Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Toxicol Sci ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976647

ABSTRACT

Quinoline-related antimalarial drugs have been associated with cardiotoxicity risk, in particular QT prolongation and QRS complex widening. In collaboration with Medicines for Malaria Venture (MMV), we discovered novel plasmepsin X (PMX) inhibitors for malaria treatment. The first lead compounds tested in anesthetized guinea pigs (GP) induced profound QRS widening, although exhibiting weak inhibition of NaV1.5-mediated currents in standard patch clamp assays. To understand the mechanism(s) underlying QRS widening to identify further compounds devoid of such liability, we established a set of in vitro models including CaV1.2, NaV1.5 rate-dependence and NaV1.8 patch clamp assays, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), and Langendorff-perfused isolated GP hearts. Six compounds were tested in all models including anesthetized GP, and 8 additional compounds were tested in vitro only. All compounds tested in anesthetized GP and isolated hearts showed a similar cardiovascular profile, consisting of QRS widening, bradycardia, negative inotropy, hypotension, and for some, QT prolongation. However, a left shift of the concentration-response curves was noted from in vitro to in vivo GP data. When comparing in vitro models, there was a good consistency between decrease in sodium spike amplitude in hiPSC-CM and QRS widening in isolated hearts. Patch clamp assay results showed that the QRS widening observed with PMX inhibitors is likely multifactorial, primarily due to NaV1.8 and NaV1.5 rate-dependent sodium blockade and/or calcium channel-mediated mechanisms. In conclusion, early de-risking of QRS widening using a set of different in vitro assays allowed to identify novel PMX inhibitors with improved cardiac safety profile.

2.
Toxicol Sci ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976649

ABSTRACT

Within drug development, high off-target promiscuity as well as potent cytotoxicity, are associated with a high attrition rate. We investigated the safety profile of novel plasmepsin X (PMX) inhibitors for the treatment of malaria. In our screening cascade, a total of 249 PMX compounds were profiled in a panel of in vitro secondary pharmacology assays containing 44 targets (SafetyScreen44™ panel) and in a cytotoxicity assay in HepG2 cells using ATP as an endpoint. Six of the lead compounds were subsequently tested in a 7-day rat toxicology study, and/or in a cardiovascular study in guinea pigs. Overall, compounds with high cytotoxicity in HepG2 cells correlated with high promiscuity (off-target hit rate >20%) in the SafetyScreen44™ panel and were associated with poor tolerability in vivo (decedents, morbidity, adverse clinical signs, or severe cardiovascular effects). Some side effects observed in rats or guinea pigs could putatively be linked with hits in the secondary pharmacological profiling, such as the M1 or M2 muscarinic acetylcholine receptor, opioid µ and/or κreceptors or hERG/CaV1.2/Na+ channels, which were common to > 50% the compounds tested in vivo. In summary, compounds showing high cytotoxicity and high promiscuity are likely to be poorly tolerated in vivo. However, such associations do not necessarily imply a causal relationship. Identifying the targets that cause these undesirable effects is key for early safety risk assessment. A tiered approach, based on a set of in vitro assays, helps selecting the compounds with highest likelihood of success to proceed to in vivo toxicology studies.

