered metabolic status found in infected lungs. Thus, it is clear that C. gattii infection triggers important changes in energy metabolism leading to the activation of glycolysis and lactate accumulation in lung cells, culminating in a cancerlike metabolic status known as the Warburg effect. The results presented here provide important insights to better understand C. gattii molecular pathogenesis.


Subject(s)
Cryptococcosis/metabolism , Energy Metabolism/physiology , Glycolysis/physiology , Lung/metabolism , Proteome/metabolism , Proteomics/methods , Animals , Cell Line , Cryptococcosis/microbiology , Cryptococcus gattii/physiology , Disease Models, Animal , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/microbiology , Host-Pathogen Interactions , Humans , Lung/microbiology , Male , Rats, Wistar
10.
mSphere ; 4(2)2019 03 20.
Article in English | MEDLINE | ID: mdl-30894430

ABSTRACT

Regular protocols for the isolation of fungal extracellular vesicles (EVs) are time-consuming, hard to reproduce, and produce low yields. In an attempt to improve the protocols used for EV isolation, we explored a model of vesicle production after growth of Cryptococcus gattii and Cryptococcus neoformans on solid media. Nanoparticle tracking analysis in combination with transmission electron microscopy revealed that C. gattii and C. neoformans produced EVs in solid media. The properties of cryptococcal vesicles varied according to the culture medium used and the EV-producing species. EV detection was reproduced with an acapsular mutant of C. neoformans, as well as with isolates of Candida albicans, Histoplasma capsulatum, and Saccharomyces cerevisiae Cryptococcal EVs produced in solid media were biologically active and contained regular vesicular components, including the major polysaccharide glucuronoxylomannan (GXM) and RNA. Since the protocol had higher yields and was much faster than the regular methods used for the isolation of fungal EVs, we asked if it would be applicable to address fundamental questions related to cryptococcal secretion. On the basis that polysaccharide export in Cryptococcus requires highly organized membrane traffic culminating with EV release, we analyzed the participation of a putative scramblase (Aim25; CNBG_3981) in EV-mediated GXM export and capsule formation in C. gattii EVs from a C. gattiiaim25Δ strain differed from those obtained from wild-type (WT) cells in physical-chemical properties and cargo. In a model of surface coating of an acapsular cryptococcal strain with vesicular GXM, EVs obtained from the aim25Δ mutant were more efficiently used as a source of capsular polysaccharides. Lack of the Aim25 scramblase resulted in disorganized membranes and increased capsular dimensions. These results associate the description of a novel protocol for the isolation of fungal EVs with the identification of a previously unknown regulator of polysaccharide release.IMPORTANCE Extracellular vesicles (EVs) are fundamental components of the physiology of cells from all kingdoms. In pathogenic fungi, they participate in important mechanisms of transfer of antifungal resistance and virulence, as well as in immune stimulation and prion transmission. However, studies on the functions of fungal EVs are still limited by the lack of efficient methods for isolation of these compartments. In this study, we developed an alternative protocol for isolation of fungal EVs and demonstrated an application of this new methodology in the study of the physiology of the fungal pathogen Cryptococcus gattii Our results describe a fast and reliable method for the study of fungal EVs and reveal the participation of scramblase, a phospholipid-translocating enzyme, in secretory processes of C. gattii.


Subject(s)
Cryptococcus gattii/enzymology , Extracellular Vesicles/chemistry , Fungal Polysaccharides/chemistry , Fungal Proteins/genetics , Mycology/methods , Biological Transport , Cryptococcus gattii/genetics , Cryptococcus neoformans/cytology , Cryptococcus neoformans/genetics , Extracellular Vesicles/ultrastructure , Microscopy, Electron, Transmission , Polysaccharides/genetics , Polysaccharides/isolation & purification
11.
Folia Microbiol (Praha) ; 64(4): 509-519, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30734157

