Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(18): 8041-8049, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38652019

ABSTRACT

Octahedrally coordinated spin crossover (SCO) FeII complexes represent an important class of switchable molecular materials. This study presents the synthesis and characterisation of a novel complex, [FeII(ppt-2Fph)2]0·2MeOH, where ppt-2Fph is a new asymmetric ionogenic tridentate planar ligand 2-(5-(2-fluorophenyl)-4H-1,2,4-triazol-3-yl)-6-(1H-pyrazol-1-yl)pyridine. The complex exhibits a hysteretic thermally induced SCO transition at 285 K on cooling and at 293 K on heating, as well as light induced excited spin state trapping (LIESST) at lower temperatures with a relaxation T(LIESST) temperature of 73 K. Single crystal analysis in both spin states shows that the compound undergoes an unusual partial (25%) reversible order-disorder of the asymmetrically substituted phenyl group coupled to the thermal SCO. The highly cooperative SCO transition, analysed by structural energy framework analysis at the B3LYP/6-31G(d,p) theory level, revealed the co-existence of stabilising and destabilising energy variations in the lattice. The observed antagonism of intermolecular interactions and synchronous rotational disorder, which contributes to the overall entropy change, is suggested to be at the origin of the cooperative SCO transition.

2.
Chem Mater ; 35(22): 9591-9602, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38047182

ABSTRACT

Materials based on spin crossover (SCO) molecules have centered the attention in molecular magnetism for more than 40 years as they provide unique examples of multifunctional and stimuli-responsive materials, which can be then integrated into electronic devices to exploit their molecular bistability. This process often requires the preparation of thermally stable SCO molecules that can sublime and remain intact in contact with surfaces. However, the number of robust sublimable SCO molecules is still very scarce. Here, we report a novel example of this kind. It is based on a neutral iron(II) coordination complex formulated as [Fe(neoim)2], where neoimH is the ionogenic ligand 2-(1H-imidazol-2-yl)-9-methyl-1,10-phenanthroline. In the first part, a comprehensive study, which covers the synthesis and magnetostructural characterization of the [Fe(neoim)2] complex as a bulk microcrystalline material, is reported. Then, in the second part, we investigate the suitability of this material to form thin films through high-vacuum sublimation. Finally, the retainment of all present SCO capabilities in the bulk when the material is processed is thoroughly studied by means of X-ray absorption spectroscopy. In particular, a very efficient and fast light-induced spin transition (LIESST effect) has been observed, even for ultrathin films of 15 nm.

3.
Inorg Chem ; 62(23): 9044-9053, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37227233

ABSTRACT

We report herein a series of neutral trans-thiocyanate mononuclear spin crossover (SCO) complexes, [FeIIL(NCS)2] (1-4), based on tetradentate ligands L obtained by reaction of N-substituted 1,2,3-triazolecarbaldehyde with 1,3-propanediamine or 2,2-dimethyl-1,3-diaminopropane [L = N1,N3-bis((1,5-dimethyl-1H-1,2,3-triazol-4-yl)methylene)propane-1,3-diamine/-2,2-dimethylpropane-1,3-diamine, 1/2 and N1,N3-bis((1-ethyl/1-propyl-1H-1,2,3-triazol-4-yl)methylene)-2,2-dimethylpropane-1,3-diamine, 3/4]. The thermal-induced SCO behavior is characterized by abrupt transitions with an average critical temperature (ΔT1/2)/hysteresis loop width (ΔThyst) in the range 190-252/5-14 K, while the photo-generated metastable high-spin (HS) phases are characterized by TLIESST temperatures in the range 44-59 K. Single crystal analysis shows that except 1, all compounds experience reversible symmetry breaking coupled with the thermal SCO. Furthermore, 4 experiences an additional phase transition at ca. 290 K responsible for the coexistence of two HS phases quenched at 10 K through LIESST and TIESST effects. The molecules form hexagonally packed arrays sustained by numerous weak CH···S and C···C/S···C/N···C bonds involving polar coordination cores, while non-polar pendant aliphatic substituents are segregated inside, occupying hexagonal channels. Energy framework analysis of complexes with one step SCO transition (1, 2, and 4) shows a correlation between the cooperativity and the amplitude of changes in the molecule-molecule interactions in the lattice at the SCO transition.

