Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Clin Pharmacol Ther ; 111(2): 485-495, 2022 02.
Article in English | MEDLINE | ID: mdl-34674258

ABSTRACT

The cytomegalovirus (CMV) viral terminase inhibitor letermovir is approved for prophylaxis of CMV infection and disease in adult CMV-seropositive allogeneic hematopoietic stem cell transplantation recipients. In a phase III trial (NCT02137772), letermovir significantly reduced clinically significant CMV infection (CS-CMVi) rate vs. placebo through Week 24 (primary end point) and Week 14 (secondary end point) post transplantation. Here, exposure-response relationships were investigated using efficacy and selected safety end points from the phase III trial to inform the proposed clinical dose. Post hoc exposure estimates were derived from a population pharmacokinetic model. No significant exposure dependencies were found for CS-CMVi through Week 24 or Week 14 among letermovir-treated participants. Evaluated covariates had no impact on exposure-efficacy relationships and letermovir plasma exposure did not affect time of CS-CMVi onset. There was no dependence between adverse event incidence and letermovir exposure. These results support current dosing recommendations in several countries and regions, including the United States and European Union.


Subject(s)
Acetates/administration & dosage , Antiviral Agents/administration & dosage , Cytomegalovirus Infections/prevention & control , Hematopoietic Stem Cell Transplantation , Quinazolines/administration & dosage , Acetates/pharmacokinetics , Administration, Intravenous , Administration, Oral , Adolescent , Adult , Aged , Antiviral Agents/pharmacokinetics , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Dose-Response Relationship, Drug , Double-Blind Method , Drug Dosage Calculations , Female , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Male , Middle Aged , Models, Biological , Quinazolines/pharmacokinetics , Transplantation, Homologous , Treatment Outcome , Young Adult
2.
CPT Pharmacometrics Syst Pharmacol ; 10(3): 255-267, 2021 03.
Article in English | MEDLINE | ID: mdl-33440077

ABSTRACT

Letermovir is indicated for prophylaxis of cytomegalovirus infection and disease in allogeneic hematopoietic stem cell transplant (HSCT) recipients. Two-stage population pharmacokinetic (PK) modeling of letermovir was conducted to support dose rationale and evaluate the impact of intrinsic/extrinsic factors. Data from healthy phase I study participants over a wide dose range were modeled to evaluate the effects of selected intrinsic factors, including pharmacogenomics; next, phase III HSCT-recipient data at steady-state following clinical doses were modeled. The model in HSCT recipients adequately described letermovir PK following both oral or i.v. administration, and was consistent with the healthy participant model at steady-state clinical doses. Intrinsic factor effects were not clinically meaningful. These staged analyses indicate that letermovir PK in HSCT recipients and healthy participants differ only with respect to bioavailability and absorption rate. The HSCT recipient model was suitable for predicting exposure for exposure-response analysis supporting final dose selection.


Subject(s)
Acetates/pharmacokinetics , Antiviral Agents/pharmacokinetics , Cytomegalovirus Infections/prevention & control , Hematopoietic Stem Cell Transplantation/methods , Quinazolines/pharmacokinetics , Acetates/administration & dosage , Acetates/therapeutic use , Administration, Intravenous , Administration, Oral , Adult , Aged , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , Biological Availability , Case-Control Studies , Dose-Response Relationship, Drug , Double-Blind Method , Female , Healthy Volunteers/statistics & numerical data , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Male , Middle Aged , Pharmacogenetics , Placebos/administration & dosage , Quinazolines/administration & dosage , Quinazolines/therapeutic use , Transplant Recipients/statistics & numerical data
3.
Br J Clin Pharmacol ; 86(6): 1034-1051, 2020 06.
Article in English | MEDLINE | ID: mdl-32162368

ABSTRACT

The understanding of the benefit risk profile, and relative effectiveness of a new medicinal product, are initially established in a circumscribed patient population through clinical trials. There may be uncertainties associated with the new medicinal product that cannot be, or do not need to be resolved before launch. Postlicensing or postlaunch evidence generation (PLEG) is a term for evidence generated after the licensure or launch of a medicinal product to address these remaining uncertainties. PLEG is thus part of the continuum of evidence development for a medicinal product, complementing earlier evidence, facilitating further elucidation of a product's benefit/risk profile, value proposition, and/or exploring broader aspects of disease management and provision of healthcare. PLEG plays a role in regulatory decision making, not only in the European Union but also in other jurisdictions including the USA and Japan. PLEG is also relevant for downstream decision-making by health technology assessment bodies and payers. PLEG comprises studies of different designs, based on data collected in observational or experimental settings. Experience to date in the European Union has indicated a need for improvements in PLEG. Improvements in design and research efficiency of PLEG could be addressed through more systematic pursuance of Scientific Advice on PLEG with single or multiple decision makers. To date, limited information has been available on the rationale, process or timing for seeking PLEG advice from regulators or health technology assessment bodies. This article sets out to address these issues and to encourage further uptake of PLEG advice.


