Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Microbiome ; 12(1): 31, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38383483

BACKGROUND: People living with HIV (PLWH), even when viral replication is controlled through antiretroviral therapy (ART), experience persistent inflammation. This inflammation is partly attributed to intestinal microbial dysbiosis and translocation, which may lead to non-AIDS-related aging-associated comorbidities. The extent to which living with HIV - influenced by the infection itself, ART usage, sexual orientation, or other associated factors - affects the biological age of the intestines is unclear. Furthermore, the role of microbial dysbiosis and translocation in the biological aging of PLWH remains to be elucidated. To investigate these uncertainties, we used a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PLWH on ART and people living without HIV (PLWoH) as controls. RESULTS: PLWH exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to PLWoH. Investigating the relationship between microbial translocation and biological aging, PLWH had decreased levels of tight junction proteins in the intestines, along with increased microbial translocation. This intestinal permeability correlated with faster biological aging and increased inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PLWH had higher abundance of specific pro-inflammatory bacteria, such as Catenibacterium and Prevotella. These bacteria correlated with accelerated biological aging. Conversely, the intestines of PLWH had lower abundance of bacteria known for producing the anti-inflammatory short-chain fatty acids, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbe-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid. CONCLUSIONS: We identified specific microbial compositions and microbiota-related metabolic pathways that are intertwined with intestinal and systemic biological aging. This microbial signature of biological aging is likely reflecting various factors including the HIV infection itself, ART usage, sexual orientation, and other aspects associated with living with HIV. A deeper understanding of the mechanisms underlying these connections could offer potential strategies to mitigate accelerated aging and its associated health complications. Video Abstract.


Gastrointestinal Microbiome , HIV Infections , Humans , Female , Male , HIV Infections/drug therapy , Dysbiosis/microbiology , Gastrointestinal Microbiome/genetics , Intestines/microbiology , Aging , Bacteria/genetics , Inflammation/microbiology , Anti-Inflammatory Agents
2.
Metabolites ; 14(1)2024 Jan 03.
Article En | MEDLINE | ID: mdl-38248836

Type 2 diabetes mellitus (T2DM) poses a higher risk for complications in South Asian individuals compared to other ethnic groups. To shed light on potential mediating factors, we investigated lipidomic changes in plasma of Dutch South Asians (DSA) and Dutch white Caucasians (DwC) with and without T2DM and explore their associations with clinical features. Using a targeted quantitative lipidomics platform, monitoring over 1000 lipids across 17 classes, along with 1H NMR based lipoprotein analysis, we studied 51 healthy participants (21 DSA, 30 DwC) and 92 T2DM patients (47 DSA, 45 DwC) from the MAGNetic resonance Assessment of VICTOza efficacy in the Regression of cardiovascular dysfunction in type 2 dIAbetes mellitus (MAGNA VICTORIA) study. This comprehensive mapping of the circulating lipidome allowed us to identify relevant lipid modules through unbiased weighted correlation network analysis, as well as disease and ethnicity related key mediatory lipids. Significant differences in lipidomic profiles, encompassing various lipid classes and species, were observed between T2DM patients and healthy controls in both the DSA and DwC populations. Our analyses revealed that healthy DSA, but not DwC, controls already exhibited a lipid profile prone to develop T2DM. Particularly, in DSA-T2DM patients, specific lipid changes correlated with clinical features, particularly diacylglycerols (DGs), showing significant associations with glycemic control and renal function. Our findings highlight an ethnic distinction in lipid modules influencing clinical outcomes in renal health. We discover distinctive ethnic disparities of the circulating lipidome and identify ethnicity-specific lipid markers. Jointly, our discoveries show great potential as personalized biomarkers for the assessment of glycemic control and renal function in DSA-T2DM individuals.