4.
J Am Chem Soc ; 144(31): 14297-14309, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35900921

ABSTRACT

Little is known about the mechanisms behind the bistability (memory) of molecular spin transition compounds over broad temperature ranges (>100 K). To address this point, we report on a new discrete FeII neutral complex [FeIIL2]0 (1) based on a novel asymmetric tridentate ligand 2-(5-(3-methoxy-4H-1,2,4-triazol-3-yl)-6-(1H-pyrazol-1-yl))pyridine (L). Due to the asymmetric cone-shaped form, in the lattice, the formed complex molecules stack into a one-dimensional (1D) supramolecular chain. In the case of the rectangular supramolecular arrangement of chains in methanolates 1-A and 1-B (both orthorhombic, Pbcn) differing, respectively, by bent and extended spatial conformations of the 3-methoxy groups (3MeO), a moderate cooperativity is observed. In contrast, the hexagonal-like arrangement of supramolecular chains in polymorph 1-C (monoclinic, P21/c) results in steric coupling of the transforming complex species with the peripheral flipping 3MeO group. The group acts as a supramolecular latch, locking the huge geometric distortion of complex 1 and in turn the trigonal distortion of the central FeII ion in the high-spin state, thereby keeping it from the transition to the low-spin state over a large thermal range. Analysis of the crystal packing of 1-C reveals significantly changing patterns of close intermolecular interactions on going between the phases substantiated by the energy framework analysis. The detected supramolecular mechanism leads to a record-setting robust 105 K wide hysteresis spanning the room temperature region and an atypically large TLIESST relaxation value of 104 K of the photoexcited high-spin state. This work highlights a viable pathway toward a new generation of cleverly designed molecular memory materials.


Subject(s)
Ferrous Compounds , Ferrous Compounds/chemistry , Ligands , Molecular Conformation , Temperature
5.
Adv Mater ; 34(33): e2202551, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35766419

ABSTRACT

Hybrid devices based on spin-crossover (SCO)/2D heterostructures grant a highly sensitive platform to detect the spin transition in the molecular SCO component and tune the properties of the 2D material. However, the fragility of the SCO materials upon thermal treatment, light irradiation, or contact with surfaces and the methodologies used for their processing have limited their applicability. Here, an easily processable and robust SCO/2D hybrid device with outstanding performance based on the sublimable SCO [Fe(Pyrz)2 ] molecule deposited over chemical vapor deposition (CVD) graphene is reported, which is fully compatible with electronics industry protocols. Thus, a novel methodology based on growing an elusive polymorph of [Fe(Pyrz)2 ] (tetragonal phase) over graphene is developed that allows a fast and effective light-induced spin transition in the devices (≈50% yield in 5 min) to be detected electrically. Such performance can be enhanced even more when a flexible polymeric layer of poly(methyl methacrylate) is inserted in between the two active components in a contactless configuration, reaching a ≈100% yield in 5 min.

6.
Inorg Chem ; 61(17): 6641-6649, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35442030

ABSTRACT

We investigate the effects of a broad array of external stimuli on the structural, spin-crossover (SCO) properties and nature of the elastic interaction within the two-dimensional Hofmann framework material [Fe(cintrz)2Pd(CN)4]·guest (cintrz = N-cinnamalidene 4-amino-1,2,4-triazole; A·guest; guest = 3H2O, 2H2O, and Ø). This framework exhibits a delicate balance between ferro- and antiferro-elastic interaction characters; we show that manipulation of the pore contents across guests = 3H2O, 2H2O, and Ø can be exploited to regulate this balance. In A·3H2O, the dominant antiferroelastic interaction character between neighboring FeII sites sees the low-temperature persistence of the mixed spin-state species {HS-LS} for {Fe1-Fe2} (HS = high spin, LS = low spin). Elastic interaction strain is responsible for stabilizing the {HS-LS} state and can be overcome by three mechanisms: (1) partial (2H2O) or complete (Ø) guest removal, (2) irradiation via the reverse light-induced excited spin-state trapping (LIESST) effect (λ = 830 nm), and (3) the application of external hydrostatic pressure. Combining experimental data with elastic models presents a clear interpretation that while guest molecules cause a negative chemical pressure, they also have consequences for the elastic interactions between metals beyond the simple chemical pressure picture typically proposed.

