Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Crit Care ; 82: 154759, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38461659

ABSTRACT

OBJECTIVES: Although respiratory failure is the most common feature in coronavirus disease 2019 (COVID-19), abdominal organ involvement is likewise frequently observed. To investigate visceral and thoracic circulation and abdominal organ damage in COVID-19 patients. MATERIALS AND METHODS: A monocentric observational study was carried on. In COVID-19 patients affected by acute respiratory distress syndrome (ARDS) (n = 31) or mild pneumonia (n = 60) thoracoabdominal circulation was evaluated using Doppler-ultrasound and computed tomography. The study also included non-COVID-19 patients affected by ARDS (n = 10) or portal hypertension (n = 10) for comparison of the main circulatory changes. RESULTS: Patients affected by COVID-19 ARDS showed hyperdynamic visceral flow and increased portal velocity, hepatic artery resistance-index, and spleen diameter relative to those with mild-pneumonia (p = 0.001). Splanchnic circulatory parameters significantly correlated with the main respiratory indexes (p < 0.001) and pulmonary artery diameter (p = 0.02). The chest and abdominal vascular remodeling pattern of COVID-19 ARDS patients resembled the picture observed in the PH group, while differed from that of the non-COVID ARDS group. A more severe COVID-19 presentation was associated with worse liver dysfunction and enhanced inflammatory activation; these parameters both correlated with abdominal (p = 0.04) and chest imaging measures (p = 0.03). CONCLUSION: In COVID-19 ARDS patients there are abdominal and lung vascular modifications that depict a portal hypertension-like pattern. The correlation between visceral vascular remodeling, pulmonary artery enlargement, and organ damage in these critically ill patients is consistent with a portal hyperlfow-like syndrome that could contribute to the peculiar characteristics of respiratory failure in these patients. CLINICAL RELEVANCE STATEMENT: our data suggest that the severity of COVID-19 lung involvement is directly related to the development of a portal hyperflow-like syndrome. These observations should help in defining the need for a closer monitoring, but also to develop dedicated therapeutic strategies.


Subject(s)
COVID-19 , Hypertension, Portal , Respiratory Distress Syndrome , Humans , COVID-19/complications , COVID-19/physiopathology , Male , Female , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/diagnostic imaging , Middle Aged , Hypertension, Portal/physiopathology , Aged , SARS-CoV-2 , Tomography, X-Ray Computed , Ultrasonography, Doppler
2.
Crit Care Explor ; 5(10): e0983, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37795456

ABSTRACT

OBJECTIVES: Experimental models suggest that prone position and positive end-expiratory pressure (PEEP) homogenize ventral-dorsal ventilation distribution and regional respiratory compliance. However, this response still needs confirmation on humans. Therefore, this study aimed to assess the changes in global and regional respiratory mechanics in supine and prone positions over a range of PEEP levels in acute respiratory distress syndrome (ARDS) patients. DESIGN: A prospective cohort study. PATIENTS: Twenty-two intubated patients with ARDS caused by COVID-19 pneumonia. INTERVENTIONS: Electrical impedance tomography and esophageal manometry were applied during PEEP titrations from 20 cm H2O to 6 cm H2O in supine and prone positions. MEASUREMENTS: Global respiratory system compliance (Crs), chest wall compliance, regional lung compliance, ventilation distribution in supine and prone positions. MAIN RESULTS: Compared with supine position, the maximum level of Crs changed after prone position in 59% of ARDS patients (n = 13), of which the Crs decreased in 32% (n = 7) and increased in 27% (n = 6). To reach maximum Crs after pronation, PEEP was changed in 45% of the patients by at least 4 cm H2O. After pronation, the ventilation and compliance of the dorsal region did not consistently change in the entire sample of patients, increasing specifically in a subgroup of patients who showed a positive change in Crs when transitioning from supine to prone position. These combined changes in ventilation and compliance suggest dorsal recruitment postpronation. In addition, the subgroup with increased Crs postpronation demonstrated the most pronounced difference between dorsal and ventral ventilation distribution from supine to prone position (p = 0.01), indicating heterogeneous ventilation distribution in prone position. CONCLUSIONS: Prone position modifies global respiratory compliance in most patients with ARDS. Only a subgroup of patients with a positive change in Crs postpronation presented a consistent improvement in dorsal ventilation and compliance. These data suggest that the response to pronation on global and regional mechanics can vary among ARDS patients, with some patients presenting more dorsal lung recruitment than others.

