Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Magn Reson Med ; 91(5): 1774-1786, 2024 May.
Article in English | MEDLINE | ID: mdl-37667526

ABSTRACT

PURPOSE: Software has a substantial impact on quantitative perfusion MRI values. The lack of generally accepted implementations, code sharing and transparent testing reduces reproducibility, hindering the use of perfusion MRI in clinical trials. To address these issues, the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI) aimed to establish a community-led, centralized repository for sharing open-source code for processing contrast-based perfusion imaging, incorporating an open-source testing framework. METHODS: A repository was established on the OSIPI GitHub website. Python was chosen as the target software language. Calls for code contributions were made to OSIPI members, the ISMRM Perfusion Study Group, and publicly via OSIPI websites. An automated unit-testing framework was implemented to evaluate the output of code contributions, including visual representation of the results. RESULTS: The repository hosts 86 implementations of perfusion processing steps contributed by 12 individuals or teams. These cover all core aspects of DCE- and DSC-MRI processing, including multiple implementations of the same functionality. Tests were developed for 52 implementations, covering five analysis steps. For T1 mapping, signal-to-concentration conversion and population AIF functions, different implementations resulted in near-identical output values. For the five pharmacokinetic models tested (Tofts, extended Tofts-Kety, Patlak, two-compartment exchange, and two-compartment uptake), differences in output parameters were observed between contributions. CONCLUSIONS: The OSIPI DCE-DSC code repository represents a novel community-led model for code sharing and testing. The repository facilitates the re-use of existing code and the benchmarking of new code, promoting enhanced reproducibility in quantitative perfusion imaging.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Humans , Contrast Media/pharmacokinetics , Reproducibility of Results , Magnetic Resonance Imaging/methods , Perfusion , Perfusion Imaging/methods
3.
Magn Reson Med ; 91(5): 1761-1773, 2024 May.
Article in English | MEDLINE | ID: mdl-37831600

ABSTRACT

This manuscript describes the ISMRM OSIPI (Open Science Initiative for Perfusion Imaging) lexicon for dynamic contrast-enhanced and dynamic susceptibility-contrast MRI. The lexicon was developed by Taskforce 4.2 of OSIPI to provide standardized definitions of commonly used quantities, models, and analysis processes with the aim of reducing reporting variability. The taskforce was established in February 2020 and consists of medical physicists, engineers, clinicians, data and computer scientists, and DICOM (Digital Imaging and Communications in Medicine) standard experts. Members of the taskforce collaborated via a slack channel and quarterly virtual meetings. Members participated by defining lexicon items and reporting formats that were reviewed by at least two other members of the taskforce. Version 1.0.0 of the lexicon was subject to open review from the wider perfusion imaging community between January and March 2022, and endorsed by the Perfusion Study Group of the ISMRM in the summer of 2022. The initial scope of the lexicon was set by the taskforce and defined such that it contained a basic set of quantities, processes, and models to enable users to report an end-to-end analysis pipeline including kinetic model fitting. We also provide guidance on how to easily incorporate lexicon items and definitions into free-text descriptions (e.g., in manuscripts and other documentation) and introduce an XML-based pipeline encoding format to encode analyses using lexicon definitions in standardized and extensible machine-readable code. The lexicon is designed to be open-source and extendable, enabling ongoing expansion of its content. We hope that widespread adoption of lexicon terminology and reporting formats described herein will increase reproducibility within the field.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Reproducibility of Results , Magnetic Resonance Imaging/methods , Perfusion , Perfusion Imaging
4.
Semin Radiat Oncol ; 34(1): 107-119, 2024 01.
Article in English | MEDLINE | ID: mdl-38105085

ABSTRACT

Recognizing the potential of quantitative imaging biomarkers (QIBs) in radiotherapy, many studies have investigated the prognostic value of quantitative MRI (qMRI). With the introduction of MRI-guided radiotherapy systems, the practical challenges of repeated imaging have been substantially reduced. Since patients are treated inside an MRI scanner, acquisition of qMRI can be done during each fraction with limited or no prolongation of the fraction duration. In this review paper, we identify the steps that need been taken to move from MR as an imaging technique to a useful biomarker for MRI-guided radiotherapy (MRgRT).