3.
J Pharmacol Toxicol Methods ; 128: 107537, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955286

ABSTRACT

Our study retrospectively examines 51 non-rodent general toxicology studies conducted over the past 8 years to ascertain the influence of recording methodologies on baseline cardiovascular (CV) parameters and statistical sensitivity. Specifically, our work aims to evaluate the frequency of cardiovascular parameter recording categorized by therapeutic modality and study type, to assess the variability in these parameters based on measurement techniques, and to determine the sample sizes needed for detecting relevant changes in heart rate (HR), blood pressure (BP), and QTc interval in non-human primate (NHP) studies. Results indicate that electrocardiogram (ECG) measurements in dogs and NHP were recorded in 63% of studies, combined with BP recording in 18% of studies, while BP was never recorded alone. Trend analysis reveals a decline in the utilisation of restraint-based methods for ECG measurements post-2017, to the benefit of telemetry-based recordings, particularly Jacketed External Telemetry (JET). There was a marked difference in baseline values, with restraint-based methods showing significantly higher HR and QTc values compared to JET, likely linked to animal stress. Further analysis suggests an unrealistic and unethical sample size requirement in NHP studies for detecting biologically meaningful CV parameter changes using restraint-based methods, while JET methods necessitate significantly smaller sample sizes. This retrospective study indicates a notable shift from snapshots short-duration, restraint-based methods towards telemetry approaches over the recent years, especially with an increased usage of implanted telemetry. The transition contributes to potential consensus within industry or regulatory frameworks for optimal practices in assessing ECG, HR, and BP in general toxicology studies.

4.
J Pharmacol Toxicol Methods ; : 107543, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019200

ABSTRACT

INTRODUCTION: Corrected QT interval (QTc)is an established biomarker for drug-induced Torsade de Pointe (TdP), but with concerns for a false positive signal. Clinically, JTpc and TpTec have emerged as ECG sub-intervals to differentiate predominant hERG vs. mixed ion channel blocking drugs that prolong QTc. METHODS: In a multicentric, prospective, controlled study, different proarrhythmic drug effects on QTc, JTpc and TpTec were characterized with cynomolgus monkeys using telemetry in a Lead II configuration for internal and external telemetry.Drugs and vehicle were administered orally (PO) to group size of 4 to 8 animals, in 4 laboratories. RESULTS: In monkeys, dofetilide (0.03-0.3 mg/kg) was associated with exposure dependent QTc and JTpc increase, but no significant TpTec effect. Similarly, quinidine (2-50 mg/kg) increased QTc and JTpc but did not change TpTec. Mexiletine (1-15 mg/kg) and verapamil (50 mg/kg) did not induce any significant effect on QTc, JTpc or TpTec. DISCUSSION: Clinically, predominant hERG blockers (dofetilide and quinidine) prolong QTc, JTpc and TpTec and are associated with increased risk for TdP. Results from this study demonstrate that ECG changes after dofetilide and quinidine administration to telemetered monkeys differ from the clinical response, lacking the expected effects on TpTec. Potential explanations for the lack of translation include physio-pharmacology species differences or ECG recording and analysis methodology variations. Mixed ion channel blockers verapamil and mexiletine administered to monkeys showed no significant QTc, JTpc or TpTec prolongation as expected based on the similar clinical response for these agents.

6.
Nat Rev Drug Discov ; 23(7): 525-545, 2024 07.
Article in English | MEDLINE | ID: mdl-38773351

ABSTRACT

Secondary pharmacology screening of investigational small-molecule drugs for potentially adverse off-target activities has become standard practice in pharmaceutical research and development, and regulatory agencies are increasingly requesting data on activity against targets with recognized adverse effect relationships. However, the screening strategies and target panels used by pharmaceutical companies may vary substantially. To help identify commonalities and differences, as well as to highlight opportunities for further optimization of secondary pharmacology assessment, we conducted a broad-ranging survey across 18 companies under the auspices of the DruSafe leadership group of the International Consortium for Innovation and Quality in Pharmaceutical Development. Based on our analysis of this survey and discussions and additional research within the group, we present here an overview of the current state of the art in secondary pharmacology screening. We discuss best practices, including additional safety-associated targets not covered by most current screening panels, and present approaches for interpreting and reporting off-target activities. We also provide an assessment of the safety impact of secondary pharmacology screening, and a perspective on opportunities and challenges in this rapidly developing field.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Humans , Drug-Related Side Effects and Adverse Reactions/prevention & control , Animals , Drug Industry , Drug Development/methods , Drug Evaluation, Preclinical/methods , Drugs, Investigational/pharmacology , Drugs, Investigational/adverse effects
7.
J Pharmacol Toxicol Methods ; 127: 107511, 2024.
Article in English | MEDLINE | ID: mdl-38710237