ABSTRACT

Dermatophytes are the etiological agents of cutaneous mycoses, including the prevalent nail infections and athlete's foot. Candida spp. are opportunistic and emerging pathogens, causing superficial to deeper infections related to high mortality rates. As a consequence of prolonged application of antifungal drugs, the treatment failures combined with multidrug-resistance have become a serious problem in clinical practice. Therefore, novel alternative antifungals are required urgently. δ-Lactones have attracted great interest owing to their wide range of biological activity. This article describes the antifungal activity of synthetic δ-lactones against yeasts of the genus Candida spp. and dermatophytes (through the broth microdilution method), discusses the pathways by which the compounds exert this action (toward the fungal cell wall and/or membrane), and evaluates the toxicity to human leukocytes and chorioallantoic membrane (by the hen's egg test-chorioallantoic membrane). Two of the compounds in the series presented broader spectrum of antifungal activity, including against resistant fungal species. The mechanism of action was related to damage in the fungal cell wall and membrane, with specific target action dependent on the type of substituent present in the δ-lactone structure. The damage in the fungal cell was corroborated by electron microscopy images, which evidenced lysed and completely altered cells after in vitro treatment with δ-lactones. Toxicity was dose dependent for the viability of human leukocytes, but none of the compounds was mutagenic, genotoxic, or membrane irritant when evaluated at higher concentrations than MIC. In this way, δ-lactones constitute a class with excellent perspectives regarding their potential applications as antifungals.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Lactones/chemistry , Lactones/pharmacology , Antifungal Agents/toxicity , Arthrodermataceae/drug effects , Candida/drug effects , Cell Wall/drug effects , Drug Development , Humans , Lactones/toxicity , Leukocytes/drug effects , Microbial Sensitivity Tests , Structure-Activity Relationship
12.
FEMS Yeast Res ; 19(1)2019 01 01.
Article in English | MEDLINE | ID: mdl-30418573

ABSTRACT

Melanin formation is a promising target for antifungal development. We screened a collection of 727 compounds that were previously approved for clinical use in humans for inhibition of pigmentation in Cryptococcus gattii, a lethal fungal pathogen that causes damage to both immunocompetent and immunocompromised hosts. The pyrimidine analogues flucytosine (5-fluorocytosine [5-FC]), 5-fluorouracil (5-FU) and carmofur were identified as efficient inhibitors of pigmentation in the C. gattii model. Since melanin synthesis is enzymatically catalyzed by laccase in Cryptococcus, we investigated whether inhibition of pigmentation by the pyrimidine analogues was laccase-mediated. Enzyme activity and expression of LAC genes were not involved in the effects of the pyrimidine analogues, suggesting alternative cellular targets for inhibition of pigmentation. To address this hypothesis, we screened a collection of approximately 8000 mutants of C. gattii that were produced by insertional mutation after incubation with Agrobacterium tumefaciens and identified a gene product required for the anti-pigmentation activity of 5-FC as a beta-DNA polymerase. Reduced expression of this gene affected capsule formation and urease activity, suggesting essential roles in the cryptococcal physiology. These results demonstrate a previously unknown antifungal activity of 5-FC and reveal a promising target for the development of novel antifungals.


Subject(s)
Antifungal Agents/pharmacology , Cryptococcus gattii/drug effects , Melanins/antagonists & inhibitors , Melanins/biosynthesis , Cryptococcus gattii/genetics , DNA Mutational Analysis , Drug Evaluation, Preclinical , Flucytosine/pharmacology , Fluorouracil/analogs & derivatives , Fluorouracil/pharmacology , Genetic Testing , Mutagenesis, Insertional
13.
J Pharm Pharmacol ; 70(9): 1216-1227, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29956331