Subject(s)
Radiotherapy, Image-Guided , Humans , Radiotherapy, Image-Guided/methods , Magnetic Resonance Imaging/methods , Prognosis , Radiotherapy Planning, Computer-Assisted/methods
5.
Radiother Oncol ; 186: 109803, 2023 09.
Article in English | MEDLINE | ID: mdl-37437609

ABSTRACT

BACKGROUND AND PURPOSE: The apparent diffusion coefficient (ADC), a potential imaging biomarker for radiotherapy response, needs to be reproducible before translation into clinical use. The aim of this study was to evaluate the multi-centre delineation- and calculation-related ADC variation and give recommendations to minimize it. MATERIALS AND METHODS: Nine centres received identical diffusion-weighted and anatomical magnetic resonance images of different cancerous tumours (adrenal gland, pelvic oligo metastasis, pancreas, and prostate). All centres delineated the gross tumour volume (GTV), clinical target volume (CTV), and viable tumour volume (VTV), and calculated ADCs using both their local calculation methods and each of the following calculation conditions: b-values 0-500 vs. 150-500 s/mm2, region-of-interest (ROI)-based vs. voxel-based calculation, and mean vs. median. ADC variation was assessed using the mean coefficient of variation across delineations (CVD) and calculation methods (CVC). Absolute ADC differences between calculation conditions were evaluated using Friedman's test. Recommendations for ADC calculation were formulated based on observations and discussions within the Elekta MRI-linac consortium image analysis working group. RESULTS: The median (range) CVD and CVC were 0.06 (0.02-0.32) and 0.17 (0.08-0.26), respectively. The ADC estimates differed 18% between b-value sets and 4% between ROI/voxel-based calculation (p-values < 0.01). No significant difference was observed between mean and median (p = 0.64). Aligning calculation conditions between centres reduced CVC to 0.04 (0.01-0.16). CVD was comparable between ROI types. CONCLUSION: Overall, calculation methods had a larger impact on ADC reproducibility compared to delineation. Based on the results, significant sources of variation were identified, which should be considered when initiating new studies, in particular multi-centre investigations.


Subject(s)
Magnetic Resonance Imaging , Neoplasms , Male , Humans , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods
6.
Front Oncol ; 12: 1037896, 2022.
Article in English | MEDLINE | ID: mdl-36505856

ABSTRACT

Glioblastoma is a high-grade aggressive neoplasm characterised by significant intra-tumoral spatial heterogeneity. Personalising therapy for this tumour requires non-invasive tools to visualise its heterogeneity to monitor treatment response on a regional level. To date, efforts to characterise glioblastoma's imaging features and heterogeneity have focussed on individual imaging biomarkers, or high-throughput radiomic approaches that consider a vast number of imaging variables across the tumour as a whole. Habitat imaging is a novel approach to cancer imaging that identifies tumour regions or 'habitats' based on shared imaging characteristics, usually defined using multiple imaging biomarkers. Habitat imaging reflects the evolution of imaging biomarkers and offers spatially preserved assessment of tumour physiological processes such perfusion and cellularity. This allows for regional assessment of treatment response to facilitate personalised therapy. In this review, we explore different methodologies to derive imaging habitats in glioblastoma, strategies to overcome its technical challenges, contrast experiences to other cancers, and describe potential clinical applications.

7.
Magn Reson Med ; 88(6): 2592-2608, 2022 12.
Article in English | MEDLINE | ID: mdl-36128894

ABSTRACT

Radiation therapy is a major component of cancer treatment pathways worldwide. The main aim of this treatment is to achieve tumor control through the delivery of ionizing radiation while preserving healthy tissues for minimal radiation toxicity. Because radiation therapy relies on accurate localization of the target and surrounding tissues, imaging plays a crucial role throughout the treatment chain. In the treatment planning phase, radiological images are essential for defining target volumes and organs-at-risk, as well as providing elemental composition (e.g., electron density) information for radiation dose calculations. At treatment, onboard imaging informs patient setup and could be used to guide radiation dose placement for sites affected by motion. Imaging is also an important tool for treatment response assessment and treatment plan adaptation. MRI, with its excellent soft tissue contrast and capacity to probe functional tissue properties, holds great untapped potential for transforming treatment paradigms in radiation therapy. The MR in Radiation Therapy ISMRM Study Group was established to provide a forum within the MR community to discuss the unmet needs and fuel opportunities for further advancement of MRI for radiation therapy applications. During the summer of 2021, the study group organized its first virtual workshop, attended by a diverse international group of clinicians, scientists, and clinical physicists, to explore our predictions for the future of MRI in radiation therapy for the next 25 years. This article reviews the main findings from the event and considers the opportunities and challenges of reaching our vision for the future in this expanding field.