ABSTRACT

The Health and Environmental Sciences Institute (HESI) is a nonprofit organization dedicated to resolving global health challenges through collaborative scientific efforts across academia, regulatory authorities and the private sector. Collaborative science across non-clinical disciplines offers an important keystone to accelerate the development of safer and more effective medicines. HESI works to address complex challenges by leveraging diverse subject-matter expertise across sectors offering access to resources, data and shared knowledge. In 2008, the HESI Cardiac Safety Committee (CSC) was established to improve public health by reducing unanticipated cardiovascular (CV)-related adverse effects from pharmaceuticals or chemicals. The committee continues to significantly impact the field of CV safety by bringing together experts from across sectors to address challenges of detecting and predicting adverse cardiac outcomes. Committee members have collaborated on the organization, management and publication of prospective studies, retrospective analyses, workshops, and symposia resulting in 38 peer reviewed manuscripts. Without this collaboration these manuscripts would not have been published. Through their work, the CSC is actively addressing challenges and opportunities in detecting potential cardiac failure modes using in vivo, in vitro and in silico models, with the aim of facilitating drug development and improving study design. By examining past successes and future prospects of the CSC, this manuscript sheds light on how the consortium's multifaceted approach not only addresses current challenges in detecting potential cardiac failure modes but also paves the way for enhanced drug development and study design methodologies. Further, exploring future opportunities and challenges will focus on improving the translational predictability of nonclinical evaluations and reducing reliance on animal research in CV safety assessments.


Subject(s)
Cardiotoxicity , Humans , Animals , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Academies and Institutes , Drug Development/methods , Cardiovascular Diseases , Drug-Related Side Effects and Adverse Reactions/prevention & control
8.
Clin Pharmacol Ther ; 116(1): 106-116, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38709223

ABSTRACT

The ICH E14/S7B Q&As highlighted the need for best practices concerning the design, execution, analysis, interpretation, and reporting of the in vivo non-rodent QT assay as a component of the integrated risk assessment to potentially support a TQT waiver or substitute. We conducted a dog telemetry study to assess the effects on QTc of six reference compounds (five positive and one negative) previously evaluated by Darpo et al. (2015) in humans. The sensitivity of the assay to detect QTc increases was determined, and exposure-response analysis was performed, as done in clinical practice. By-timepoint analysis showed QTc prolongation induced by moxifloxacin, dofetilide, dolasetron, ondansetron, and quinine within human relevant plasma exposures ranges. Moreover, a hysteresis was observed for quinine. As expected, levocetirizine showed no statistically significant effect on QTc across a range of exposure, well exceeding the therapeutic Cmax. Power analyses confirmed the study ability to detect statistically significant QTc changes of less than 10 milliseconds with 80% probability, even with a sample size as low as n = 4 animals. Finally, concentration-QTc modeling enabled to predict the minimal plasma concentration needed to detect a 10 milliseconds QTc prolongation, including for quinine. The comparison with clinical available data supported the relevance of dogs under these experimental conditions as a robust translational predictor of drug-induced QTc prolongation in humans as a key pillar of the integrated risk assessment.


Subject(s)
Electrocardiography , Long QT Syndrome , Dogs , Animals , Prospective Studies , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Electrocardiography/drug effects , Male , Female , Telemetry/methods , Risk Assessment/methods , Humans , Heart Rate/drug effects
9.
Front Toxicol ; 6: 1370045, 2024.
Article in English | MEDLINE | ID: mdl-38646442