7.
Inorg Chem ; 61(10): 4484-4493, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35235314

ABSTRACT

Here we show that the porous metal-organic spin crossover (SCO) framework [Fe(tvp)2(NCS)2]@4(CH3CN·H2O) [1@4(CH3CN·H2O)] is an excellent precursor material for the systematic synthesis, via single-crystal to single-crystal transformation, of a series of halobenzene clathrates. Immersion of samples constituted of single crystals of 1@4(CH3CN·H2O) in the liquid halobenzenes PhXn, X = F (n = 1-6), X = Cl (n = 1, 2), and X = Br (n = 1) at room temperature induces complete replacement of the guest molecules by PhXn to afford 1@2PhXn. Single-crystal analyses of the new clathrates confirm the integrity of the porous framework with the PhXn guests being organized by pairs via π-stacking filling the nanochannels. The magnetic and calorimetric data confirm the occurrence of practically complete SCO behavior in all of the clathrates. The characteristic SCO equilibrium temperatures, T1/2, seem to be the result of a subtle balance in the host-guest interactions, which are temperature- and spin-state-dependent. The radically distinct supramolecular organization of the PhCl2 guests in 1@2PhCl2 affords a rare example of four-step SCO behavior following the sequence [HS1:LS0] ↔ [HS2/3:LS1/3] ↔ [HS1/2:LS1/2] ↔ [HS1/4:LS3/4] ↔ [HS0:LS1], which has been structurally characterized.

8.
Inorg Chem ; 60(21): 16016-16028, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34633179

ABSTRACT

A comprehensive experimental and theoretical study of both thermal-induced spin transition (TIST) as a function of pressure and pressure-induced spin transition (PIST) at room temperature for the two-dimensional Hofmann-like SCO polymer [Fe(Fpz)2Pt(CN)4] is reported. The TIST studies at different fixed pressures have been carried out by magnetic susceptibility measurements, while PIST studies have been performed by means of powder X-ray diffraction, Raman, and visible spectroscopies. A combination of the theory of elastic interactions and numerical Monte Carlo simulations has been used for the analysis of the cooperative interactions in TIST and PIST studies. A complete (T, P) phase diagram for the compound [Fe(Fpz)2Pt(CN)4] has been constructed. The critical temperature of the spin transition follows a lineal dependence with pressure, meanwhile the hysteresis width shows a nonmonotonic behavior contrary to theoretical predictions. The analysis shows the exceptional role of the total entropy and phonon contribution in setting the temperature of the spin transition and the width of the hysteresis. The anomalous behavior of the thermal hysteresis width under pressure in [Fe(Fpz)2Pt(CN)4] is a direct consequence of a local distortion of the octahedral geometry of the Fe(II) centers for pressures higher than 0.4 GPa. Interestingly, there is not a coexistence of the high- and low-spin (HS and LS, respectively) phases in TIST experiments, while in PIST experiments, the coexistence of the HS and LS phases in the metastable region of the phase transition induced by pressure is observed for a first time in a first-order gradual spin transition with hysteresis.