Subject(s)
Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Magnetic Resonance Imaging/methods , Motion , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods
8.
Front Oncol ; 12: 897130, 2022.
Article in English | MEDLINE | ID: mdl-35747819

ABSTRACT

Purpose: Intravoxel incoherent motion (IVIM) is a promising technique that can acquire perfusion information without the use of contrast agent, contrary to the more established dynamic contrast-enhanced (DCE) technique. This is of interest for treatment response monitoring, where patients can be imaged on each treatment fraction. In this study, longitudinal correlations between IVIM- and DCE parameters were assessed in prostate cancer patients receiving radiation treatment. Materials and Methods: 20 prostate cancer patients were treated on a 1.5 T MR-linac with 20 x 3 or 3.1 Gy. Weekly IVIM and DCE scans were acquired. Tumors, the peripheral zone (PZ), and the transition zone (TZ) were delineated on a T2-weighted scan acquired on the first fraction. IVIM and DCE scans were registered to this scan and the delineations were propagated. Median values from these delineations were used for further analysis. The IVIM parameters D, f, D* and the product fD* were calculated. The Tofts model was used to calculate the DCE parameters Ktrans, kep and ve. Pearson correlations were calculated for the IVIM and DCE parameters on values from the first fraction for each region of interest (ROI). For longitudinal analysis, the repeated measures correlation coefficient was used to determine correlations between IVIM and DCE parameters in each ROI. Results: When averaging over patients, an increase during treatment in all IVIM and DCE parameters was observed in all ROIs, except for D in the PZ and TZ. No significant Pearson correlations were found between any pair of IVIM and DCE parameters measured on the first fraction. Significant but low longitudinal correlations were found for some combinations of IVIM and DCE parameters in the PZ and TZ, while no significant longitudinal correlations were found in the tumor. Notably in the TZ, for both f and fD*, significant longitudinal correlations with all DCE parameters were found. Conclusions: The increase in IVIM- and DCE parameters when averaging over patients indicates a measurable response to radiation treatment with both techniques. Although low, significant longitudinal correlations were found which suggests that IVIM could potentially be used as an alternative to DCE for treatment response monitoring.

9.
J Clin Med ; 11(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35407606

ABSTRACT

Quantitative MRI has the potential to produce imaging biomarkers for the prediction of early response to radiotherapy treatment. In this pilot study, a potential imaging biomarker, the T1ρ relaxation time, is assessed for this purpose. A T1ρ sequence was implemented on a 1.5 T MR-linac system, a system that combines an MRI with a linear accelerator for radiation treatment. An agar phantom with concentrations of 1-4% w/w was constructed for technical validation of the sequence. Phantom images were assessed in terms of short-term repeatability and signal-to-noise ratio. Twelve rectal cancer patients, who were treated with 5 × 5 Gy, were imaged on each treatment fraction. Individual changes in the T1ρ values of the gross tumor volume (GTV) showed an increase for most patients, although a paired t-test comparing values in the GTV from the first to the last treatment fraction showed no statistically significant difference. The phantom measurements showed excellent short-term repeatability (0.5-1.5 ms), and phantom T1ρ values corresponded to the literature values. T1ρ imaging was implemented successfully on the MR-linac, with a repeatability comparable to diagnostic systems, although clinical benefit in terms of treatment response monitoring remains to be demonstrated.