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the antifungal, antichemotactic and antioxidant activities of Schinus lentiscifolius essential oil, as well as its combined effect with terbinafine and ciclopirox, against dermatophytes. METHODS: Essential oil was analysed by GC-MS. The antifungal activity and the mechanism of action were determined by broth microdilution, sorbitol and ergosterol assays, as well as scanning electron microscopy. The checkerboard method was used for evaluating the interactions with commercial antifungal agents. The antioxidant and antichemotactic activities were measured using the DPPH and the modified Boyden chamber methods, respectively. KEY FINDINGS: Chemical analysis revealed the presence of 33 compounds, the primary ones being γ-eudesmol (12.8%) and elemol (10.5%). The oil exhibited 97.4% of antichemotactic activity and 37.9% of antioxidant activity. Antifungal screening showed effect against dermatophytes with minimum inhibitory concentration values of 125 and 250 µg/ml. Regarding the mechanisms of action, the assays showed that the oil can act on the fungal cell wall and membrane. Synergistic interactions were observed using the combination with antifungals, primarily terbinafine. CONCLUSIONS: Schinus lentiscifolius essential oil acted as a chemosensitizer of the fungal cell to the drug, resulting in an improvement in the antifungal effect. Therefore, this combination can be considered as an alternative for the topical treatment of dermatophytosis.


Subject(s)
Anacardiaceae , Antifungal Agents/administration & dosage , Arthrodermataceae/drug effects , Chorioallantoic Membrane/drug effects , Ciclopirox/administration & dosage , Terbinafine/administration & dosage , Animals , Antifungal Agents/isolation & purification , Arthrodermataceae/physiology , Chickens , Chorioallantoic Membrane/physiology , Dose-Response Relationship, Drug , Drug Synergism , Female , Humans , Male , Microbial Sensitivity Tests/methods , Swine
14.
Microb Biotechnol ; 11(4): 759-769, 2018 07.
Article in English | MEDLINE | ID: mdl-29761667

ABSTRACT

Biosurfactant-producing bacteria were isolated from samples collected in areas contaminated with crude oil. The isolates were screened for biosurfactant production using qualitative drop-collapse test, oil-spreading and emulsification assays, and measurement of their tensoactive properties. Five isolates tested positive for in the screening experiments and displayed decrease in the surface tension below 30 mN m-1 . The biosurfactants produced by these isolates were further investigated and their molecular identification revealed that they are bacteria related to the Bacillus genus. Additionally, the biosurfactants produced were chemically characterized via UHPLC-HRMS experiments, indicating the production of surfactin homologues, including a new class of these molecules.


Subject(s)
Bacillus/isolation & purification , Bacillus/metabolism , Lipopeptides/metabolism , Peptides, Cyclic/metabolism , Petroleum/analysis , Soil Microbiology , Soil Pollutants/metabolism , Surface-Active Agents/metabolism , Bacillus/classification , Bacillus/genetics , Chromatography, High Pressure Liquid , Environmental Pollution , Mass Spectrometry , Phylogeny , Soil Pollutants/analysis , Surface Tension , Surface-Active Agents/chemistry
15.
Front Microbiol ; 9: 132, 2018.
Article in English | MEDLINE | ID: mdl-29467743

ABSTRACT

The Cryptococcus gattii species complex harbors the main etiological agents of cryptococcosis in immunocompetent patients. C. gattii molecular type VGII predominates in the north and northeastern regions of Brazil, leading to high morbidity and mortality rates. C. gattii VGII isolates have a strong clinical relevance and phenotypic variations. These phenotypic variations among C. gattii species complex isolates suggest that some strains are more virulent than others, but little information is available related to the pathogenic properties of those strains. In this study, we analyzed some virulence determinants of C. gattii VGII strains (CG01, CG02, and CG03) isolated from patients in the state of Piauí, Brazil. The C. gattii R265 VGIIa strain, which was isolated from the Vancouver outbreak, differed from C. gattii CG01, CG02 and CG03 isolates (also classified as VGII) when analyzed the capsular dimensions, melanin production, urease activity, as well as the glucuronoxylomannan (GXM) secretion. Those differences directly reflected in their virulence potential. In addition, CG02 displayed higher virulence compared to R265 (VGIIa) strain in a cryptococcal murine model of infection. Lastly, we examined the genotypic diversity of these strains through Multilocus Sequence Type (MLST) and one new subtype was described for the CG02 isolate. This study confirms the presence and the phenotypic and genotypic diversity of highly virulent strains in the Northeast region of Brazil.

