ABSTRACT
There is an urgent need to understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-host interactions involved in virus spread and pathogenesis, which might contribute to the identification of new therapeutic targets. In this study, we investigated the presence of SARS-CoV-2 in postmortem lung, kidney, and liver samples of patients who died with coronavirus disease (COVID-19) and its relationship with host factors involved in virus spread and pathogenesis, using microscopy-based methods. The cases analyzed showed advanced stages of diffuse acute alveolar damage and fibrosis. We identified the SARS-CoV-2 nucleocapsid (NC) in a variety of cells, colocalizing with mitochondrial proteins, lipid droplets (LDs), and key host proteins that have been implicated in inflammation, tissue repair, and the SARS-CoV-2 life cycle (vimentin, NLRP3, fibronectin, LC3B, DDX3X, and PPARγ), pointing to vimentin and LDs as platforms involved not only in the viral life cycle but also in inflammation and pathogenesis. SARS-CoV-2 isolated from a patient´s nasal swab was grown in cell culture and used to infect hamsters. Target cells identified in human tissue samples included lung epithelial and endothelial cells; lipogenic fibroblast-like cells (FLCs) showing features of lipofibroblasts such as activated PPARγ signaling and LDs; lung FLCs expressing fibronectin and vimentin and macrophages, both with evidence of NLRP3- and IL1ß-induced responses; regulatory cells expressing immune-checkpoint proteins involved in lung repair responses and contributing to inflammatory responses in the lung; CD34+ liver endothelial cells and hepatocytes expressing vimentin; renal interstitial cells; and the juxtaglomerular apparatus. This suggests that SARS-CoV-2 may directly interfere with critical lung, renal, and liver functions involved in COVID-19-pathogenesis.
Subject(s)
COVID-19 , Humans , COVID-19/pathology , Fibronectins , Vimentin , SARS-CoV-2 , Endothelial Cells , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR gamma , Lung , Inflammation/pathology , Kidney , LiverABSTRACT
INTRODUCTION: More than 180 million people have been infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and more than 4 million coronavirus disease-2019 (COVID-19) patients have died in 1.5 years of the pandemic. A novel therapeutic vaccine (NASVAC) has shown to be safe and to have immunomodulating and antiviral properties against chronic hepatitis B (CHB). MATERIALS AND METHODS: A phase I/II, open-label controlled and randomized clinical trial of NASVAC as a postexposure prophylaxis treatment was designed with the primary aim of assessing the local and systemic immunomodulatory effect of NASVAC in a cohort of suspected and SARS-CoV-2 risk-contact patients. A total of 46 patients, of both sexes, 60 years or older, presenting with symptoms of COVID-19 were enrolled in the study. Patients received NASVAC (100 µg per Ag per dose) via intranasal at days 1, 7, and 14 and sublingual, daily for 14 days. RESULTS AND DISCUSSION: The present study detected an increased expression of toll-like receptors (TLR)-related genes in nasopharyngeal tonsils, a relevant property considering these are surrogate markers of SARS protection in the mice model of lethal infection. The HLA-class II increased their expression in peripheral blood mononuclear cell's (PBMC's) monocytes and lymphocytes, which is an attractive property taking into account the functional impairment of innate immune cells from the periphery of COVID-19-infected subjects. NASVAC was safe and well tolerated by the patients with acute respiratory infections and evidenced a preliminary reduction in the number of days with symptoms that needs to be confirmed in larger studies. CONCLUSIONS: Our data justify the use of NASVAC as preemptive therapy or pre-/postexposure prophylaxis of SARS-CoV-2 and acute respiratory infections in general. The use of NASVAC or their active principles has potential as immunomodulatory prophylactic therapies in other antiviral settings like dengue as well as in malignancies like hepatocellular carcinoma where these markers have shown relation to disease progression. HOW TO CITE THIS ARTICLE: Fleites YA, Aguiar J, Cinza Z, et al. HeberNasvac, a Therapeutic Vaccine for Chronic Hepatitis B, Stimulates Local and Systemic Markers of Innate Immunity: Potential Use in SARS-CoV-2 Postexposure Prophylaxis. Euroasian J Hepato-Gastroenterol 2021;11(2):59-70.