3.
Res Sq ; 2023 Oct 30.
Article En | MEDLINE | ID: mdl-37961645

Background: People with HIV (PWH), even with controlled viral replication through antiretroviral therapy (ART), experience persistent inflammation. This is partly due to intestinal microbial dysbiosis and translocation. Such ongoing inflammation may lead to the development of non-AIDS-related aging-associated comorbidities. However, there remains uncertainty regarding whether HIV affects the biological age of the intestines and whether microbial dysbiosis and translocation influence the biological aging process in PWH on ART. To fill this knowledge gap, we utilized a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PWH on ART and their matched HIV-negative counterparts. Results: Despite having similar chronological ages, PWH on ART exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to HIV-negative controls. Investigating the relationship between microbial translocation and biological aging, PWH on ART had decreased levels of tight junction proteins in the colon and ileum, along with increased microbial translocation. This increased intestinal permeability correlated with faster intestinal and systemic biological aging, as well as increased systemic inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PWH on ART had higher abundance of specific pro-inflammatory bacterial genera, such as Catenibacterium and Prevotella. These bacteria significantly correlated with accelerated local and systemic biological aging. Conversely, the intestines of PWH on ART had lower abundance of bacterial genera known for producing short-chain fatty acids and exhibiting anti-inflammatory properties, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria taxa were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbial-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid and oleic acid. Conclusions: We identified a specific microbial composition and microbiome-related metabolic pathways that are intertwined with both intestinal and systemic biological aging in PWH on ART. A deeper understanding of the mechanisms underlying these connections could potentially offer strategies to counteract premature aging and its associated health complications in PWH.

4.
Cell Rep ; 42(11): 113336, 2023 11 28.
Article En | MEDLINE | ID: mdl-37918403

Antiretroviral therapy (ART) has dramatically lengthened lifespan among people with HIV (PWH), but this population experiences heightened rates of inflammation-related comorbidities. HIV-associated inflammation is linked with an altered microbiome; whether such alterations precede inflammation-related comorbidities or occur as their consequence remains unknown. We find that ART-treated PWH exhibit depletion of gut-resident bacteria that produce short-chain fatty acids (SCFAs)-crucial microbial metabolites with anti-inflammatory properties. Prior reports establish that fecal SCFA concentrations are not depleted in PWH. We find that gut-microbiota-mediated SCFA production capacity is better reflected in serum than in feces and that PWH exhibit reduced serum SCFA, which associates with inflammatory markers. Leveraging stool and serum samples collected prior to comorbidity onset, we find that HIV-specific microbiome alterations precede morbidity and mortality in ART-treated PWH. Among these microbiome alterations, reduced microbiome-mediated conversion of lactate to propionate precedes mortality in PWH. Thus, gut microbial fiber/lactate conversion to SCFAs may modulate HIV-associated comorbidity risk.


Gastrointestinal Microbiome , HIV Infections , Humans , Fatty Acids, Volatile/metabolism , Feces/microbiology , HIV Infections/complications , Morbidity , Inflammation , Lactates
5.
Diabetes Obes Metab ; 25(8): 2374-2387, 2023 08.
Article En | MEDLINE | ID: mdl-37202875

BACKGROUND: Composition of high-density lipoproteins (HDL) is emerging as an important determinant in the development of microvascular complications in type 2 diabetes mellitus (T2DM). Dutch South Asian (DSA) individuals with T2DM display an increased risk of microvascular complications compared with Dutch white Caucasian (DwC) individuals with T2DM. In this study, we aimed to investigate whether changes in HDL composition associate with increased microvascular risk in this ethnic group and lead to new lipoprotein biomarkers. MATERIALS AND METHODS: Using 1 H nuclear magnetic resonance spectroscopy and Bruker IVDr Lipoprotein Subclass Analysis (B.I.LISA) software, plasma lipoprotein changes were determined in 51 healthy individuals (30 DwC, 21 DSA) and 92 individuals with T2DM (45 DwC, 47 DSA) in a cross-sectional, case-control study. Differential HDL subfractions were investigated using multinomial logistic regression analyses, adjusting for possible confounders including BMI and diabetes duration. RESULTS: We identified HDL compositional differences between healthy and diabetic individuals in both ethnic groups. Specifically, levels of apolipoprotein A2 and HDL-4 subfractions were lower in DSA compared with DwC with T2DM. Apolipoprotein A2 and HDL-4 subfractions also negatively correlated with waist circumference, waist-to-hip ratio, haemoglobin A1c, glucose levels and disease duration in DSA with T2DM, and associated with increased incidence of microvascular complications. CONCLUSION: While HDL composition differed between controls and T2DM in both ethnic groups, the lower levels of lipid content in the smallest HDL subclass (HDL-4) in DSA with T2DM appeared to be more clinically relevant, with higher odds of having diabetes-related pan-microvascular complications such as retinopathy and neuropathy. These typical differences in HDL could be used as ethnicity-specific T2DM biomarkers.