16.
Cell Microbiol ; 20(2)2018 02.
Article in English | MEDLINE | ID: mdl-29113016

ABSTRACT

Cryptococcus neoformans is a basidiomycetous yeast and the cause of cryptococcosis in immunocompromised individuals. The most severe form of the disease is meningoencephalitis, which is one of the leading causes of death in HIV/AIDS patients. In order to access the central nervous system, C. neoformans relies on the activity of certain virulence factors such as urease, which allows transmigration through the blood-brain barrier. In this study, we demonstrate that the calcium transporter Pmc1 enables C. neoformans to penetrate the central nervous system, because the pmc1 null mutant failed to infect and to survive within the brain parenchyma in a murine systemic infection model. To investigate potential alterations in transmigration pathways in these mutants, global expression profiling of the pmc1 mutant strain was undertaken, and genes associated with urease, the Ca2+ -calcineurin pathway, and capsule assembly were identified as being differentially expressed. Also, a decrease in urease activity was observed in the calcium transporter null mutants. Finally, we demonstrate that the transcription factor Crz1 regulates urease activity and that the Ca2+ -calcineurin signalling pathway positively controls the transcription of calcium transporter genes and factors related to transmigration.


Subject(s)
Central Nervous System/microbiology , Cryptococcus neoformans/metabolism , Cryptococcus neoformans/pathogenicity , Fungal Proteins/metabolism , Plasma Membrane Calcium-Transporting ATPases/metabolism , Animals , Biological Transport/physiology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/microbiology , Brain/metabolism , Brain/microbiology , Calcineurin/metabolism , Calcium/metabolism , Cell Line , Cryptococcosis/metabolism , Cryptococcosis/microbiology , Disease Models, Animal , Female , Human Umbilical Vein Endothelial Cells , Humans , Meningoencephalitis/metabolism , Meningoencephalitis/microbiology , Mice , Mice, Inbred BALB C , Vacuoles/metabolism , Vacuoles/microbiology , Virulence/physiology , Virulence Factors/metabolism
17.
Front Microbiol ; 8: 1626, 2017.
Article in English | MEDLINE | ID: mdl-28883816

ABSTRACT

Cryptococcus gattii is a basidiomycetous yeast that can be found in the environment and is one of the agents of cryptococcosis, a life-threatening disease. During its life cycle, cryptococcal cells take hold inside environmental predators such as amoebae. Despite their evolutionary distance, macrophages and amoebae share conserved similar steps of phagocytosis and microbial killing. To evaluate whether amoebae also share other antifungal strategies developed by macrophages, we investigated nutritional immunity against cryptococcal cells. We focused on zinc homeostasis modulation in Acanthamoeba castellanii infected with C. gattii. The intracellular proliferation rate (IPR) in amoebae was determined using C. gattii R265 and mutants for the ZIP1 gene, which displays defects of growth in zinc-limiting conditions. We detected a reduced IPR in cells lacking the ZIP1 gene compared to wild-type strains, suggesting that amoebae produce a low zinc environment to engulfed cells. Furthermore, flow cytometry analysis employing the zinc probe Zinpyr-1 confirmed the reduced concentration of zinc in cryptococcal-infected amoebae. qRT-PCR analysis of zinc transporter-coding genes suggests that zinc export by members of the ZnT family would be involved in the reduced intracellular zinc concentration. These results indicate that amoebae may use nutritional immunity to reduce fungal cell proliferation by reducing zinc availability for the pathogen.