10.
MAGMA ; 35(2): 311-323, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34643852

ABSTRACT

OBJECTIVE: Dynamic contrast enhanced (DCE)-MRI is currently not generally used for intraocular masses as lesions are small, have an inhomogeneous T1 and the eye is prone to motion. The aim of this paper is to address these eye-specific challenges, enabling accurate ocular DCE-MRI. MATERIALS & METHODS: DCE-MRI of 19 uveal melanoma (UM) patients was acquired using a fat-suppressed 3D spoiled gradient echo sequence with TWIST (time-resolved angiography with stochastic trajectories sequence). The analysis consisted of a two-step registration method to correct for both head and eye motion. A T1 map was calculated to convert signal intensities to concentrations. Subsequently, the Tofts model was fitted voxel wise to obtain Ktrans and ve. RESULTS: Registration significantly improved the concentration curve quality (p < 0.001). The T1 of melanotic lesions was significantly lower than amelanotic lesions (888 ms vs 1350 ms, p = 0.03). The average achieved B1+ in the lesions was 91%. The average Ktrans was 0.46 min-1 (range 0.13-1.0) and the average ve was 0.22 (range 0.10-0.51). CONCLUSION: Using this eye-specific analysis, DCE of intraocular masses is possible which might aid in the diagnosis, prognosis and follow-up of UM.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Angiography , Humans , Magnetic Resonance Imaging/methods , Motion , Prognosis
11.
Front Oncol ; 11: 705964, 2021.
Article in English | MEDLINE | ID: mdl-34485138

ABSTRACT

PURPOSE: Daily quantitative MR imaging during radiotherapy of cancer patients has become feasible with MRI systems integrated with linear accelerators (MR-linacs). Quantitative images could be used for treatment response monitoring. With intravoxel incoherent motion (IVIM) MRI, it is possible to acquire perfusion information without the use of contrast agents. In this multicenter study, daily IVIM measurements were performed in prostate cancer patients to identify changes that potentially reflect response to treatment. MATERIALS AND METHODS: Forty-three patients were included, treated with 20 fractions of 3 Gy on a 1.5 T MR-linac. IVIM measurements were performed on each treatment day. The diffusion coefficient (D), perfusion fraction (f), and pseudo-diffusion coefficient (D*) were calculated based on the median signal intensities in the non-cancerous prostate and the tumor. Repeatability coefficients (RCs) were determined based on the first two treatment fractions. Separate linear mixed-effects models were constructed for the three IVIM parameters. RESULTS: In total, 726 fractions were analyzed. Pre-treatment average values, measured on the first fraction before irradiation, were 1.46 × 10-3 mm2/s, 0.086, and 28.7 × 10-3 mm2/s in the non-cancerous prostate and 1.19 × 10-3 mm2/s, 0.088, and 28.9 × 10-3 mm2/s in the tumor, for D, f, and D*, respectively. The repeatability coefficients for D, f, and D* in the non-cancerous prostate were 0.09 × 10-3 mm2/s, 0.05, and 15.3 × 10-3 mm2/s. In the tumor, these values were 0.44 × 10-3 mm2/s, 0.16, and 76.4 × 10-3 mm2/s. The mixed effects analysis showed an increase in D of the tumors over the course of treatment, while remaining stable in the non-cancerous prostate. The f and D* increased in both the non-cancerous prostate and tumor. CONCLUSIONS: It is feasible to perform daily IVIM measurements on an MR-linac system. Although the repeatability coefficients were high, changes in IVIM perfusion parameters were measured on a group level, indicating that IVIM has potential for measuring treatment response.

12.
Eur J Cancer ; 153: 64-71, 2021 08.
Article in English | MEDLINE | ID: mdl-34144436

ABSTRACT

Quantitative imaging biomarkers (QIBs) derived from MRI techniques have the potential to be used for the personalised treatment of cancer patients. However, large-scale data are missing to validate their added value in clinical practice. Integrated MRI-guided radiotherapy (MRIgRT) systems, such as hybrid MRI-linear accelerators, have the unique advantage that MR images can be acquired during every treatment session. This means that high-frequency imaging of QIBs becomes feasible with reduced patient burden, logistical challenges, and costs compared to extra scan sessions. A wealth of valuable data will be collected before and during treatment, creating new opportunities to advance QIB research at large. The aim of this paper is to present a roadmap towards the clinical use of QIBs on MRIgRT systems. The most important need is to gather and understand how the QIBs collected during MRIgRT correlate with clinical outcomes. As the integrated MRI scanner differs from traditional MRI scanners, technical validation is an important aspect of this roadmap. We propose to integrate technical validation with clinical trials by the addition of a quality assurance procedure at the start of a trial, the acquisition of in vivo test-retest data to assess the repeatability, as well as a comparison between QIBs from MRIgRT systems and diagnostic MRI systems to assess the reproducibility. These data can be collected with limited extra time for the patient. With integration of technical validation in clinical trials, the results of these trials derived on MRIgRT systems will also be applicable for measurements on other MRI systems.