Diabetes Mellitus, Type 2 , Lipoproteins, HDL , Humans , Cross-Sectional Studies , Case-Control Studies , Apolipoprotein A-II , Lipoproteins , Biomarkers , Cholesterol, HDL
6.
Metabolites ; 12(12)2022 Dec 06.
Article En | MEDLINE | ID: mdl-36557262

The interaction of malaria parasites with their human host is extensively studied, yet only few studies reported how P. falciparum infection affects urinary metabolite profiles and how this is associated with immunity. We present a longitudinal study of the urinary metabolic profiles of twenty healthy Africans with lifelong exposure to malaria and five malaria-naïve Europeans, who were all challenged with direct venous inoculation of live P. falciparum sporozoïtes (PfSPZ) and followed up until they developed symptoms or became thick blood smear positive (TBS). Urine samples were collected before and at 2, 5, 9 and 11 days post challenge and were analysed. Upon infection, all Europeans became TBS positive, while Africans showed either a delay in time to parasitaemia or controlled infection. Our metabolic data showed that Europeans and Africans had distinct alterations in metabolite patterns, with changes mostly seen on days 5 and 9 post PfSPZ infection, and more prominently in Europeans. Within the African group, the levels of formate, urea, trimethylamine, threonine, choline, myo-inositol and acetate were significantly higher in TBS positive whereas the levels of pyruvate, 3-methylhistidine and dimethylglycine were significantly lower in individuals who remained TBS negative. Notably, before inoculation with PfSPZ, a group of metabolites including phenylacetylglutamine can potentially be used to predict parasitaemia control among Africans. Taken together, this study highlights the difference in urinary metabolic changes in response to malaria infection as a consequence of lifelong exposure to malaria and that change detectable before challenge might predict the control of parasitaemia in malaria-endemic areas.

7.
Metabolites ; 12(11)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36355113

The lipid composition of lipoprotein particles is determinative of their respective formation and function. In turn, the combination and correlation of nuclear magnetic resonance (NMR)-based lipoprotein measurements with mass spectrometry (MS)-based lipidomics is an appealing technological combination for a better understanding of lipid metabolism in health and disease. Here, we developed a combined workflow for subsequent NMR- and MS-based analysis on single sample aliquots of human plasma. We evaluated the quantitative agreement of the two platforms for lipid quantification and benchmarked our combined workflow. We investigated the congruence and complementarity between the platforms in order to facilitate a better understanding of patho-physiological lipoprotein and lipid alterations. We evaluated the correlation and agreement between the platforms. Next, we compared lipid class concentrations between healthy controls and rheumatoid arthritis patient samples to investigate the consensus among the platforms on differentiating the two groups. Finally, we performed correlation analysis between all measured lipoprotein particles and lipid species. We found excellent agreement and correlation (r > 0.8) between the platforms and their respective diagnostic performance. Additionally, we generated correlation maps detailing lipoprotein/lipid interactions and describe disease-relevant correlations.