18.
Front Microbiol ; 8: 1063, 2017.
Article in English | MEDLINE | ID: mdl-28659888

ABSTRACT

The emergence of new microbial pathogens can result in destructive outbreaks, since their hosts have limited resistance and pathogens may be excessively aggressive. Described as the major ecological incident of the twentieth century, Dutch elm disease, caused by ascomycete fungi from the Ophiostoma genus, has caused a significant decline in elm tree populations (Ulmus sp.) in North America and Europe. Genome sequencing of the two main causative agents of Dutch elm disease (Ophiostoma ulmi and Ophiostoma novo-ulmi), along with closely related species with different lifestyles, allows for unique comparisons to be made to identify how pathogens and virulence determinants have emerged. Among several established virulence determinants, secondary metabolites (SMs) have been suggested to play significant roles during phytopathogen infection. Interestingly, the secondary metabolism of Dutch elm pathogens remains almost unexplored, and little is known about how SM biosynthetic genes are organized in these species. To better understand the metabolic potential of O. ulmi and O. novo-ulmi, we performed a deep survey and description of SM biosynthetic gene clusters (BGCs) in these species and assessed their conservation among eight species from the Ophiostomataceae family. Among 19 identified BGCs, a fujikurin-like gene cluster (OpPKS8) was unique to Dutch elm pathogens. Phylogenetic analysis revealed that orthologs for this gene cluster are widespread among phytopathogens and plant-associated fungi, suggesting that OpPKS8 may have been horizontally acquired by the Ophiostoma genus. Moreover, the detailed identification of several BGCs paves the way for future in-depth research and supports the potential impact of secondary metabolism on Ophiostoma genus' lifestyle.

19.
Front Microbiol ; 8: 535, 2017.
Article in English | MEDLINE | ID: mdl-28400768

ABSTRACT

Cryptococcus neoformans is the most lethal pathogen of the central nervous system. The gold standard treatment of cryptococcosis, a combination of amphotericin B with 5-fluorocytosine, involves broad toxicity, high costs, low efficacy, and limited worldwide availability. Although the need for new antifungals is clear, drug research and development (R&D) is costly and time-consuming. Thus, drug repurposing is an alternative to R&D and to the currently available tools for treating fungal diseases. Here we screened a collection of compounds approved for use in humans seeking for those with anti-cryptococcal activity. We found that benzimidazoles consist of a broad class of chemicals inhibiting C. neoformans growth. Mebendazole and fenbendazole were the most efficient antifungals showing in vitro fungicidal activity. Since previous studies showed that mebendazole reaches the brain in biologically active concentrations, this compound was selected for further studies. Mebendazole showed antifungal activity against phagocytized C. neoformans, affected cryptococcal biofilms profoundly and caused marked morphological alterations in C. neoformans, including reduction of capsular dimensions. Amphotericin B and mebendazole had additive anti-cryptococcal effects. Mebendazole was also active against the C. neoformans sibling species, C. gattii. To further characterize the effects of the drug a random C. gattii mutant library was screened and indicated that the antifungal activity of mebendazole requires previously unknown cryptococcal targets. Our results indicate that mebendazole is as a promising prototype for the future development of anti-cryptococcal drugs.

20.
Front Microbiol ; 8: 2534, 2017.
Article in English | MEDLINE | ID: mdl-29312225

ABSTRACT

Microbial biofilms are highly structured and dynamic communities in which phenotypic diversification allows microorganisms to adapt to different environments under distinct conditions. The environmentally ubiquitous pathogen Cryptococcus neoformans colonizes many niches of the human body and implanted medical devices in the form of biofilms, an important virulence factor. A new approach was used to characterize the underlying geometrical distribution of C. neoformans cells during the adhesion stage of biofilm formation. Geometrical aspects of adhered cells were calculated from the Delaunay triangulation and Voronoi diagram obtained from scanning electron microscopy images (SEM). A correlation between increased biofilm formation and higher ordering of the underlying cell distribution was found. Mature biofilm aggregates were analyzed by applying an adapted protocol developed for ultrastructure visualization of cryptococcal cells by SEM. Flower-like clusters consisting of cells embedded in a dense layer of extracellular matrix were observed as well as distinct levels of spatial organization: adhered cells, clusters of cells and community of clusters. The results add insights into yeast motility during the dispersion stage of biofilm formation. This study highlights the importance of cellular organization for biofilm growth and presents a novel application of the geometrical method of analysis.

SELECTION OF CITATIONS
SEARCH DETAIL