Subject(s)
Technology Assessment, Biomedical , Data Collection , European Union , Humans , Japan
4.
Clin Pharmacol Ther ; 103(6): 1020-1028, 2018 06.
Article in English | MEDLINE | ID: mdl-29484638

ABSTRACT

GDC-0853 is a small molecule inhibitor of Bruton's tyrosine kinase (BTK) that is highly selective and noncovalent, leading to reversible binding. In double-blind, randomized, and placebo-controlled phase I healthy volunteer studies, GDC-0853 was well tolerated, with no dose-limiting adverse events (AEs) or serious AEs. The maximum tolerated dose was not reached during dose escalation (≤600 mg, single ascending dose (SAD) study; ≤250 mg twice daily (b.i.d.) and ≤500 mg once daily, 14-day multiple ascending dose (MAD) study). Plasma concentrations peaked 1-3 hours after oral administration and declined thereafter, with a steady-state half-life ranging from 4.2-9.9 hours. Independent assays demonstrated dose-dependent BTK target engagement. Based on pharmacokinetic/pharmacodynamic (PK/PD) simulations, a once-daily dosing regimen (e.g., 100 mg, q.d.) is expected to maintain a high level of BTK inhibition over the dosing interval. Taken together, the safety and PK/PD data support GDC-0853 evaluation in rheumatoid arthritis, lupus, and other autoimmune or inflammatory indications.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridones/pharmacology , Adolescent , Adult , Area Under Curve , Dose-Response Relationship, Drug , Double-Blind Method , Female , Half-Life , Humans , Male , Maximum Tolerated Dose , Metabolic Clearance Rate , Middle Aged , Piperazines/administration & dosage , Piperazines/adverse effects , Piperazines/pharmacokinetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Pyridones/administration & dosage , Pyridones/adverse effects , Pyridones/pharmacokinetics , Young Adult
5.
AAPS J ; 14(4): 657-63, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22711220

ABSTRACT

Pre-clinical behavioral pharmacology studies supporting indications like analgesia typically consist of at least three different studies; dose-finding, duration of effect, and tolerance-development studies. Pharmacokinetic (PK) plasma samples are generally taken from a parallel group of animals to avoid disruption of the behavioral pharmacodynamic (PD) endpoint. Our objective was to investigate if pre-clinical behavioral pharmacology studies in rats could be performed effectively by combining three studies into a single experimental design and using sparse PK sampling in the same animals as for PD. A refined dosing strategy was applied for a muscarinic agonist, AZD6088, using the rat spinal nerve ligation heat hyperalgesia model. PD measurements were performed on day 1, 3, 5 and 8. Two PK samples per day were taken day 2 and 4. In a separate control group, PD measurements were performed on rats without PK sampling. Data was analyzed using a population approach in NONMEM. The animals produced a consistent and reproducible response irrespective of day of testing suggesting that blood sampling on alternate days did not interfere with the PD responses. A direct concentration-effect relationship with good precision was established and no tolerance development was observed. The new design combining three studies into one and eliminating a satellite PK group realized substantial savings compared to the old design; animal use was reduced by 58% and time required to generate results was reduced by 55%. The design described here delivers substantial savings in animal lives, time, and money whilst still delivering a good quality and precise description of the PKPD relationship.