Subject(s)
Biomarkers/metabolism , Magnetic Resonance Imaging/methods , Radiation Oncology/methods , Radiotherapy, Image-Guided/methods , Humans
14.
Radiother Oncol ; 153: 106-113, 2020 12.
Article in English | MEDLINE | ID: mdl-33017604

ABSTRACT

BACKGROUND AND PURPOSE: Diffusion-weighted imaging (DWI) for treatment response monitoring is feasible on hybrid magnetic resonance linear accelerator (MR-linac) systems. The MRI scanner of the Elekta Unity system has an adjusted design compared to diagnostic scanners. We investigated its impact on measuring the DWI-derived apparent diffusion coefficient (ADC) regarding three aspects: the choice of b-values, the spatial variation of the ADC, and scanning during radiation treatment. The aim of this study is to give recommendations for accurate ADC measurements on Unity systems. MATERIALS AND METHODS: Signal-to-noise ratio (SNR) measurements with increasing b-values were done to determine the highest bvalue that can be measured reliably. The spatial variation of the ADC was assessed on six Unity systems with a cylindrical phantom of 40 cm diameter. The influence of gantry rotation and irradiation was investigated by acquiring DWI images before and during treatment of 11 prostate cancer patients. RESULTS: On the Unity system, a maximum b-value of 500 s/mm2 should be used for ADC quantification, as a trade-off between SNR and diffusion weighting. Accurate ADC values were obtained within 7 cm from the iso-center, while outside this region ADC values deviated more than 5%. The ADC was not influenced by the rotating linac or irradiation during treatment. CONCLUSION: We provide Unity system specific recommendations for measuring the ADC. This will increase the consistency of ADC values acquired in different centers on the Unity system, enabling large cohort studies for biomarker discovery and treatment response monitoring.


Subject(s)
Diffusion Magnetic Resonance Imaging , Particle Accelerators , Humans , Magnetic Resonance Imaging , Male , Phantoms, Imaging , Signal-To-Noise Ratio
15.
Radiother Oncol ; 153: 114-121, 2020 12.
Article in English | MEDLINE | ID: mdl-32931890

ABSTRACT

BACKGROUND AND PURPOSE: A wide variation of MRI systems is a challenge in multicenter imaging biomarker studies as it adds variation in quantitative MRI values. The aim of this study was to design and test a quality assurance (QA) framework based on phantom measurements, for the quantitative MRI protocols of a multicenter imaging biomarker trial of locally advanced cervical cancer. MATERIALS AND METHODS: Fifteen institutes participated (five 1.5 T and ten 3 T scanners). Each institute optimized protocols for T2, diffusion-weighted imaging, T1, and dynamic contrast-enhanced (DCE-)MRI according to system possibilities, institutional preferences and study-specific constraints. Calibration phantoms with known values were used for validation. Benchmark protocols, similar on all systems, were used to investigate whether differences resulted from variations in institutional protocols or from system variations. Bias, repeatability (%RC), and reproducibility (%RDC) were determined. Ratios were used for T2 and T1 values. RESULTS: The institutional protocols showed a range in bias of 0.88-0.98 for T2 (median %RC = 1%; %RDC = 12%), -0.007 to 0.029 × 10-3 mm2/s for the apparent diffusion coefficient (median %RC = 3%; %RDC = 18%), and 0.39-1.29 for T1 (median %RC = 1%; %RDC = 33%). For DCE a nonlinear vendor-specific relation was observed between measured and true concentrations with magnitude data, whereas the relation was linear when phase data was used. CONCLUSION: We designed a QA framework for quantitative MRI protocols and demonstrated for a multicenter trial for cervical cancer that measurement of consistent T2 and apparent diffusion coefficient values is feasible despite protocol differences. For DCE-MRI and T1 mapping with the variable flip angle method, this was more challenging.