8.
Lancet Microbe ; 3(6): e443-e451, 2022 06.
Article En | MEDLINE | ID: mdl-35659906

BACKGROUND: Gut colonisation by extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli is a risk factor for developing overt infection. The gut microbiome can provide colonisation resistance against enteropathogens, but it remains unclear whether it confers resistance against ESBL-producing E coli. We aimed to identify a potential role of the microbiome in controlling colonisation by this antibiotic-resistant bacterium. METHODS: For this matched case-control study, we used faeces from 2751 individuals in a Dutch cross-sectional population study (PIENTER-3) to culture ESBL-producing bacteria. Of these, we selected 49 samples that were positive for an ESBL-producing E coli (ESBL-positive) and negative for several variables known to affect microbiome composition. These samples were matched 1:1 to ESBL-negative samples on the basis of individuals' age, sex, having been abroad or not in the past 6 months, and ethnicity. Shotgun metagenomic sequencing was done and taxonomic species composition and functional annotations (ie, microbial metabolism and carbohydrate-active enzymes) were determined. Targeted quantitative metabolic profiling (proton nuclear magnetic resonance spectroscopy) was done to investigate metabolomic profiles and combinations of univariate (t test and Wilcoxon test), multivariate (principal coordinates analysis, permutational multivariate analysis of variance, and partial least-squares discriminant analysis) and machine-learning approaches (least absolute shrinkage and selection operator and random forests) were used to analyse all the molecular data. FINDINGS: No differences in diversity parameters or in relative abundance were observed between ESBL-positive and ESBL-negative groups based on bacterial species-level composition. Machine-learning approaches using microbiota composition did not accurately predict ESBL status (area under the receiver operating characteristic curve [AUROC]=0·41) when using either microbiota composition or any of the functional profiles. The metabolome also did not differ between ESBL groups, as assessed by various methods including random forest (AUROC=0·61). INTERPRETATION: By combining multiomics and machine-learning approaches, we conclude that asymptomatic gut carriage of ESBL-producing E coli is not associated with an altered microbiome composition or function. This finding might suggest that microbiome-mediated colonisation resistance against ESBL-producing E coli is not as relevant as it is against other enteropathogens and antibiotic-resistant bacteria. FUNDING: None.


Escherichia coli , Gastrointestinal Microbiome , Adult , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Case-Control Studies , Cross-Sectional Studies , Escherichia coli/genetics , Ethnicity , Gastrointestinal Microbiome/genetics , Humans , Metabolome , beta-Lactamases/genetics
9.
Am J Nephrol ; 53(6): 470-480, 2022.
Article En | MEDLINE | ID: mdl-35613556

INTRODUCTION: In autosomal dominant polycystic kidney disease (ADPKD) patients, predicting renal disease progression is important to make a prognosis and to support the clinical decision whether to initiate renoprotective therapy. Conventional markers all have their limitations. Metabolic profiling is a promising strategy for risk stratification. We determined the prognostic performance to identify patients with a fast progressive disease course and evaluated time-dependent changes in urinary metabolites. METHODS: Targeted, quantitative metabolomics analysis (1H NMR-spectroscopy) was performed on spot urinary samples at two time points, baseline (n = 324, 61% female; mean age 45 years, SD 11; median eGFR 61 mL/min/1.73 m2, IQR 42-88; mean years of creatinine follow-up 3.7, SD 1.3) and a sample obtained after 3 years of follow-up (n = 112). Patients were stratified by their eGFR slope into fast and slow progressors based on an annualized change of > -3.0 or ≤ -3.0 mL/min/1.73 m2/year, respectively. Fifty-five urinary metabolites and ratios were quantified, and the significant ones were selected. Logistic regression was used to determine prognostic performance in identifying those with a fast progressive course using baseline urine samples. Repeated-measures ANOVA was used to analyze whether changes in urinary metabolites over a 3-year follow-up period differed between fast and slow progressors. RESULTS: In a single urinary sample, the prognostic performance of urinary metabolites was comparable to that of a model including height-adjusted total kidney volume (htTKV, AUC = 0.67). Combined with htTKV, the predictive value of the metabolite model increased (AUC = 0.75). Longitudinal analyses showed an increase in the myoinositol/citrate ratio (p < 0.001) in fast progressors, while no significant change was found in those with slow progression, which is in-line with an overall increase in the myoinositol/citrate ratio as GFR declines. CONCLUSION: A metabolic profile, measured at a single time point, showed at least equivalent prognostic performance to an imaging-based risk marker in ADPKD. Changes in urinary metabolites over a 3-year follow-up period were associated with a fast progressive disease course.