9.
Inorg Chem ; 60(15): 11048-11057, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34279097

ABSTRACT

Self-assembly of [Hg(SeCN)4]2- tetrahedral building blocks, iron(II) ions, and a series of bis-monodentate pyridyl-type bridging ligands has afforded the new heterobimetallic HgII-FeII coordination polymers {Fe[Hg(SeCN)3]2(4,4'-bipy)2}n (1), {Fe[Hg(SeCN)4](tvp)}n (2), {Fe[Hg(SeCN)3]2(4,4'-azpy)2}n (3), {Fe[Hg(SeCN)4](4,4'-azpy)(MeOH)}n (4), {Fe[Hg(SeCN)4](3,3'-bipy)}n (5) and {Fe[Hg(SeCN)4](3,3'-azpy)}n (6) (4,4-bipy = 4,4'-bipyridine, tvp = trans-1,2-bis(4-pyridyl)ethylene, 4,4'-azpy = 4,4'-azobispyridine, 3,3-bipy = 3,3'-bipyridine, 3,3'-azpy = 3,3'-azobispyridine). Single-crystal X-ray analyses show that compounds 1 and 3 display a two-dimensional robust sheet structure made up of infinite linear [(FeL)n]2n+ (L = 4,4'-bipy or 4,4'-azpy) chains linked by in situ formed {[Hg(L)(SeCN)3]2}2- anionic dimeric bridges. Complexes 2 and 4-6 define three-dimensional networks with different topological structures, indicating, in combination with complexes 1 and 3, that the polarity, length, rigidity, and conformation of the bridging organic ligand play important roles in the structural nature of the products reported here. The magnetic properties of complexes 1 and 2 show the occurrence of temperature- and light-induced spin crossover (SCO) properties, while complexes 4-6 are in the high-spin state at all temperatures. The current results provide a new route for the design and synthesis of new SCO functional materials with non-Hofmann-type traditional structures.

10.
Dalton Trans ; 50(25): 8877-8888, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34100495

ABSTRACT

Three Hofmann-like metal-organic frameworks {Fe(bpac)[Pt(CN)4]}·G (bpac = 1,2-bis(4-pyridyl)acetylene) were synthesized with photoisomerizable guest molecules (G = trans-azobenzene, trans-stilbene or cis-stilbene) and were characterized by elemental analysis, thermogravimetry and powder X-ray diffraction. The insertion of guest molecules and their conformation were inferred from Raman and FTIR spectra and from single-crystal X-ray diffraction and confronted with computational simulation. The magnetic and photomagnetic behaviors of the framework are significantly altered by the different guest molecules and different conformations. On the other hand, photoisomerization of the guest molecules becomes strongly hindered by the framework.

11.
Inorg Chem ; 60(12): 8851-8860, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34081436

ABSTRACT

Mastering nanostructuration of functional materials into electronic devices is presently an essential task in materials science. This is particularly relevant for spin crossover (SCO) compounds, whose properties are extremely sensitive to size reduction. Indeed, the search for materials displaying strong cooperative hysteretic SCO properties operative at the nanoscale close near room temperature is extremely challenging. In this context, we describe here the synthesis and characterization of 20-30 nm surfactant-free nanocrystals of the FeII Hofmann-type polymer {FeII(pz)[PtII,IVIx(CN)4]} (pz = pyrazine), which affords the first example of a robust three-dimensional coordination polymer, substantially keeping operational thermally induced SCO bistability at such a scale.

12.
Inorg Chem ; 60(12): 9040-9049, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34047556

ABSTRACT

Aiming at investigating the suitability of Hofmann-type two-dimensional (2D) coordination polymers {FeII(Lax)2[MII(CN)4]} to be processed as single monolayers and probed as spin crossover (SCO) junctions in spintronic devices, the synthesis and characterization of the MII derivatives (MII = Pd and Pt) with sulfur-rich axial ligands (Lax = 4-methyl- and 4-ethyl-disulfanylpyridine) have been conducted. The thermal dependence of the magnetic and calorimetric properties confirmed the occurrence of strong cooperative SCO behavior in the temperature interval of 100-225 K, featuring hysteresis loops 44 and 32.5 K/21 K wide for PtII-methyl and PtII/PdII-ethyl derivatives, while the PdII-methyl derivative undergoes a much less cooperative multistep SCO. Excluding PtII-methyl, the remaining compounds display light-induced excited spin-state trapping at 10 K with TLIESST temperatures in the range of 50-70 K. Single-crystal studies performed in the temperature interval 100-250 K confirmed the layered structure and the occurrence of complete transformation between the high- and low-spin states of the FeII center for the four compounds. Strong positional disorder seems to be the source of elastic frustration driving the multistep SCO observed for the PdII-methyl derivative. It is expected that the peripheral disulfanyl groups will favor anchoring and growing of the monolayer on gold substrates and optimal electron transport in the device.