3.
Ann Med ; 55(1): 2237521, 2023 12.
Article in English | MEDLINE | ID: mdl-37493458

ABSTRACT

BACKGROUND: Coronary artery disease (CAD) is associated with perioperative liver transplantation (LT) mortality. In absence of a defined risk algorithm, we aimed to test whether stress echocardiography and coronary computed tomography angiography (CCTA) could detect CAD in end-stage liver disease (ESLD) patients without previous evidence of heart disease. METHODS: LT candidates ≥30 years underwent a cardiovascular (CV) assessment through stress echocardiography. CCTA was performed in patients ≥50 years with two or more CV risk factors (e.g. diabetes, CAD family history, dyslipidaemia). Coronary angiography (CAG) was scheduled when stress echocardiography and/or CCTA were positive. Sensibility, specificity, positive and negative predictive values of stress echocardiography and CCTA were assessed by numbers of coronary revascularization (true positives) and lack of acute coronary events over a mean follow-up of 3 years (true negatives). RESULTS: Stress echocardiography was performed in 273 patients, CCTA in 34 and CAG in 41. Eight patients had critical coronary lesions, and 19 not-critical lesions. Sensitivity, specificity, positive and negative predictive values were 50.0%, 90.2%, 13.3% and 98.4% for stress echocardiography and 100%, 76.7%, 36.4% and 100% for CCTA. Among 163 patients who underwent LT (57.6%), 16 died and 5 had major adverse CV events over a mean follow-up of 3 years. CONCLUSIONS: A very low prevalence of CAD in a selected population of ESLD at intermediate to high CV risk was found. A screening based on stress echocardiography and CCTA resulted in low incidence of post-LT acute coronary events in ELSD patients. CAD has no impact on mid-term survival.


Subject(s)
Coronary Artery Disease , Liver Transplantation , Myocardial Ischemia , Humans , Coronary Artery Disease/complications , Liver Transplantation/adverse effects , Myocardial Ischemia/surgery , Coronary Angiography , Tomography, X-Ray Computed , Predictive Value of Tests
4.
Minerva Anestesiol ; 89(9): 773-782, 2023 09.
Article in English | MEDLINE | ID: mdl-36951601

ABSTRACT

BACKGROUND: Extracorporeal carbon dioxide removal (ECCO2R) promotes protective ventilation in patients with acute respiratory failure, but devices with high CO2 extraction capacity are required for clinically relevant impact. This study evaluates three novel low-flow techniques based on dialysate acidification, also combined with renal replacement therapy, and metabolic control. METHODS: Eight swine were connected to a low-flow (350 mL/min) extracorporeal circuit including a dialyzer with a closed-loop dialysate circuit, and two membrane lungs on blood (MLb) and dialysate (MLd), respectively. The following 2-hour steps were performed: 1) MLb-start (MLb ventilated); 2) MLbd-start (MLb and MLd ventilated); 3) HLac (lactic acid infusion before MLd); 4) HCl-NaLac (hydrochloric acid infusion before MLd combined with renal replacement therapy and reinfusion of sodium lactate); 5) HCl-ßHB-NaLac (hydrochloric acid infusion before MLd combined with renal replacement therapy and reinfusion of sodium lactate and sodium 3-hydroxybutyrate). Caloric and fluid inputs, temperature, blood glucose and arterial carbon dioxide pressure were kept constant. RESULTS: The total MLs CO2 removal in HLac (130±25 mL/min), HCl-NaLac (130±21 mL/min) and HCl-ßHB-NaLac (124±18 mL/min) were higher compared with MLbd-start (81±15 mL/min, P<0.05) and MLb-start (55±7 mL/min, P<0.05). Minute ventilation in HLac (4.3±0.9 L/min), HCl-NaLac (3.6±0.8 L/min) and HCl-ßHB-NaLac (3.6±0.8 L/min) were lower compared to MLb-start (6.2±1.1 L/min, P<0.05) and MLbd-start (5.8±2.1 L/min, P<0.05). Arterial pH was 7.40±0.03 at MLb-start and decreased only during HCl-ßHB-NaLac (7.35±0.03, P<0.05). No relevant changes in electrolyte concentrations, hemodynamics and significant adverse events were detected. CONCLUSIONS: The three techniques achieved a significant extracorporeal CO2 removal allowing a relevant reduction in minute ventilation with a sufficient safety profile.