Subject(s)
Uterine Cervical Neoplasms , Diffusion Magnetic Resonance Imaging , Female , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Reproducibility of Results , Uterine Cervical Neoplasms/diagnostic imaging
16.
Eur Radiol Exp ; 4(1): 9, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32030561

ABSTRACT

BACKGROUND: Diffusion-weighted imaging (DWI) has shown great value in rectal cancer imaging. However, traditional DWI with echo-planar imaging (DW-EPI) often suffers from geometrical distortions. We applied a three-dimensional diffusion-prepared stimulated-echo turbo spin-echo sequence (DPsti-TSE), allowing geometrically undistorted rectal DWI. We compared DPsti-TSE with DW-EPI for locally advanced rectal cancer DWI. METHODS: For 33 prior-to-treatment patients, DWI images of the rectum were acquired with DPsti-TSE and DW-EPI at 3 T using b-values of 200 and 1000 s/mm2. Two radiologists conducted a blinded scoring of the images considering nine aspects of image quality and anatomical quality. Tumour apparent diffusion coefficient (ADC) and distortions were compared quantitatively. RESULTS: DPsti-TSE scored significantly better than DW-EPI in rectum distortion (p = 0.005) and signal pileup (p = 0.001). DPsti-TSE had better tumour Dice similarity coefficient compared to DW-EPI (0.84 versus 0.80, p = 0.010). Tumour ADC values were higher for DPsti-TSE compared to DW-EPI (1.47 versus 0.86 × 10-3 mm2/s, p < 0.001). Radiologists scored DPsti-TSE significantly lower than DW-EPI on aspects of overall image quality (p = 0.001), sharpness (p < 0.001), quality of fat suppression (p < 0.001), tumour visibility (p = 0.009), tumour conspicuity (p = 0.010) and rectum wall visibility (p = 0.005). CONCLUSIONS: DPsti-TSE provided geometrically less distorted rectal cancer diffusion-weighted images. However, the image quality of DW-EPI over DPsti-TSE was referred on the basis of several image quality criteria. A significant bias in tumour ADC values from DPsti-TSE was present. Further improvements of DPsti-TSE are needed until it can replace DW-EPI.


Subject(s)
Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Imaging, Three-Dimensional , Rectal Neoplasms/diagnostic imaging , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Rectal Neoplasms/pathology
17.
Front Oncol ; 10: 615643, 2020.
Article in English | MEDLINE | ID: mdl-33585242

ABSTRACT

MRI-guided radiotherapy systems have the potential to bring two important concepts in modern radiotherapy together: adaptive radiotherapy and biological targeting. Based on frequent anatomical and functional imaging, monitoring the changes that occur in volume, shape as well as biological characteristics, a treatment plan can be updated regularly to accommodate the observed treatment response. For this purpose, quantitative imaging biomarkers need to be identified that show changes early during treatment and predict treatment outcome. This review provides an overview of the current evidence on quantitative MRI measurements during radiotherapy and their potential as an imaging biomarker on MRI-guided radiotherapy systems.