Polycystic Kidney, Autosomal Dominant , Citric Acid/metabolism , Disease Progression , Female , Glomerular Filtration Rate , Humans , Inositol/metabolism , Kidney , Male , Middle Aged
10.
J Clin Lipidol ; 16(4): 472-482, 2022.
Article En | MEDLINE | ID: mdl-35568684

BACKGROUND: Mutations in genes encoding lipoprotein lipase (LPL) or its regulators can cause severe hypertriglyceridemia (HTG). Thus far, the effect of genetic HTG on the lipid profile has been mainly determined via conventional techniques. OBJECTIVE: To show detailed differences in the (apo)lipoprotein profile of patients with genetic HTG by combining LC-MS and NMR techniques. METHODS: Fasted serum from 7 patients with genetic HTG and 10 normolipidemic controls was used to measure the concentration of a spectrum of apolipoproteins by LC-MS, and to estimate the concentration and size of lipoprotein subclasses and class-specific lipid composition using NMR spectroscopy. RESULTS: Patients with genetic HTG compared to normolipidemic controls had higher levels of apoB48 (fold change [FC] 11.3, P<0.001), apoC-I (FC 1.5, P<0.001), apoC-II (FC 4.3, P=0.007), apoC-III (FC 3.4, P<0.001), and apoE (FC 4.3, P<0.001), without altered apoB100. In addition, patients with genetic HTG had higher concentrations of TG-rich lipoproteins (i.e., chylomicrons and very low-density lipoproteins [VLDL]; FC 3.0, P<0.001), but lower LDL (FC 0.4, P=0.001), of which medium and small-sized LDL particles appeared even absent. While the correlation coefficient between NMR and enzymatic analysis in normolipidemic controls was high, it was considerably reduced in patients with genetic HTG. CONCLUSION: The lipoprotein profile of patients with genetic HTG is predominated with large lipoproteins (i.e., chylomicrons, VLDL), explaining high levels of apoC-I, apoC-II, apoC-III and apoE, whereas small atherogenic LDL particles are absent. The presence of chylomicrons in patients with HTG weakens the accuracy of the NMR-based model as it was designed for normolipidemic fasted individuals.


Hyperlipidemias , Hypertriglyceridemia , Apolipoprotein C-III/genetics , Apolipoproteins , Apolipoproteins E/genetics , Chromatography, Liquid , Chylomicrons , Humans , Hypertriglyceridemia/genetics , Lipoproteins, VLDL , Magnetic Resonance Spectroscopy , Tandem Mass Spectrometry , Triglycerides
11.
F1000Res ; 10: 897, 2021.
Article En | MEDLINE | ID: mdl-34804501

Scientific data analyses often combine several computational tools in automated pipelines, or workflows. Thousands of such workflows have been used in the life sciences, though their composition has remained a cumbersome manual process due to a lack of standards for annotation, assembly, and implementation. Recent technological advances have returned the long-standing vision of automated workflow composition into focus. This article summarizes a recent Lorentz Center workshop dedicated to automated composition of workflows in the life sciences. We survey previous initiatives to automate the composition process, and discuss the current state of the art and future perspectives. We start by drawing the "big picture" of the scientific workflow development life cycle, before surveying and discussing current methods, technologies and practices for semantic domain modelling, automation in workflow development, and workflow assessment. Finally, we derive a roadmap of individual and community-based actions to work toward the vision of automated workflow development in the forthcoming years. A central outcome of the workshop is a general description of the workflow life cycle in six stages: 1) scientific question or hypothesis, 2) conceptual workflow, 3) abstract workflow, 4) concrete workflow, 5) production workflow, and 6) scientific results. The transitions between stages are facilitated by diverse tools and methods, usually incorporating domain knowledge in some form. Formal semantic domain modelling is hard and often a bottleneck for the application of semantic technologies. However, life science communities have made considerable progress here in recent years and are continuously improving, renewing interest in the application of semantic technologies for workflow exploration, composition and instantiation. Combined with systematic benchmarking with reference data and large-scale deployment of production-stage workflows, such technologies enable a more systematic process of workflow development than we know today. We believe that this can lead to more robust, reusable, and sustainable workflows in the future.