Subject(s)
Endpoint Determination/methods , Hyperalgesia/drug therapy , Imidazolidines/pharmacokinetics , Models, Biological , Muscarinic Agonists/pharmacokinetics , Piperidines/pharmacokinetics , Animals , Cost Savings , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/economics , Drug Evaluation, Preclinical/methods , Drug Tolerance , Imidazolidines/administration & dosage , Imidazolidines/pharmacology , Male , Muscarinic Agonists/administration & dosage , Muscarinic Agonists/pharmacology , Nonlinear Dynamics , Piperidines/administration & dosage , Piperidines/pharmacology , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Time Factors
6.
Scand J Infect Dis ; 41(9): 663-71, 2009.
Article in English | MEDLINE | ID: mdl-19626562

ABSTRACT

The accuracy of using body temperature, serum amyloid A (SAA), C-reactive protein (CRP) and interleukin-6 (IL-6) in the work-up for early or late step-down therapy after an initial course of intravenous cefuroxime was investigated. Eighty-one hospitalized patients with an initial course of cefuroxime were retrospectively classified with one of the following diagnoses: bacterial infection without known focus, pneumonia, bronchitis, pyelonephritis, skin and soft-tissue infections or fever of other origin. The majority of the patients had sepsis (91% or 74/81) of whom 6 patients had severe sepsis. The inter-individual variability of body temperature, SAA, CRP and IL-6 was considerable. The time course of SAA and CRP during the first 24 h in patients with sepsis with a short duration of illness but without septic shock showed increasing levels during the initial course of intravenous therapy. In contrast, body temperature and IL-6 decreased, regardless of illness duration. Beyond 24 h, all 4 biomarkers declined, again regardless of the duration of illness. After the initial course of cefuroxime, biomarkers were non-distinguishing in terms of guidance in the judgement of early or late step-down therapy. Further studies are proposed for biomarker guidance antibiotic therapy in sepsis patients without septic shock.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bacterial Infections/blood , Bacterial Infections/drug therapy , Body Temperature/physiology , C-Reactive Protein/metabolism , Cefuroxime/administration & dosage , Interleukin-6/metabolism , Serum Amyloid A Protein/metabolism , Adult , Aged , Aged, 80 and over , Bacterial Infections/physiopathology , Biomarkers/blood , Drug Administration Schedule , Fever/blood , Fever/microbiology , Humans , Linear Models , Middle Aged , Retrospective Studies , Statistics, Nonparametric , Time Factors , Young Adult
7.
J Clin Pharmacol ; 48(11): 1270-81, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18974282

ABSTRACT

An approach for estimation of dosing strategies based on data-derived models and assessment of the risk associated with deviation from the treatment target is presented. The work is illustrated by establishing a dosing strategy to be used for a priori individualization on the basis of renal function for the antibiotic cefuroxime. Treatment involved exposing patients to concentrations above the minimum inhibitory concentration (MIC) for 50% of the dosing interval. The risk (penalty) function incorporated both deviations from the target and the use of excess amount of drug. Dosing strategies were estimated for a target population by minimizing the risk function. The population was characterized by a population pharmacokinetic model, and distributions of CLcr and body weight were reflective of the target group. The estimated dosing strategies were assessed by evaluating population distributions of (1) percentage of dosing interval with concentrations above MIC, (2) time of drug exposure below MIC, and (3) drug administered in excess to reach the target. These distributions were generated using wild-type MIC distributions for Escherichia coli and Streptococcus pneumoniae. The authors illustrate how benefits and risks of drug treatment can be weighed quantitatively in decision-based risk functions and subsequently used in the estimation of drug dosing.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Cefuroxime/administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Cefuroxime/adverse effects , Cefuroxime/pharmacology , Creatinine/blood , Drug Administration Schedule , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Humans , Kidney Function Tests , Microbial Sensitivity Tests , Middle Aged , Pneumococcal Infections/drug therapy , Risk Assessment , Streptococcus pneumoniae/drug effects , Young Adult
8.
Antimicrob Agents Chemother ; 51(1): 128-36, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17060524

