Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13057, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844650

ABSTRACT

Combined action observation and motor imagery (AOMI) facilitates corticospinal excitability (CSE) and may potentially induce plastic-like changes in the brain in a similar manner to physical practice. This study used transcranial magnetic stimulation (TMS) to explore changes in CSE for AOMI of coordinative lower-limb actions. Twenty-four healthy adults completed two baseline (BLH, BLNH) and three AOMI conditions, where they observed a knee extension while simultaneously imagining the same action (AOMICONG), plantarflexion (AOMICOOR-FUNC), or dorsiflexion (AOMICOOR-MOVE). Motor evoked potential (MEP) amplitudes were recorded as a marker of CSE for all conditions from two knee extensor, one dorsi flexor, and two plantar flexor muscles following TMS to the right leg representation of the left primary motor cortex. A main effect for experimental condition was reported for all three muscle groups. MEP amplitudes were significantly greater in the AOMICONG condition compared to the BLNH condition (p = .04) for the knee extensors, AOMICOOR-FUNC condition compared to the BLH condition (p = .03) for the plantar flexors, and AOMICOOR-MOVE condition compared to the two baseline conditions for the dorsi flexors (ps ≤ .01). The study findings support the notion that changes in CSE are driven by the imagined actions during coordinative AOMI.


Subject(s)
Evoked Potentials, Motor , Imagination , Lower Extremity , Motor Cortex , Muscle, Skeletal , Pyramidal Tracts , Transcranial Magnetic Stimulation , Humans , Male , Female , Evoked Potentials, Motor/physiology , Adult , Motor Cortex/physiology , Imagination/physiology , Young Adult , Pyramidal Tracts/physiology , Lower Extremity/physiology , Muscle, Skeletal/physiology , Electromyography
2.
Neurosci Biobehav Rev ; 143: 104911, 2022 12.
Article in English | MEDLINE | ID: mdl-36349570

ABSTRACT

Motor simulation interventions involving motor imagery (MI) and action observation (AO) have received considerable interest in the behavioral sciences. A growing body of research has focused on using AO and MI simultaneously, termed 'combined action observation and motor imagery' (AOMI). The current paper includes two meta-analyses that quantify changes in corticospinal excitability and motor skill performance for AOMI compared to AO, MI and control conditions. Specifically, the first meta-analysis collated and synthesized existing motor evoked potential (MEP) amplitude data from transcranial magnetic stimulation studies and the second meta-analysis collated and synthesized existing movement outcome data from behavioral studies. AOMI had a positive effect compared to control and AO but not MI conditions for both MEP amplitudes and movement outcomes. No methodological factors moderated the effects of AOMI, indicating a robust effect of AOMI across the two outcome variables. The results of the meta-analyses are discussed in relation to existing literature on motor simulation and skill acquisition, before providing viable directions for future research on this topic.


Subject(s)
Imagination , Muscle, Skeletal , Humans , Imagination/physiology , Muscle, Skeletal/physiology , Evoked Potentials, Motor/physiology , Transcranial Magnetic Stimulation , Movement , Pyramidal Tracts/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...