ABSTRACT

The ICH S1B carcinogenicity global testing guideline has been recently revised with a novel addendum that describes a comprehensive integrated Weight of Evidence (WoE) approach to determine the need for a 2-year rat carcinogenicity study. In the present work, experts from different organizations have joined efforts to standardize as much as possible a procedural framework for the integration of evidence associated with the different ICH S1B(R1) WoE criteria. The framework uses a pragmatic consensus procedure for carcinogenicity hazard assessment to facilitate transparent, consistent, and documented decision-making and it discusses best-practices both for the organization of studies and presentation of data in a format suitable for regulatory review. First, it is acknowledged that the six WoE factors described in the addendum form an integrated network of evidence within a holistic assessment framework that is used synergistically to analyze and explain safety signals. Second, the proposed standardized procedure builds upon different considerations related to the primary sources of evidence, mechanistic analysis, alternative methodologies and novel investigative approaches, metabolites, and reliability of the data and other acquired information. Each of the six WoE factors is described highlighting how they can contribute evidence for the overall WoE assessment. A suggested reporting format to summarize the cross-integration of evidence from the different WoE factors is also presented. This work also notes that even if a 2-year rat study is ultimately required, creating a WoE assessment is valuable in understanding the specific factors and levels of human carcinogenic risk better than have been identified previously with the 2-year rat bioassay alone.

10.
ACS Med Chem Lett ; 14(11): 1582-1588, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37974949

ABSTRACT

Plasmepsin X (PMX) has been identified as a multistage antimalarial target. PMX is a malarial aspartyl protease essential for merozoite egress from infected red blood cells and invasion of the host erythrocytes. Previously, we reported the identification of PMX inhibitors by structure-based optimization of a cyclic guanidine core. Preclinical assessment of UCB7362, which displayed both in vitro and in vivo antimalarial activity, revealed a suboptimal dose paradigm (once daily dosing of 50 mg for 7 days for treatment of uncomplicated malaria) relative to current standard of care (three-dose regime). We report here the efforts toward extending the half-life (t1/2) by reducing metabolic clearance and increasing volume of distribution (Vss). Our efforts culminated in the identification of a biaryl series, with an expected longer t1/2 in human than UCB7362 while maintaining a similar in vitro off-target hit rate.

11.
J Pharmacol Toxicol Methods ; 123: 107270, 2023.
Article in English | MEDLINE | ID: mdl-37164235

ABSTRACT

The ICH E14/S7B Questions and Answers (Q&As) guideline introduces the concept of a "double negative" nonclinical scenario (negative hERG assay and negative in vivo QTc study) to demonstrate that a drug does not produce a clinically relevant QT prolongation (i.e., no QT liability). This nonclinical "double negative" data package, along with negative Phase 1 clinical QTc data, may be sufficient to substitute for a clinical Thorough QT (TQT) study in some specific cases. While standalone GLP in vivo cardiovascular studies in non-rodent species are standard practice during nonclinical drug development for small molecule programs, a variety of approaches to the design, conduct, analysis and interpretation are utilized across pharmaceutical companies and contract research organizations (CROs) that may, in some cases, negatively impact the stringent sensitivity needed to fulfill the new Q&As. Subject matter experts from both Pharma and CROs have collaborated to recommend best practices for more robust nonclinical cardiovascular telemetry studies in non-rodent species, with input from clinical and regulatory experts. The aim was to increase consistency and harmonization across the industry and to ensure delivery of high quality nonclinical QTc data to meet the proposed sensitivities defined within the revised ICH E14/S7B Q&As guideline (Q&As 5.1 and 6.1). The detailed best practice recommendations presented here cover the design and execution of the safety pharmacology cardiovascular study, including optimal methods for acquiring, analyzing, reporting, and interpreting the resulting QTc and pharmacokinetic data to allow for direct comparison to clinical exposures and assessment of safety margin for QTc prolongation.


Subject(s)
Cardiovascular System , Long QT Syndrome , Humans , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Telemetry , Electrocardiography
12.
J Pharmacol Toxicol Methods ; 123: 107269, 2023.
Article in English | MEDLINE | ID: mdl-37149063

ABSTRACT

This appraisal of state-of-the-art manuscript highlights and expands upon the thoughts conveyed in the lecture of Dr. Jean-Pierre Valentin, recipient of the 2021 Distinguished Service Award of the Safety Pharmacology Society, given on the 2nd December 2021. The article reflects on the strengths, weaknesses, opportunities, and threats that surrounded the evolution of safety and secondary pharmacology over the last 3 decades with a particular emphasis on pharmaceutical drug development delivery, scientific and technological innovation, complexities of regulatory framework and people leadership and development. The article further built on learnings from past experiences to tackle constantly emerging issues and evolving landscape whilst being cognizant of the challenges facing these disciplines in the broader drug development and societal context.