Subject(s)
Humans , Nose Neoplasms , Paranasal Sinus Neoplasms , Radiotherapy , National Health Programs , CubaSubject(s)
Humans , Oropharyngeal Neoplasms , Hypopharyngeal Neoplasms , Radiotherapy , National Health Programs , CubaSubject(s)
Female , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Radiotherapy , National Health Programs , CubaABSTRACT
Dengue is one of the most important diseases transmitted by mosquitoes. Dengvaxia®, a vaccine registered in several countries, cannot be administered to non-immune individuals and children younger than 9 years old, due to safety reasons. There are two vaccine candidates in phase 3 efficacy trials, but their registration date is completely unknown at this moment. So, the development of new vaccines or vaccine strategies continues to be a priority for the WHO. This work reviews some complementary prime-boost immunization studies against important human pathogens. Additionally, it reviews the results obtained using this regimen of immunization against dengue virus as a potential alternative approach for finding a safe and efficient vaccine. Finally, the main elements associated with this strategy are also discussed. The generation of new strategies of vaccination against dengue virus, must be directed to reduce the risk of increasing viral load through sub-neutralizing antibodies and it must be also directed to induce a polyfunctional T cell response. Complementary prime-boost immunization strategies could emerge as an interesting approach to induce solid immunity or at least to reduce viral load after natural infection, avoiding severe dengue. Subunit vaccine could be safe and attractive antigens for this strategy, especially proteins including B, and T-cells epitopes for inducing humoral and cellular immune responses, which can play an important role controlling the disease.
Subject(s)
Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/immunology , Dengue/virology , Immunization, Secondary , Vaccination , Animals , Antigens, Viral/immunology , Dengue Vaccines/administration & dosage , Host-Pathogen Interactions/immunology , Humans , Vaccination/methods , Vaccines, Subunit/immunologyABSTRACT
INTRODUCTION: Dengue fever remains as a health problem worldwide. Although Dengvaxia®, was registered in several countries, the results after the immunization of people suggest an increase of risk in non-immune persons and children younger than 9 years old. No other vaccine is registered so far, thus the development of a safe and effective vaccine continues to be a priority for the WHO and the scientific community. AREAS COVERED: This work reviews the structural and antigenic properties of the capsid protein of Dengue virus, along with results of studies performed to assess the immunogenicity and protective capacity in animals of vaccine candidates based on this protein. EXPERT OPINION: The generation of a memory cellular immune response alone, after vaccination against Dengue virus, could be advantageous, as there would not be risk of increasing viral infectivity through sub-neutralizing antibodies. However, it is improbable to achieving sterilizing immunity. In this scenario, an infection could stablished but without the appearance of the severe disease. The cell-mediated immunity should keep the virus at bay. The capsid protein induces a protective immune response in animals without the induction of virus-binding antibodies. Vaccine candidates based on this protein could be an attractive strategy to induce protection against the severe Dengue disease.
Subject(s)
Dengue Vaccines/administration & dosage , Dengue/prevention & control , Vaccination/methods , Animals , Capsid Proteins/immunology , Child , Dengue/epidemiology , Dengue Virus/immunology , Dengue Virus/isolation & purification , Global Health , Humans , Immunity, Cellular/immunologyABSTRACT
Tetra DIIIC is a vaccine candidate against dengue virus (DENV) composed by four chimeric proteins that fuse the domain III of the envelope protein of each virus to the corresponding capsid protein. Containing B- and T-cell epitopes, these proteins form aggregates after the incubation with an immunostimulatory oligodeoxynucleotide, and their tetravalent formulation induces neutralizing antibodies and cellular immune response in mice and monkeys. Also, Tetra DIIIC protects mice after challenge with each DENV, and the monovalent formulation obtained from DENV-2 protects monkeys upon homologous viral challenge. However, in the last years, new evidences have arisen regarding domain III of DENV envelope protein as irrelevant target for neutralizing antibodies in humans. Nevertheless, vaccination with domain III induces a neutralizing antibody response that confers protection against re-infection. In addition, it has been demonstrated that the induction of a cellular immune response is essential to protect during the infection. This response can also avoid severe manifestations of dengue disease, associated to the antibody-dependent enhancement of the infection. In this study, we observed that Tetra DIIIC was able to boost the antiviral and neutralizing antibody responses previously generated in monkeys during an experimental DENV infection, demonstrating that domain III is targeted by B cells during the viral infection. Additionally, Tetra DIIIC successfully boosted the cellular immune response generated by the viruses, probably against T-cells epitopes in the capsid proteins. These results highlight the functionality of Tetra DIIIC as a vaccine candidate against DENV.