Subject(s)
Carbon Dioxide , Respiration, Artificial , Animals , Swine , Respiration, Artificial/methods , Sodium Lactate , Hydrochloric Acid , Hydrogen-Ion Concentration , Dialysis Solutions
5.
J Clin Med ; 12(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36835785

ABSTRACT

(1) The use of high-flow nasal cannula (HFNC) combined with frequent respiratory monitoring in patients with acute hypoxic respiratory failure due to COVID-19 has been shown to reduce intubation and mechanical ventilation. (2) This prospective, single-center, observational study included consecutive adult patients with COVID-19 pneumonia treated with a high-flow nasal cannula. Hemodynamic parameters, respiratory rate, inspiratory fraction of oxygen (FiO2), saturation of oxygen (SpO2), and the ratio of oxygen saturation to respiratory rate (ROX) were recorded prior to treatment initiation and every 2 h for 24 h. A 6-month follow-up questionnaire was also conducted. (3) Over the study period, 153 of 187 patients were eligible for HFNC. Of these patients, 80% required intubation and 37% of the intubated patients died in hospital. Male sex (OR = 4.65; 95% CI [1.28; 20.6], p = 0.03) and higher BMI (OR = 2.63; 95% CI [1.14; 6.76], p = 0.03) were associated with an increased risk for new limitations at 6-months after hospital discharge. (4) 20% of patients who received HFNC did not require intubation and were discharged alive from the hospital. Male sex and higher BMI were associated with poor long-term functional outcomes.

6.
Obstet Gynecol ; 140(2): 195-203, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35852269

ABSTRACT

OBJECTIVE: To evaluate whether the use of inhaled nitric oxide (iNO)200 improves respiratory function. METHODS: This retrospective cohort study used data from pregnant patients hospitalized with severe bilateral coronavirus disease 2019 (COVID-19) pneumonia at four teaching hospitals between March 2020 and December 2021. Two cohorts were identified: 1) those receiving standard of care alone (SoC cohort) and 2) those receiving iNO200 for 30 minutes twice daily in addition to standard of care alone (iNO200 cohort). Inhaled nitric oxide, as a novel therapy, was offered only at one hospital. The prespecified primary outcome was days free from any oxygen supplementation at 28 days postadmission. Secondary outcomes were hospital length of stay, rate of intubation, and intensive care unit (ICU) length of stay. The multivariable-adjusted regression analyses accounted for age, body mass index, gestational age, use of steroids, remdesivir, and the study center. RESULTS: Seventy-one pregnant patients were hospitalized for severe bilateral COVID-19 pneumonia: 51 in the SoC cohort and 20 in the iNO200 cohort. Patients receiving iNO200 had more oxygen supplementation-free days (iNO200: median [interquartile range], 24 [23-26] days vs standard of care alone: 22 [14-24] days, P=.01) compared with patients in the SoC cohort. In the multivariable-adjusted analyses, iNO200 was associated with 63.2% (95% CI 36.2-95.4%; P<.001) more days free from oxygen supplementation, 59.7% (95% CI 56.0-63.2%; P<.001) shorter ICU length of stay, and 63.6% (95% CI 55.1-70.8%; P<.001) shorter hospital length of stay. No iNO200-related adverse events were reported. CONCLUSION: In pregnant patients with severe bilateral COVID-19 pneumonia, iNO200 was associated with a reduced need for oxygen supplementation and shorter hospital stay.


Subject(s)
COVID-19 Drug Treatment , Female , Humans , Nitric Oxide , Oxygen , Pregnancy , Retrospective Studies , SARS-CoV-2
7.
Semin Respir Crit Care Med ; 43(3): 440-452, 2022 06.
Article in English | MEDLINE | ID: mdl-35533689