13.
Angew Chem Int Ed Engl ; 59(42): 18632-18638, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-32666596

ABSTRACT

We report a series of meltable FeII complexes, which, depending on the length of aliphatic chains, display abrupt forward low-spin to high-spin transition or unprecedented melting-triggered reverse high-spin to low-spin transition on temperature rise. The reverse spin transition is perfectly reproducible on thermal cycling and the obtained materials are easily processable in the form of thin film owing to their soft-matter nature. We found that the discovered approach represents a potentially generalizable new avenue to control both the location in temperature and the direction of the spin transition in meltable compounds.

14.
ACS Appl Mater Interfaces ; 12(26): 29461-29472, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32496753

ABSTRACT

Integration of the ON-OFF cooperative spin crossover (SCO) properties of FeII coordination polymers as components of electronic and/or spintronic devices is currently an area of great interest for potential applications. This requires the selection and growth of thin films of the appropriate material onto selected substrates. In this context, two new series of cooperative SCO two-dimensional FeII coordination polymers of the Hofmann-type formulated {FeII(Pym)2[MII(CN)4]·xH2O}n and {FeII(Isoq)2[MII(CN)4]}n (Pym = pyrimidine, Isoq = isoquinoline; MII = Ni, Pd, Pt) have been synthesized, characterized, and the corresponding Pt derivatives selected for fabrication of thin films by liquid-phase epitaxy (LPE). At ambient pressure, variable-temperature single-crystal X-ray diffraction, magnetic, and calorimetric studies of the Pt and Pd microcrystalline materials of both series display strong cooperative thermal induced SCO properties. In contrast, this property is only observed for higher pressures in the Ni derivatives. The SCO behavior of the {FeII(L)2[PtII(CN)4]}n thin films (L = Pym, Isoq) were monitored by magnetization measurements in a SQUID magnetometer and compared with the homologous samples of the previously reported isostructural {FeII(Py)2[PtII(CN)4]}n (Py = pyridine). Application of the theory of regular solutions to the SCO of the three derivatives allowed us to evaluate the effect on the characteristic SCO temperatures and the hysteresis, as well as the associated thermodynamic parameters when moving from microcrystalline bulk solids to nanometric thin films.

15.
Chem Sci ; 12(4): 1317-1326, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-34163895

ABSTRACT

A binary reversible switch between low-temperature multi-step spin crossover (SCO), through the evolution of the population γ HS(T) with high-spin (HS)-low-spin (LS) sequence: HS1LS0 (state 1) ↔ HS2/3LS1/3 (state 2) ↔ HS1/2LS1/2 (state 3) ↔ HS1/3LS2/3 (state 4) ↔ HS0LS1 (state 5), and complete one step hysteretic spin transition featuring 20 K wide thermal hysteresis centred at 290 K occurs in the three-dimensional (3D) Hofmann-type porous coordination polymer {FeII(3,8phen)[Au(CN)2]2}·xPhNO2 (3,8phen = 3,8-phenanthroline, PhNO2 = nitrobenzene), made up of two identical interpenetrated pcu-type frameworks. The included PhNO2 guest (x = 1, 1·PhNO2) acts as a molecular wedge between the interpenetrated 3D frameworks via PhNO2-3,8phen intermolecular recognition and is the source of the strong elastic frustration responsible for the multi-step regime. Detailed X-ray single crystal analysis reflects competition between spatial periodicities of structurally inequivalent HS and LS SCO centres featuring: (i) symmetry breaking (state 3) with ⋯HS-LS⋯ ordering with γ HS = 1/2; and (ii) occurrence of spatial modulation of the structure providing evidence for stabilization of local or aperiodic ordered mixed spin states for states 2 and 4 (with γ HS ≈ 2/3) and 4 (with γ HS ≈ 1/3), respectively. Below c.a. 20 K, structural and magnetic analyses show the photogeneration of a metastable HS*, state 6. The room-temperature single-step hysteretic regime appears with release of the guest (x = 0, 1) and the elastic frustration, and reversibly switches back to the original four-step behaviour upon guest re-adsorption. Both uncommon relevant SCO events meeting in the same material represent a rare opportunity to compare them in the frame of antiferro- and ferro-elastic transitions.