ABSTRACT
Tetra DIIIC is a subunit vaccine candidate based on domain III of the envelope protein and the capsid protein of the four serotypes of dengue virus. This vaccine preparation contains the DIIIC proteins aggregated with a specific immunostimulatory oligodeoxynucleotide (ODN 39M). Tetra DIIIC has already been shown to be immunogenic and protective in mice and monkeys. In this study, we evaluated the immunogenicity in mice of several formulations of Tetra DIIIC containing different amounts of the recombinant proteins. The Tetra DIIIC formulation induced a humoral immune response against the four DENV serotypes, even at the lowest dose assayed. In contrast, the highest level of cell-mediated immunity, measured as frequency of IFNγ-producing cells, was detected in animals immunized with the lowest dose. The protective capacity of the tetravalent formulations was assessed using the mouse model of dengue virus encephalitis. Upon challenge, vaccinated mice showed significantly reduced virus replication in all tested groups. This study provides new information about the functionality of Tetra DIIIC as a vaccine candidate and also supports the crucial role of cell-mediated immunity in protection against dengue virus.
Subject(s)
Antibodies, Viral/blood , Capsid Proteins/immunology , Dengue Vaccines/immunology , Dengue/prevention & control , Immunity, Humoral , Animals , Antibodies, Neutralizing/blood , Brain/virology , Capsid Proteins/genetics , Chlorocebus aethiops , Dengue Virus , Disease Models, Animal , Dose-Response Relationship, Immunologic , Female , Immunity, Cellular , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology , Vaccines, Subunit/immunology , Vero Cells , ViremiaABSTRACT
Despite the many efforts made by the scientific community in the development of vaccine candidates against dengue virus (DENV), no vaccine has been licensed up to date. Although the immunopathogenesis associated to the disease is a key factor to take into account by vaccine developers, the lack of animal models that reproduce the clinical signs of the disease has hampered the vaccine progress. Non-human primates support viral replication, but they are very expensive and do not show signs of disease. Immunocompromised mice develop viremia and some signs of the disease; however, they are not valuable for vaccine testing. Nowadays, immunocompetent mice are the most used model to evaluate the immunogenicity of vaccine candidates. These animals are resistant to DENV infection; therefore, the intracranial inoculation with neuroadapted virus, which provokes viral encephalitis, represents an alternative to evaluate the protective capacity of vaccine candidates. Previous results have demonstrated the crucial role of cellular immune response in the protection induced by the virus and vaccine candidates in this mouse encephalitis model. However, in the present work we are proposing that the magnitude of the cell-mediated immunity and the inflammatory response generated by the vaccine can modulate the survival rate after viral challenge. We observed that the intracranial challenge of naïve mice with DENV-2 induces the recruitment of immune cells that contribute to the reduction of viral load, but does not increase the survival rate. On the contrary, animals treated with cyclophosphamide, an immunosuppressive drug that affects proliferating lymphocytes, had a higher viral load but a better survival rate than untreated animals. These results suggest that the immune system is playing an immunopathogenic role in this model and the survival rate may not be a suitable endpoint in the evaluation of vaccine candidates based on antigens that induce a strong cellular immune response.
Subject(s)
Cyclophosphamide/therapeutic use , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/immunology , Encephalitis/immunology , Immunosuppressive Agents/therapeutic use , Animals , Cells, Cultured , Chlorocebus aethiops , Disease Models, Animal , Female , Humans , Immunity, Cellular , Immunocompetence , Mice , Mice, Inbred BALB C , Vero Cells , Viral LoadABSTRACT
BACKGROUND: Some factors such as sex, age, and captivity conditions have a direct influence on the normal hematological and serum biochemical parameters of African green monkeys. On the other hand, reliability in reported values is in many cases limited by studied animal number (<200) and there is not report on the correlation of these parameters with the age in each sex animal group. Thus, this study sought determining normal hematological (11) and serum biochemical parameters (9) of 400 captive housed African green monkeys and also correlate them with the age of the animals. METHODS: A total of 200 females and 200 males were grouped by the sex and age groups (1-2, 3-4, 5-6, and 7-8 years old) for measuring normal values of hematological and serum biochemical parameters and to study the correlation of these parameters with the age of the animals. RESULTS: As key outcome, the main hematological and serum biochemical reference values of African green monkeys were determined. Significant differences (P < 0.05) were found among 95% of studied parameters between males and females. About 75% and 95% of the parameters were influenced by the age in the female and male groups, respectively. About 35% of hematological and serum biochemical parameters correlated positively (R(2) > 0.5) with the age in the female monkeys. On the contrary in the male monkeys, only 45% of parameters correlated positively with the age (R(2) > 0.5). CONCLUSIONS: Thus, authors believe that results of this study are important for assisting researchers in the assessment of health status of captive housed African green monkeys for preclinical studies.