Subject(s)
Awards and Prizes , Drug-Related Side Effects and Adverse Reactions , Pharmacology , Humans , Societies , Pharmaceutical Preparations , Drug Evaluation, Preclinical
13.
J Pharmacol Toxicol Methods ; 121: 107265, 2023.
Article in English | MEDLINE | ID: mdl-36997076

ABSTRACT

Recent updates and modifications to the clinical ICH E14 and nonclinical ICH S7B guidelines, which both relate to the evaluation of drug-induced delayed repolarization risk, provide an opportunity for nonclinical in vivo electrocardiographic (ECG) data to directly influence clinical strategies, interpretation, regulatory decision-making and product labeling. This opportunity can be leveraged with more robust nonclinical in vivo QTc datasets based upon consensus standardized protocols and experimental best practices that reduce variability and optimize QTc signal detection, i.e., demonstrate assay sensitivity. The immediate opportunity for such nonclinical studies is when adequate clinical exposures (e.g., supratherapeutic) cannot be safely achieved, or other factors limit the robustness of the clinical QTc evaluation, e.g., the ICH E14 Q5.1 and Q6.1 scenarios. This position paper discusses the regulatory historical evolution and processes leading to this opportunity and details the expectations of future nonclinical in vivo QTc studies of new drug candidates. The conduct of in vivo QTc assays that are consistently designed, executed and analyzed will lead to confident interpretation, and increase their value for clinical QTc risk assessment. Lastly, this paper provides the rationale and basis for our companion article which describes technical details on in vivo QTc best practices and recommendations to achieve the goals of the new ICH E14/S7B Q&As, see Rossman et al., 2023 (this journal).


Subject(s)
Long QT Syndrome , Humans , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Drugs, Investigational/adverse effects , Electrocardiography , Risk Assessment , Biological Assay
14.
Nat Rev Drug Discov ; 22(4): 317-335, 2023 04.
Article in English | MEDLINE | ID: mdl-36781957

ABSTRACT

For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.


Subject(s)
Drug Industry , Drug-Related Side Effects and Adverse Reactions , Humans , Drug-Related Side Effects and Adverse Reactions/prevention & control , Biomarkers , Technology , Drug Evaluation, Preclinical
15.
Pharmacol Res Perspect ; 11(1): e01059, 2023 02.
Article in English | MEDLINE | ID: mdl-36748725

ABSTRACT

Levetiracetam (LEV), a well-established anti-seizure medication (ASM), was launched before the original ICH S7B nonclinical guidance assessing QT prolongation potential and the introduction of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm. No information was available on its effects on cardiac channels. The goal of this work was to "pressure test" the CiPA approach with LEV and check the concordance of nonclinical core and follow-up S7B assays with clinical and post-marketing data. The following experiments were conducted with LEV (0.25-7.5 mM): patch clamp assays on hERG (acute or trafficking effects), NaV 1.5, CaV 1.2, Kir 2.1, KV 7.1/mink, KV 1.5, KV 4.3, and HCN4; in silico electrophysiology modeling (Virtual Assay® software) in control, large-variability, and high-risk human ventricular cell populations; electrophysiology measurements in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and dog Purkinje fibers; ECG measurements in conscious telemetered dogs after single oral administration (150, 300, and 600 mg/kg). Except a slight inhibition (<10%) of hERG and KV 7.1/mink at 7.5 mM, that is, 30-fold the free therapeutic plasma concentration (FTPC) at 1500 mg, LEV did not affect any other cardiac channels or hERG trafficking. In both virtual and real human cardiomyocytes, and in dog Purkinje fibers, LEV induced no relevant changes in electrophysiological parameters or arrhythmia. No QTc prolongation was noted up to 2.7 mM unbound plasma levels in conscious dogs, corresponding to 10-fold the FTPC. Nonclinical assessment integrating CiPA assays shows the absence of QT prolongation and proarrhythmic risk of LEV up to at least 10-fold the FTPC and the good concordance with clinical and postmarketing data, although this does not exclude very rare occurrence of QT prolongation cases in patients with underlying risk factors.