Biological Science Disciplines , Computational Biology , Benchmarking , Software , Workflow
12.
Elife ; 102021 04 13.
Article En | MEDLINE | ID: mdl-33845942

Previous studies have identified a crucial role of the gut microbiome in modifying Alzheimer's disease (AD) progression. However, the mechanisms of microbiome-brain interaction in AD were so far unknown. Here, we identify microbiota-derived short chain fatty acids (SCFA) as microbial metabolites which promote Aß deposition. Germ-free (GF) AD mice exhibit a substantially reduced Aß plaque load and markedly reduced SCFA plasma concentrations; conversely, SCFA supplementation to GF AD mice increased the Aß plaque load to levels of conventionally colonized (specific pathogen-free [SPF]) animals and SCFA supplementation to SPF mice even further exacerbated plaque load. This was accompanied by the pronounced alterations in microglial transcriptomic profile, including upregulation of ApoE. Despite increased microglial recruitment to Aß plaques upon SCFA supplementation, microglia contained less intracellular Aß. Taken together, our results demonstrate that microbiota-derived SCFA are critical mediators along the gut-brain axis which promote Aß deposition likely via modulation of the microglial phenotype.


Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome , Microglia/metabolism , Plaque, Amyloid/metabolism , Alzheimer Disease/metabolism , Animals , Female , Male , Mice , Specific Pathogen-Free Organisms
13.
ACS Infect Dis ; 7(4): 906-916, 2021 04 09.
Article En | MEDLINE | ID: mdl-33764039

Opisthorchiasis, is a hepatobiliary disease caused by flukes of the trematode family Opisthorchiidae. A chronic form of the disease implies a prolonged coexistence of a host and the parasite. The pathological changes inflicted by the worm to the host's hepatobiliary system are well documented. Yet, the response to the infection also triggers a deep remodeling of the host systemic metabolism reaching a new homeostasis and affecting the organs beyond the worm location. Understanding the metabolic alternation in chronic opisthorchiasis, could help us to pinpoint pathways that underlie infection opening possibilities for the development of more selective treatment strategies. Here, with this report we apply an integrative, multicompartment metabolomics analysis, using multiple biofluids, stool samples and tissue extracts to describe metabolic changes in Opisthorchis felineus infected animals at the chronic stage. We show that the shift in lipid metabolism in the serum, a depletion of the amino acids pool, an alteration of the ketogenic pathways in the jejunum and a suppressed metabolic activity of the spleen are the key features of the metabolic host adaptation at the chronic stage of O. felineus infection. We describe this combination of the metabolic changes as a "metabolically mediated immunosuppressive status of organism" which develops during a chronic infection. This status in combination with other factors (e.g., parasite-derived immunomodulators) might increase risk of infection-related malignancy.


Opisthorchiasis , Opisthorchis , Animals , Homeostasis , Lipid Metabolism , Metabolomics
14.
Glycoconj J ; 38(2): 157-166, 2021 04.
Article En | MEDLINE | ID: mdl-33459939

Sialic acids occur ubiquitously throughout vertebrate glycomes and often endcap glycans in either α2,3- or α2,6-linkage with diverse biological roles. Linkage-specific sialic acid characterization is increasingly performed by mass spectrometry, aided by differential sialic acid derivatization to discriminate between linkage isomers. Typically, during the first step of such derivatization reactions, in the presence of a carboxyl group activator and a catalyst, α2,3-linked sialic acids condense with the subterminal monosaccharides to form lactones, while α2,6-linked sialic acids form amide or ester derivatives. In a second step, the lactones are converted into amide derivatives. Notably, the structure and role of the lactone intermediates in the reported reactions remained ambiguous, leaving it unclear to which extent the amidation of α2,3-linked sialic acids depended on direct aminolysis of the lactone, rather than lactone hydrolysis and subsequent amidation. In this report, we used mass spectrometry to unravel the role of the lactone intermediate in the amidation of α2,3-linked sialic acids by applying controlled reaction conditions on simple and complex glycan standards. The results unambiguously show that in common sialic acid derivatization protocols prior lactone formation is a prerequisite for the efficient, linkage-specific amidation of α2,3-linked sialic acids, which proceeds predominantly via direct aminolysis. Furthermore, nuclear magnetic resonance spectroscopy confirmed that exclusively the C2 lactone intermediate is formed on a sialyllactose standard. These insights allow a more rationalized method development for linkage-specific sialic derivatization in the future.


