Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; : e202400301, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877605

ABSTRACT

Quaternary ammonium compounds have served as a first line of protection for human health as surface disinfectants and sanitizers for nearly a century. However, increasing levels of bacterial resistance have spurred the development of novel QAC architectures. In light of the observed reduction in eukaryotic cell toxicity when the alkyl chains on QACs are shorter in nature (≤10C), we prepared 47 QAC architectures that bear multiple short alkyl chains appended to up to three cationic groups, thus rendering them "bushy-tailed" multiQACs. Antibacterial activity was strong (often ~1-4 µM) in a varied set of bushy-tailed architectures, though observed therapeutic indices were not significantly improved over QAC structures bearing fewer and longer alkyl chains.

2.
ChemMedChem ; : e202400262, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718280

ABSTRACT

Quaternary ammonium compound (QAC) disinfectants represent one of our first lines of defense against pathogens. Their inhibitory and bactericidal activities are usually tested through minimum inhibitory concentration (MIC) and time-kill assays, but these assays can become cumbersome when screening many compounds. We investigated how the dynamic surface tension (DST) measurements of QACs correlate with these antimicrobial activities by testing a panel of potent and structurally varied QACs against the gram-positive Staphylococcus aureus and the gram-negative Pseudomonas aeruginosa. We found that DST values correlated well with bactericidal activity in real-world disinfection conditions but not with MIC values. Moreover, no correlation between these two antimicrobial activities of QACs (bactericidal and inhibition) was observed. In addition, we observed that the bactericidal activity of our QAC panel against the gram-negative P. aeruginosa was severely affected in the presence of hard water. Interestingly, we found that the counterion of the QAC affects the killing of bacteria in these conditions, a phenomenon not observed in most MIC assessments. Moreover, some of our best-in-class QACs show enhanced bactericidal activity when combined with a commercially available QAC. In conclusion, we determined that an intrinsic physical property of QACs (DST) can be used as a technique to screen for bactericidal activity of QACs in conditions that mimic real-world disinfection conditions.

3.
ChemMedChem ; 19(11): e202300718, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38416542

ABSTRACT

Cationic biocides play a crucial role in the disinfection of domestic and healthcare surfaces. Due to the rise of bacterial resistance towards common cationic disinfectants like quaternary ammonium compounds (QACs), the development of novel actives is necessary for effective infection prevention and control. Toward this end, a series of 15 chimeric biscationic amphiphilic compounds, bearing both ammonium and phosphonium residues, were prepared to probe the structure and efficacy of mixed cationic ammonium-phosphonium structures. Compounds were obtained in two steps and good yields, with straightforward and chromatography-free purifications. Antibacterial activity evaluation of these compounds against a panel of seven bacterial strains, including two MRSA strains as well as opportunistic pathogen A. baumannii, were encouraging, as low micromolar inhibitory activity was observed for multiple structures. Alkyl chain length on the ammonium group was, as expected, a major determinant of bioactivity. In addition, high therapeutic indexes (up to 125-fold) for triphenyl phosphonium-bearing amphiphiles were observed when comparing antimicrobial activity to mammalian cell lysis activity.


Subject(s)
Anti-Bacterial Agents , Disinfectants , Microbial Sensitivity Tests , Organophosphorus Compounds , Quaternary Ammonium Compounds , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/chemical synthesis , Disinfectants/pharmacology , Disinfectants/chemistry , Disinfectants/chemical synthesis , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Surface-Active Agents/chemical synthesis , Humans , Acinetobacter baumannii/drug effects , Dose-Response Relationship, Drug
4.
Curr Opin Microbiol ; 66: 32-38, 2022 04.
Article in English | MEDLINE | ID: mdl-34933206

ABSTRACT

As an anaerobe, Clostridioides difficile relies on the formation of a dormant spore for survival outside of the mammalian host's gastrointestinal tract. The spore is recalcitrant to desiccation, numerous disinfectants, UV light, and antibiotics, permitting long-term survival against environmental insults and efficient transmission from host to host. Although the morphological stages of spore formation are similar between C. difficile and other well-studied endospore-forming bacteria, the C. difficile genome does not appear to encode many of the known, conserved regulatory factors that are necessary to initiate sporulation in other spore-forming bacteria. The absence of early sporulation-specific orthologs suggests that C. difficile has evolved to control sporulation initiation in response to its unique and specific ecological niche and environmental cues within the host. Here, we review our current understanding and highlight the recent discoveries that have begun to unravel the regulatory pathways and molecular mechanisms by which C. difficile induces spore formation.


Subject(s)
Clostridioides difficile , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Clostridioides , Clostridioides difficile/genetics , Mammals , Spores, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...