18.
J Magn Reson Imaging ; 51(4): 1235-1246, 2020 04.
Article in English | MEDLINE | ID: mdl-31588646

ABSTRACT

BACKGROUND: Previous studies have reported tumor volume underestimation with multiparametric (mp)MRI in prostate cancer diagnosis. PURPOSE: To investigate why some parts of lesions are not visible on mpMRI by comparing their histopathology features to those of visible regions. STUDY TYPE: Retrospective. POPULATION: Thirty-four patients with biopsy-proven prostate cancer scheduled for prostatectomy (median 68.7 years). FIELD STRENGTH/SEQUENCE: T2 -weighted, diffusion-weighted imaging, T2 mapping, and dynamic contrast-enhanced MRI on two 3T systems and one 1.5T system. ASSESSMENT: Two readers delineated suspicious lesions on mpMRI. A pathologist delineated the lesions on histopathology. A patient-customized mold enabled the registration of histopathology and MRI. On histopathology we identified mpMRI visible and invisible lesions. Subsequently, within the visible lesions we identified regions that were visible and regions that were invisible on mpMRI. For each lesion and region the following characteristics were determined: size, location, International Society of Urological Pathology (ISUP) grade, and Gleason subpatterns (density [dense/intermediate], tumor morphology [homogeneous/heterogeneous], cribriform growth [yes/no]). STATISTICAL TESTS: With generalized linear mixed-effect modeling we investigated which features explain why a lesion or a region was invisible on MRI. We compared imaging values (T2 , ADC, and Ktrans ) for these features with one-way analysis of variance (ANOVA). RESULTS: Small, anterior, and ISUP grade 1-2 lesions (n = 34) were missed more frequent than large, posterior, ISUP grade ≥ 3 lesions (n = 35). Invisible regions on mpMRI had lower tumor density, heterogeneous tumor morphology, and were located in the transition zone. Both T2 and ADC values were higher in "intermediate" compared with "dense" regions (P = 0.002 and < 0.001) and in regions with heterogeneous compared with homogeneous morphology (P < 0.001 and 0.03). Ktrans was not significantly different (P = 0.24 and 0.99). DATA CONCLUSION: Regions of prostate cancer lesions that are invisible on mpMRI have different histopathology features than visible regions. This may have implications for monitoring during active surveillance and focal treatment strategies. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:1235-1246.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Humans , Magnetic Resonance Imaging , Male , Prostatic Neoplasms/diagnostic imaging , Retrospective Studies
19.
Front Oncol ; 9: 1264, 2019.
Article in English | MEDLINE | ID: mdl-31867266

ABSTRACT

Purpose: Quantitative MRI reflects tissue characteristics. As possible changes during radiotherapy may lead to treatment adaptation based on response, we here assessed if such changes during treatment can be detected. Methods and Materials: In the hypoFLAME trial patients received ultra-hypofractionated prostate radiotherapy with an integrated boost to the tumor in 5 weekly fractions. We analyzed T2 and ADC maps of 47 patients that were acquired in MRI exams prior to and during radiotherapy, and performed rigid registrations based on the prostate contour on anatomical T2-weighted images. We analyzed median T2 and ADC values in three regions of interest (ROIs): the central gland (CG), peripheral zone (PZ), and tumor. We analyzed T2 and ADC changes during treatment and compared patients with and without hormonal therapy. We tested changes during treatment for statistical significance with Wilcoxon signed rank tests. Using confidence intervals as recommended from test-retest measurements, we identified persistent T2 and ADC changes during treatment. Results: In the CG, median T2 and ADC values significantly decreased 12 and 8%, respectively, in patients that received hormonal therapy, while in the PZ these values decreased 17 and 18%. In the tumor no statistically significant change was observed. In patients that did not receive hormonal therapy, median ADC values in the tumor increased with 20%, while in the CG and PZ no changes were observed. Persistent T2 changes in the tumor were found in 2 out of 24 patients, while none of the 47 patients had persistent ADC changes. Conclusions: Weekly quantitative MRI could identify statistically significant ADC changes in the tumor in patients without hormonal therapy. On a patient level few persistent T2 changes in the tumor were observed. Long-term follow-up is required to relate the persistent T2 and ADC changes to outcome and evaluate the applicability of quantitative MRI for response based treatment adaptation.

20.
Clin Transl Radiat Oncol ; 18: 74-79, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31341980

ABSTRACT

MRI is increasingly used in radiation oncology to facilitate tumor and organ-at-risk delineation and image guidance. In this review, we address issues of MRI that are relevant for radiation oncologists when interpreting MR images offered for radiotherapy. Whether MRI is used in combination with CT or in an MRI-only workflow, it is generally necessary to ensure that MR images are acquired in treatment position, using the positioning and fixation devices that are commonly applied in radiotherapy. For target delineation, often a series of separate image sets are used with distinct image contrasts, acquired within a single exam. MR images can suffer from image distortions. While this can be avoided with dedicated scan protocols, in a diagnostic setting geometrical fidelity is less relevant and is therefore less accounted for. Since geometrical fidelity is of utmost importance in radiation oncology, it requires dedicated scan protocols. The strong magnetic field of an MRI scanner and the use of radiofrequency radiation can cause safety hazards if not properly addressed. Safety screening is crucial for every patient and every operator prior to entering the MRI room.

SELECTION OF CITATIONS
SEARCH DETAIL
...