16.
Dalton Trans ; 48(45): 17014-17021, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31693028

ABSTRACT

Rare loop-like isostructural one-dimensional coordination polymer (1D-CP) systems formulated as {Fe(DPIP)2(NCSe)2}n·4DMF (1) and {Fe(DPIP)2(NCSe)2}n·4DMF (2) were obtained by self-assembling FeII and pseudohalide NCX-(X = S, Se) ions in presence of the V-shaped bidentate bridging ligand, namely, N,N'-dipyridin-4-ylisophthalamide (DPIP), and were characterized by elemental analysis, IR spectroscopy, TGA, single crystal X-ray diffraction and powder X-ray diffraction. The magnetic studies show that complex 2 undergoes a complete thermally induced spin crossover (SCO) behavior centered at T1/2 = 120 K with ca. 5 K thermal hysteresis loop and light-induced excited spin state trapping effect (LIESST) with TLIESST = 65 K. However, either the homologous X = S (1) or the desolvated form of complex 2 is high spin at all temperatures, proving further the concerted synergy for the SCO of 2 between the intrinsic ligand field and that indirectly induced via hydrogen bond interaction. The current results provide valuable information for the design of new 1D SCO systems via the rational control of the cooperated effects derived from the intramolecular coordination bond and the intermolecular supramolecular interactions.

17.
Inorg Chem ; 58(15): 10038-10046, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31310514

ABSTRACT

The synthesis, structural characterization and magnetic properties of two new isostructural porous 3D compounds with the general formula {FeII(pina)[MI(CN)2]2}·xMeOH (x = 0-5; pina = N-(pyridin-4-yl)isonicotinamide; MI = AgI and x ∼ 5 (1·xMeOH); MI = AuI and x ∼ 5 (2·xMeOH)) are presented. The single-crystal X-ray diffraction analyses have revealed that the structure of 1·xMeOH (or 2·xMeOH) presents two equivalent doubly interpenetrated 3D frameworks stabilized by both argentophilic (or aurophilic) interactions and interligand C═O···HC H-bonds. Despite the interpenetration of the networks, these compounds display accessible void volume capable of hosting up to five molecules of methanol which interact with the host pina ligand and establish an infinite lattice of hydrogen bonds along the structural channels. Interestingly, the magnetic studies have shown that solvated complexes 1·xMeOH and 2·xMeOH display two- and four-step hysteretic thermally driven spin transitions, respectively. However, when these compounds lose the methanol molecules, the magnetic behavior changes drastically giving place to gradual spin conversions evidencing the relevant influence of the guest molecules on the spin-crossover properties. Importantly, since the solvent desorption takes place following a single-crystal-to-single-crystal transformation, empty structures 1 and 2 (x = 0) could be also determined allowing us to evaluate the correlation between the structural changes and the modification of the magnetic properties triggered by the loss of methanol molecules.