Lactones/chemistry , Sialic Acids/chemistry , Catalysis , Lactose/analogs & derivatives , Lactose/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Polysaccharides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
Transl Stroke Res ; 12(4): 581-592, 2021 08.
Article En | MEDLINE | ID: mdl-33052545

In recent years, preclinical studies have illustrated the potential role of intestinal bacterial composition in the risk of stroke and post-stroke infections. The results of these studies suggest that bacteria capable of producing volatile metabolites, including trimethylamine-N-oxide (TMAO) and butyrate, play opposing, yet important roles in the cascade of events leading to stroke. However, no large-scale studies have been undertaken to determine the abundance of these bacterial communities in stroke patients and to assess the impact of disrupted compositions of the intestinal microbiota on patient outcomes. In this prospective case-control study, rectal swabs from 349 ischemic and hemorrhagic stroke patients (median age, 71 years; IQR: 67-75) were collected within 24 h of hospital admission. Samples were subjected to 16S rRNA amplicon sequencing and subsequently compared with samples obtained from 51 outpatient age- and sex-matched controls (median age, 72 years; IQR, 62-80) with similar cardiovascular risk profiles but without active signs of stroke. Plasma protein biomarkers were analyzed using a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Alpha and beta diversity analyses revealed higher disruption of intestinal communities during ischemic and hemorrhagic stroke compared with non-stroke matched control subjects. Additionally, we observed an enrichment of bacteria implicated in TMAO production and a loss of butyrate-producing bacteria. Stroke patients displayed two-fold lower plasma levels of TMAO than controls (median 1.97 vs 4.03 µM, Wilcoxon p < 0.0001). Finally, lower abundance of butyrate-producing bacteria within 24 h of hospital admission was an independent predictor of enhanced risk of post-stroke infection (odds ratio 0.77, p = 0.005), but not of mortality or functional patient outcome. In conclusion, aberrations in trimethylamine- and butyrate-producing gut bacteria are associated with stroke and stroke-associated infections.


Gastrointestinal Microbiome , Aged , Anaerobiosis , Bacteria , Case-Control Studies , Humans , RNA, Ribosomal, 16S/genetics
16.
Obesity (Silver Spring) ; 28 Suppl 1: S93-S103, 2020 07.
Article En | MEDLINE | ID: mdl-32645256

OBJECTIVE: Exercise has been shown to improve cardiometabolic health, yet neither the molecular connection nor the effects of exercise timing have been elucidated. The aim of this study was to investigate whether ad libitum or time-restricted mild exercise reduces atherosclerosis development in atherosclerosis-prone dyslipidemic APOE*3-Leiden.CETP mice and whether mild exercise training in men with obesity affects lipoprotein levels. METHODS: Mice were group-housed and subjected to ad libitum or time-restricted (first or last 6 hours of the active phase) voluntary wheel running for 16 weeks while on a cholesterol-rich diet, after which atherosclerosis development was assessed in the aortic root. Furthermore, nine men with obesity followed a 12-week mild exercise training program. Lipoprotein levels were measured by nuclear magnetic resonance spectroscopy in plasma collected pre and post exercise training. RESULTS: Wheel running did not affect plasma lipid levels, uptake of triglyceride-derived fatty acids by tissues, and aortic atherosclerotic lesion size or severity. Markers of training status were unaltered. Exercise training in men with obesity did not alter lipoprotein levels. CONCLUSIONS: Mild exercise training does not reduce dyslipidemia or atherosclerosis development in APOE*3-Leiden.CETP mice or affect lipoprotein levels in humans. Future research on the effects of (time-restricted) exercise on atherosclerosis or lipid metabolism should consider more vigorous exercise protocols.


Apolipoprotein E3/metabolism , Atherosclerosis/blood , Lipoproteins/blood , Obesity/physiopathology , Physical Conditioning, Animal/methods , Animals , Disease Models, Animal , Humans , Male , Mice
17.
Twin Res Hum Genet ; 23(3): 145-155, 2020 06.
Article En | MEDLINE | ID: mdl-32635965