ABSTRACT

The administration of exogenous oxygen to support adequate gas exchange is the cornerstone of respiratory care. In the past few years, other gaseous molecules have been introduced in clinical practice to treat the wide variety of physiological derangement seen in critical care patients.Inhaled nitric oxide (NO) is used for its unique selective pulmonary vasodilator effect. Recent studies showed that NO plays a pivotal role in regulating ischemia-reperfusion injury and it has antibacterial and antiviral activity.Helium, due to its low density, is used in patients with upper airway obstruction and lower airway obstruction to facilitate gas flow and to reduce work of breathing.Carbon monoxide (CO) is a poisonous gas that acts as a signaling molecule involved in many biologic pathways. CO's anti-inflammatory and antiproliferative effects are under investigation in the setting of acute respiratory distress and idiopathic pulmonary fibrosis.Inhaled anesthetics are widely used in the operative room setting and, with the development of anesthetic reflectors, are now a valid option for sedation management in the intensive care unit.Many other gases such as xenon, argon, and hydrogen sulfide are under investigation for their neuroprotective and cardioprotective effects in post-cardiac arrest syndrome.With all these therapeutic options available, the clinician must have a clear understanding of the physiologic basis, therapeutic potential, and possible adverse events of these therapeutic gases. In this review, we will present the therapeutic gases other than oxygen used in clinical practice and we will describe other promising therapeutic gases that are in the early phases of investigation.


Subject(s)
Airway Obstruction , Anesthetics , Critical Illness/therapy , Helium/therapeutic use , Humans , Nitric Oxide/metabolism , Nitric Oxide/therapeutic use , Oxygen
8.
Membranes (Basel) ; 11(7)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34357197

ABSTRACT

During the COVID-19 pandemic, a shortage of mechanical ventilators was reported and ventilator sharing between patients was proposed as an ultimate solution. Two lung simulators were ventilated by one anesthesia machine connected through two respiratory circuits and T-pieces. Five different combinations of compliances (30-50 mL × cmH2O-1) and resistances (5-20 cmH2O × L-1 × s-1) were tested. The ventilation setting was: pressure-controlled ventilation, positive end-expiratory pressure 15 cmH2O, inspiratory pressure 10 cmH2O, respiratory rate 20 bpm. Pressures and flows from all the circuit sections have been recorded and analyzed. Simulated patients with equal compliance and resistance received similar ventilation. Compliance reduction from 50 to 30 mL × cmH2O-1 decreased the tidal volume (VT) by 32% (418 ± 49 vs. 285 ± 17 mL). The resistance increase from 5 to 20 cmH2O × L-1 × s-1 decreased VT by 22% (425 ± 69 vs. 331 ± 51 mL). The maximal alveolar pressure was lower at higher compliance and resistance values and decreased linearly with the time constant (r² = 0.80, p < 0.001). The minimum alveolar pressure ranged from 15.5 ± 0.04 to 16.57 ± 0.04 cmH2O. Cross-flows between the simulated patients have been recorded in all the tested combinations, during both the inspiratory and expiratory phases. The simultaneous ventilation of two patients with one ventilator may be unable to match individual patient's needs and has a high risk of cross-interference.

9.
Membranes (Basel) ; 11(7)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206672

ABSTRACT

Extracorporeal carbon dioxide removal (ECCO2R) is a promising strategy to manage acute respiratory failure. We hypothesized that ECCO2R could be enhanced by ventilating the membrane lung with a sodium hydroxide (NaOH) solution with high CO2 absorbing capacity. A computed mathematical model was implemented to assess NaOH-CO2 interactions. Subsequently, we compared NaOH infusion, named "alkaline liquid ventilation", to conventional oxygen sweeping flows. We built an extracorporeal circuit with two polypropylene membrane lungs, one to remove CO2 and the other to maintain a constant PCO2 (60 ± 2 mmHg). The circuit was primed with swine blood. Blood flow was 500 mL × min-1. After testing the safety and feasibility of increasing concentrations of aqueous NaOH (up to 100 mmol × L-1), the CO2 removal capacity of sweeping oxygen was compared to that of 100 mmol × L-1 NaOH. We performed six experiments to randomly test four sweep flows (100, 250, 500, 1000 mL × min-1) for each fluid plus 10 L × min-1 oxygen. Alkaline liquid ventilation proved to be feasible and safe. No damages or hemolysis were detected. NaOH showed higher CO2 removal capacity compared to oxygen for flows up to 1 L × min-1. However, the highest CO2 extraction power exerted by NaOH was comparable to that of 10 L × min-1 oxygen. Further studies with dedicated devices are required to exploit potential clinical applications of alkaline liquid ventilation.

SELECTION OF CITATIONS
SEARCH DETAIL
...