18.
Chem Sci ; 10(13): 3807-3816, 2019 Apr 07.
Article in English | MEDLINE | ID: mdl-31015922

ABSTRACT

A multistable spin crossover (SCO) molecular alloy system [Fe1-x M x (nBu-im)3(tren)](P1-y As y F6)2 (M = ZnII, NiII; (nBu-im)3(tren) = tris(n-butyl-imidazol(2-ethylamino))amine) has been synthesized and characterized. By controlling the composition of this isomorphous series, two cooperative thermally induced SCO events featuring distinct critical temperatures (T c) and hysteresis widths (ΔT c, memory) can be selected at will. The pristine derivative 100As (x = 0, y = 1) displays a strong cooperative two-step SCO and two reversible structural phase transitions (PTs). The low temperature PTLT and the SCO occur synchronously involving conformational changes of the ligand's n-butyl arms and two different arrangements of the AsF6 - anions [T1c = 174 K (ΔT1c = 17 K), T2c = 191 K (ΔT2c = 23 K) (scan rate 2 K min-1)]. The high-temperature PTHT takes place in the high-spin state domain and essentially involves rearrangement of the AsF6 - anions [TPTc = 275 K (ΔTPTc = 16 K)]. This behavior strongly contrasts with that of the homologous 100P [x = 0, y = 0] derivative where two separate cooperative one-step SCO can be selected by controlling the kinetics of the coupled PTLT at ambient pressure: (i) one at low temperatures, T c = 122 K (ΔT c = 9 K), for temperature scan rates (>1 K min-1) (memory channel A) where the structural modifications associated with PTLS are inhibited; (ii) the other centered at T c = 155 K (ΔT c = 41 K) for slower temperature scan rates ≤0.1 K min-1 (memory channel B). These two SCO regimes of the 100P derivative transform reversibly into the two-step SCO of 100As upon application of hydrostatic pressure (ca. 0.1 GPa) denoting the subtle effect of internal chemical pressure on the SCO behavior. Precise control of AsF6 - ↔ PF6 - substitution, and hence of the PTLT kinetics, selectively selects the memory channel B of 100P when x = 0 and y ≈ 0.7. Meanwhile, substitution of FeII with ZnII or NiII [x ≈ 0.2, y = 0] favors the low temperature memory channel A at any scan rate. This intriguing interplay between PT, SCO and isomorphous substitution was monitored by single crystal and powder X-ray diffractometries, and magnetic and calorimetric measurements.

19.
Chem Commun (Camb) ; 55(32): 4607-4610, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30869695

ABSTRACT

Self-assembly of octahedral FeII ions, trans-1,2-bis(4-pyridyl)ethane (bpe) bridging ligands and [Hg(XCN)4]2- (X = S (1), Se (2)) tetrahedral building blocks has afforded a new type of hetero-bimetallic HgII-FeII spin-crossover (SCO) 3D 6,4-connected coordination polymer (CP) formulated {Fe(bpe)[Hg(XCN)4]}n. For X = S (1), the ligand field is close to the crossing point but 1 remains paramagnetic over all temperatures. In contrast, for X = Se (2) the complex undergoes complete thermal induced SCO behaviour centred at T1/2 = 107.8 K and complete photoconversion of the low spin state into a metastable high-spin state (LIESST effect) with TLIESST = 66.7 K. The current results provide a new route for the design and synthesis of new SCO functional materials with non-Hoffmann-type structures.

20.
RSC Adv ; 9(50): 29357-29367, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-35528438

ABSTRACT

The asymmetric 3,5-disubstituted 1,2,4-triazole ligand H2V (5-amino-3-picolinamido-1,2,4-triazole) by reaction with an excess of Cu(ii) perchlorate (Cu : H2V being 12 : 1) has produced a novel hexanuclear {Cu6(µ3-O/H)(HV/V)3} fragment, with one triangular Cu3(µ3-O/H) group connected to three peripheral single Cu(ii) ions through a cis-cis-trans bridging mode of the ligand, which is the building block of the three structures described here: one hexanuclear, [Cu6(µ3-O)(HV)3(ClO4)7(H2O)9]·8H2O (1), one dodecanuclear, [Cu12(µ3-O)2(V)6(ClO4)5(H2O)18](ClO4)3·6H2O (2), and one tetradecanuclear 1D-polymer, {[Cu14(µ3-OH)2(V)6(HV)(ClO4)11(H2O)20](ClO4)2·14H2O} n (3), the last two containing hexanuclear subunits linked by perchlorato bridges. The Cu-Cu av. intra-triangle distance is 3.352(2) Å and the Cu(central)-Cu(bridged external) av. distance is 5.338(3) Å. The magnetic properties of the hexanuclear "Cu3O-3Cu" cluster have been studied, resulting as best fit parameters: g = 2.18(1), J(intra-triangle) = -247.0(1) cm-1 and j(central CuII - external CuII) = -5.15(2) cm-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...