ABSTRACT

Dosing of antibacterial agents is generally based on point estimates of the effect, even though bacteria exposed to antibiotics show complex kinetic behaviors. The use of the whole time course of the observed effects would be more advantageous. The aim of the present study was to develop a semimechanistic pharmacokinetic (PK)/pharmacodynamic (PD) model characterizing the events seen in a bacterial system when it is exposed to antibacterial agents with different mechanisms of action. Time-kill curve experiments were performed with a strain of Streptococcus pyogenes exposed to a wide range of concentrations of the following antibiotics: benzylpenicillin, cefuroxime, erythromycin, moxifloxacin, and vancomycin. Bacterial counts were monitored with frequent sampling during the experiment. A simultaneous fit of all data was accomplished. The degradation of the drugs was monitored and corrected for in the model, and a link model was used to account for an effect delay. In the final PK/PD model, the total bacterial population was divided into two subpopulations: one growing drug-susceptible population and one resting insusceptible population. The drug effect was included as an increase of the killing rate of bacteria in the susceptible state, according to a maximum-effect (E(max)) model. An internal model validation showed that the model was robust and had good predictability. In conclusion, for all drugs, the final PK/PD model successfully described bacterial growth and killing kinetics when the bacteria were exposed to different antibiotic concentrations. The semimechanistic model that was developed might, after further refinement, serve as a tool for the development of optimal dosing strategies for antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/methods , Streptococcus pyogenes/drug effects , Algorithms , Anti-Bacterial Agents/pharmacokinetics , Aza Compounds/pharmacokinetics , Aza Compounds/pharmacology , Cefuroxime/pharmacokinetics , Cefuroxime/pharmacology , Dose-Response Relationship, Drug , Erythromycin/pharmacokinetics , Erythromycin/pharmacology , Fluoroquinolones , Models, Biological , Moxifloxacin , Penicillin G/pharmacokinetics , Penicillin G/pharmacology , Quinolines/pharmacokinetics , Quinolines/pharmacology , Streptococcus pyogenes/growth & development , Streptococcus pyogenes/metabolism , Vancomycin/pharmacokinetics , Vancomycin/pharmacology
9.
Br J Clin Pharmacol ; 62(3): 297-303, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16934045

ABSTRACT

AIMS: Since cefuroxime mainly is excreted by renal filtration, dosing is currently based on serum creatinine (Scr) or creatinine clearance (CLcr). However, it has been suggested that cystatin C (CysC) is superior to Scr as a marker of renal function. The aim of this prospective study was to develop a population model that describes the pharmacokinetics of cefuroxime and to investigate the usefulness of CysC as a covariate of the model parameters. METHODS: Ninety-seven patients were studied (CLcr range 6.5-115 ml min(-1)). Blood samples (n = 407) for the determination of cefuroxime were withdrawn according to a sparse data sampling schedule and analysed by liquid chromatography mass spectrometry. The population analysis was performed in NONMEM. RESULTS: A two-compartment model described the data well. The biomarkers Scr, CLcr and CysC were evaluated as covariates on clearance (CL). The model that included CysC generated the best fit. In the final population model CL was a function of CysC and body weight, whereas V(1) was only a function of body weight. Final parameter estimates (relative standard errors) were 6.00 (3.2%) l h(-1), 11.4 (5.3%) l and 5.11 (11%) l for CL, V(1) and V(2), respectively. CONCLUSIONS: Based on the results of the present study, and because CysC is practical to use in the clinic, it is suggested that individual dosing of cefuroxime may be based on CysC rather than on Scr or CLcr. Furthermore, our final population model may be useful as a tool when designing new dosing schedules for cefuroxime.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Cefuroxime/pharmacokinetics , Cystatins/metabolism , Kidney/metabolism , Anti-Bacterial Agents/metabolism , Biomarkers/metabolism , Cefuroxime/administration & dosage , Cystatin C , Dose-Response Relationship, Drug , Female , Humans , Kidney Function Tests , Male , Middle Aged
10.
Rapid Commun Mass Spectrom ; 18(6): 707-10, 2004.
Article in English | MEDLINE | ID: mdl-15052582

ABSTRACT

Cefuroxime is a second-generation cephalosporin used against different kinds of bacterial infections. To be able to optimize the dosing it is necessary to characterize the pharmacokinetics of cefuroxime which requires a selective and sensitive analytical method for cefuroxime in plasma or serum. A new rapid liquid chromatography/electrospray tandem mass spectrometry (LC/MS/MS) method, using cefotaxime as internal standard, was developed for analysis of cefuroxime in human serum. The work-up procedure consisted of protein precipitation with acetonitrile/cefotaxime, and after centrifugation the supernatant was dissolved in mobile phase. The sample was injected on a SB-CN column and the detection was performed using tandem mass spectrometry (MS/MS). The limit of quantification was determined to 0.025 microg/mL. The method was linear in the range 0.025-50 microg/mL with a coefficient of correlation >0.999. The limit of quantification and intra-day variability were found to be the same for plasma samples, which indicates that the method is valid for serum as well as plasma samples.


Subject(s)
Anti-Bacterial Agents/blood , Cefuroxime/blood , Spectrometry, Mass, Electrospray Ionization/methods , Anti-Bacterial Agents/chemistry , Cefotaxime/blood , Cefuroxime/chemistry , Chromatography, Liquid , Humans , Reference Standards , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...