Metabolites are small molecules involved in cellular metabolism where they act as reaction substrates or products. The term 'metabolomics' refers to the comprehensive study of these molecules. The concentrations of metabolites in biological tissues are under genetic control, but this is limited by environmental factors such as diet. In adult mono- and dizygotic twin pairs, we estimated the contribution of genetic and shared environmental influences on metabolite levels by structural equation modeling and tested whether the familial resemblance for metabolite levels is mainly explained by genetic or by environmental factors that are shared by family members. Metabolites were measured across three platforms: two based on proton nuclear magnetic resonance techniques and one employing mass spectrometry. These three platforms comprised 237 single metabolic traits of several chemical classes. For the three platforms, metabolites were assessed in 1407, 1037 and 1116 twin pairs, respectively. We carried out power calculations to establish what percentage of shared environmental variance could be detected given these sample sizes. Our study did not find evidence for a systematic contribution of shared environment, defined as the influence of growing up together in the same household, on metabolites assessed in adulthood. Significant heritability was observed for nearly all 237 metabolites; significant contribution of the shared environment was limited to 6 metabolites. The top quartile of the heritability distribution was populated by 5 of the 11 investigated chemical classes. In this quartile, metabolites of the class lipoprotein were significantly overrepresented, whereas metabolites of classes glycerophospholipids and glycerolipids were significantly underrepresented.


Metabolome/genetics , Metabolomics , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Adult , Diet , Diseases in Twins , Environment , Family , Female , Gene-Environment Interaction , Humans , Male , Phenotype
18.
PLoS One ; 15(5): e0233213, 2020.
Article En | MEDLINE | ID: mdl-32442208

BACKGROUND: The variable course of autosomal dominant polycystic kidney disease (ADPKD), and the advent of renoprotective treatment require early risk stratification. We applied urinary metabolomics to explore differences associated with estimated glomerular filtration rate (eGFR; CKD-EPI equation) and future eGFR decline. METHODS: Targeted, quantitative metabolic profiling (1H NMR-spectroscopy) was performed on baseline spot urine samples obtained from 501 patients with ADPKD. The discovery cohort consisted of 338 patients (56% female, median values for age 46 [IQR 38 to 52] years, eGFR 62 [IQR 45 to 85] ml/min/1.73m2, follow-up time 2.5 [range 1 to 3] years, and annual eGFR slope -3.3 [IQR -5.3 to -1.3] ml/min/1.73m2/year). An independent cohort (n = 163) was used for validation. Multivariate modelling and linear regression were used to analyze the associations between urinary metabolites and eGFR, and eGFR decline over time. RESULTS: Twenty-nine known urinary metabolites were quantified from the spectra using a semi-automatic quantification routine. The model optimization routine resulted in four metabolites that most strongly associated with actual eGFR in the discovery cohort (F = 128.9, P = 7×10-54, R2 = 0.724). A model using the ratio of two other metabolites, urinary alanine/citrate, showed the best association with future annual change in eGFR (F = 51.07, P = 7.26×10-12, R2 = 0.150). This association remained significant after adjustment for clinical risk markers including height-adjusted total kidney volume (htTKV). Results were confirmed in the validation cohort. CONCLUSIONS: Quantitative NMR profiling identified urinary metabolic markers that associated with actual eGFR and future rate of eGFR decline. The urinary alanine/citrate ratio showed additional value beyond conventional risk markers.


Glomerular Filtration Rate , Kidney/metabolism , Models, Biological , Polycystic Kidney, Autosomal Dominant/urine , Adult , Biomarkers/urine , Female , Humans , Kidney/pathology , Male , Middle Aged , Polycystic Kidney, Autosomal Dominant/pathology
19.
Analyst ; 145(11): 3801-3808, 2020 Jun 07.
Article En | MEDLINE | ID: mdl-32374793

Providing maximum information on the provenance of scientific results in life sciences is getting considerable attention since the widely publicized reproducibility crisis. Improving the reproducibility of data processing and analysis workflows is part of this movement and may help achieve clinical deployment quicker. Scientific workflow managers can be valuable tools towards achieving this goal. Although these platforms are already well established in the field of genomics and other omics fields, in metabolomics scripts and dedicated software packages are still more popular. However, versatile workflows for metabolomics exist in the KNIME and Galaxy platforms. We will here summarize the available options of scientific workflow managers dedicated to metabolomics analysis.


Metabolomics/methods , Software , Workflow , Reproducibility of Results
...