Subject(s)
Induced Pluripotent Stem Cells , Long QT Syndrome , Animals , Dogs , Humans , Levetiracetam/pharmacology , Myocytes, Cardiac
16.
Regul Toxicol Pharmacol ; 139: 105368, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36841350

ABSTRACT

The ICH S7A guideline on safety pharmacology studies released over 20 years ago largely achieved its objective "to help protect clinical trial participants and patients receiving marketed products from potential adverse effects of pharmaceuticals". Although, Phase I clinical trials are generally very safe, the incidence and severity of adverse events, the safety related attrition and product withdrawal remain elevated during late-stage clinical development and post approval, a proportion of which can be attributed at least in part to safety pharmacology related issues. Considering the latest scientific and technological advancements in drug safety science, the paradigm shift of the drug discovery and development process and the continuously evolving regulatory landscape, we recommend revisiting, adapting and evolving the ICH S7A guideline. This might offer opportunities i) to select and progress optimized drugs with increased confidence in success, ii) to refine and adapt the clinical monitoring at all stages of clinical development resulting in an optimized benefit/risk assessment, iii) to increase likelihood of regulatory acceptance in a way compatible with an expedited and streamlined drug discovery and development process to benefit patients and iv) to avoid the unnecessary use of animals in 'tick-the-box' studies and encourage alternative approaches. As presented in the article, several options could be envisioned to revisit and adapt the ICH S7A taking into consideration several key features.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Animals , Drug Evaluation, Preclinical
17.
J Med Chem ; 65(20): 14121-14143, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36216349

ABSTRACT

Plasmepsin X (PMX) is an essential aspartyl protease controlling malaria parasite egress and invasion of erythrocytes, development of functional liver merozoites (prophylactic activity), and blocking transmission to mosquitoes, making it a potential multistage drug target. We report the optimization of an aspartyl protease binding scaffold and the discovery of potent, orally active PMX inhibitors with in vivo antimalarial efficacy. Incorporation of safety evaluation early in the characterization of PMX inhibitors precluded compounds with a long human half-life (t1/2) to be developed. Optimization focused on improving the off-target safety profile led to the identification of UCB7362 that had an improved in vitro and in vivo safety profile but a shorter predicted human t1/2. UCB7362 is estimated to achieve 9 log 10 unit reduction in asexual blood-stage parasites with once-daily dosing of 50 mg for 7 days. This work demonstrates the potential to deliver PMX inhibitors with in vivo efficacy to treat malaria.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria , Animals , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum/metabolism , Aspartic Acid Endopeptidases , Malaria/drug therapy
18.
Arch Toxicol ; 96(7): 2033-2047, 2022 07.
Article in English | MEDLINE | ID: mdl-35488128

ABSTRACT

Identification of early biomarkers of heart injury and drug-induced cardiotoxicity is important to eliminate harmful drug candidates early in preclinical development and to prevent severe drug effects. The main objective of this study was to investigate the expression of microRNAs (miRNAs) in human-induced pluripotent stem cell cardiomyocytes (hiPSC-CM) in response to a broad range of cardiotoxic drugs. Next generation sequencing was applied to hiPSC-CM treated for 72 h with 40 drugs falling into the categories of functional (i.e., ion channel blockers), structural (changes in cardiomyocytes structure), and general (causing both functional and structural) cardiotoxicants as well as non-cardiotoxic drugs. The largest changes in miRNAs expression were observed after treatments with structural or general cardiotoxicants. The number of deregulated miRNAs was the highest for idarubicin, mitoxantrone, and bortezomib treatments. RT-qPCR validation confirmed upregulation of several miRNAs across multiple treatments at therapeutically relevant concentrations: hsa-miR-187-3p, hsa-miR-146b-5p, hsa-miR-182-5p (anthracyclines); hsa-miR-365a-5p, hsa-miR-185-3p, hsa-miR-184, hsa-miR-182-5p (kinase inhibitors); hsa-miR-182-5p, hsa-miR-126-3p and hsa-miR-96-5p (common some anthracyclines, kinase inhibitors and bortezomib). Further investigations showed that an upregulation of hsa-miR-187-3p and hsa-miR-182-5p could serve as a potential biomarker of structural cardiotoxicity and/or an additional endpoint to characterize cardiac injury in vitro.


Subject(s)
Cardiotoxicity , Induced Pluripotent Stem Cells , MicroRNAs , Myocytes, Cardiac , Anthracyclines/adverse effects , Biomarkers , Bortezomib/adverse effects , Humans , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism
19.
Life (Basel) ; 12(2)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35207446

ABSTRACT

We present our approach to rapidly establishing a standardized, multi-site, nation-wide COVID-19 screening program in Belgium. Under auspices of a federal government Task Force responsible for upscaling the country's testing capacity, we were able to set up a national testing initiative with readily available resources, putting in place a robust, validated, high-throughput, and decentralized qPCR molecular testing platform with embedded proficiency testing. We demonstrate how during an acute scarcity of equipment, kits, reagents, personnel, protective equipment, and sterile plastic supplies, we introduced an approach to rapidly build a reliable, validated, high-volume, high-confidence workflow based on heterogeneous instrumentation and diverse assays, assay components, and protocols. The workflow was set up with continuous quality control monitoring, tied together through a clinical-grade information management platform for automated data analysis, real-time result reporting across different participating sites, qc monitoring, and making result data available to the requesting physician and the patient. In this overview, we address challenges in optimizing high-throughput cross-laboratory workflows with minimal manual intervention through software, instrument and assay validation and standardization, and a process for harmonized result reporting and nation-level infection statistics monitoring across the disparate testing methodologies and workflows, necessitated by a rapid scale-up as a response to the pandemic.

20.
Toxicol Sci ; 187(1): 3-24, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35148401

ABSTRACT

The content of this article derives from a Health and Environmental Sciences Institute (HESI) consortium with a focus to improve cardiac safety during drug development. A detailed literature review was conducted to evaluate the concordance between nonclinical repolarization assays and the clinical thorough QT (TQT) study. Food and Drug Administration and HESI developed a joint database of nonclinical and clinical data, and a retrospective analysis of 150 anonymized drug candidates was reviewed to compare the performance of 3 standard nonclinical assays with clinical TQT study findings as well as investigate mechanism(s) potentially responsible for apparent discrepancies identified. The nonclinical assays were functional (IKr) current block (Human ether-a-go-go related gene), action potential duration, and corrected QT interval in animals (in vivo corrected QT). Although these nonclinical assays demonstrated good specificity for predicting negative clinical QT prolongation, they had relatively poor sensitivity for predicting positive clinical QT prolongation. After review, 28 discordant TQT-positive drugs were identified. This article provides an overview of direct and indirect mechanisms responsible for QT prolongation and theoretical reasons for lack of concordance between clinical TQT studies and nonclinical assays. We examine 6 specific and discordant TQT-positive drugs as case examples. These were derived from the unique HESI/Food and Drug Administration database. We would like to emphasize some reasons for discordant data including, insufficient or inadequate nonclinical data, effects of the drug on other cardiac ion channels, and indirect and/or nonelectrophysiological effects of drugs, including altered heart rate. We also outline best practices that were developed based upon our evaluation.


Subject(s)
Long QT Syndrome , Torsades de Pointes , Action Potentials , Animals , Electrocardiography , Heart , Humans , Long QT Syndrome/chemically induced , Retrospective Studies , Torsades de Pointes/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...