Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
Nutrients ; 16(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38892477

ABSTRACT

BACKGROUND: Our objective was to conduct a systematic review of the effects of hydrolyzed collagen supplementation on the proliferation and activation of fibroblasts. METHODS: The search was conducted for journals that published articles in the English language, peer-reviewed, meeting the following criteria: (a) randomized clinical trials, (b) randomized studies in animals or humans, (c) in vitro studies, (d) studies using hydrolyzed collagens or collagen peptides, and (e) studies assessing alterations on fibroblasts as the primary or secondary outcome. We utilized the main journal databases PubMed/Web of Science and ongoing reviews by PROSPERO. For bias risk and methodological quality, we used an adaptation of the Downs and Black checklist. Our review followed the PRISMA checklist, conducted from February 2024 to the first week of March 2024, by two independent researchers (P.A.Q.I. and R.P.V.). RESULTS: Eleven studies were included in this review, where our findings reinforce the notion that hydrolyzed collagens or collagen peptides at concentrations of 50-500 µg/mL are sufficient to stimulate fibroblasts in human and animal tissues without inducing toxicity. Different enzymatic processes may confer distinct biological properties to collagens, allowing for scenarios favoring fibroblast promotion or antioxidant effects. Lastly, collagens with lower molecular weights exhibit greater bioavailability to adjacent tissues. CONCLUSIONS: Hydrolyzed collagens or collagen peptides with molecular sizes ranging from <3 to 3000 KDa promote the stimulation of fibroblasts in human tissues.


Subject(s)
Collagen , Dietary Supplements , Fibroblasts , Collagen/pharmacology , Humans , Fibroblasts/drug effects , Animals , Cell Proliferation/drug effects , Hydrolysis
2.
Nutrients ; 16(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38794668

ABSTRACT

INTRODUCTION: Justicia pectoralis Jacq. is traditionally applied in folk medicine in Brazil and in several Latin American countries. The leaves are used in tea form, especially in the treatment of respiratory disorders, acting as an expectorant. It also has activity in gastrointestinal disorders, and it is anti-inflammatory, antioxidant, sedative, and estrogenic, among others. AIMS: To investigate the gastroprotective activity of the methanol extract of the leaves of Justicia pectoralis Jacq. (MEJP) in different experimental models of gastric ulcers. MATERIALS AND METHODS: The adult leaves of Justicia pectoralis Jacq. were collected and cultivated in beds, with an approximate spacing of 40 × 40 cm, organic fertilization, irrigation with potable water and without shelter from light. The MEJP was prepared from the dried and pulverized leaves and concentrated under reduced pressure in a rotary evaporator. For the experimental model of gastric ulcer, Swiss male albino mice were used. The inputs used in the experiment were MEJP at three different concentrations (250, 500 and 1000 mg/kg p.o.), cimetidine (50 mg/kg p.o.), indomethacin (50 mg/kg s.c.) and vehicle (10 mL/kg p.o.). RESULTS: MEJP (250, 500 and 1000 mg/kg p.o.) demonstrated gastroprotective activity, with levels of protection of 45.65%, 44.80% and 40.22%, respectively, compared to the control (vehicle). Compared with cimetidine (48.29%), MEJP showed similar gastroprotective activity. CONCLUSIONS: This study demonstrated the gastroprotective activity of MEJP and contributes to validate the traditional use the species for gastric disorders and provides a pharmacological basis for its clinical potential.


Subject(s)
Plant Extracts , Plant Leaves , Stomach Ulcer , Animals , Plant Extracts/pharmacology , Mice , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Plant Leaves/chemistry , Male , Anti-Ulcer Agents/pharmacology , Methanol/chemistry , Justicia/chemistry , Disease Models, Animal , Cimetidine/pharmacology , Acanthaceae/chemistry , Indomethacin , Brazil , Gastric Mucosa/drug effects , Gastric Mucosa/pathology
3.
Mol Biol Rep ; 51(1): 499, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598121

ABSTRACT

INTRODUCTION: Aerobic physical training (APT) reduces eosinophilic airway inflammation, but its effects and mechanisms in severe asthma remain unknown. METHODS: An in vitro study employing key cells involved in the pathogenesis of severe asthma, such as freshly isolated human eosinophils, neutrophils, and bronchial epithelial cell lineage (BEAS-2B) and lung fibroblasts (MRC-5 cells), was conducted. Additionally, an in vivo study using male C57Bl/6 mice, including Control (Co; n = 10), Trained (Exe; n = 10), house dust mite (HDM; n = 10), and HDM + Trained (HDM + Exe; n = 10) groups, was carried out, with APT performed at moderate intensity, 5x/week, for 4 weeks. RESULTS: HDM and bradykinin, either alone or in combination, induced hyperactivation in human neutrophils, eosinophils, BEAS-2B, and MRC-5 cells. In contrast, IL-10, the primary anti-inflammatory molecule released during APT, inhibited these inflammatory effects, as evidenced by the suppression of numerous cytokines and reduced mRNA expression of the B1 receptor and ACE-2. The in vivo study demonstrated that APT decreased bronchoalveolar lavage levels of bradykinin, IL-1ß, IL-4, IL-5, IL-17, IL-33, TNF-α, and IL-13, while increasing levels of IL-10, klotho, and IL-1RA. APT reduced the accumulation of polymorphonuclear cells, lymphocytes, and macrophages in the peribronchial space, as well as collagen fiber accumulation, epithelial thickness, and mucus accumulation. Furthermore, APT lowered the expression of the B1 receptor and ACE-2 in lung tissue and reduced bradykinin levels in the lung tissue homogenate compared to the HDM group. It also improved airway resistance, tissue resistance, and tissue damping. On a systemic level, APT reduced total leukocytes, eosinophils, neutrophils, basophils, lymphocytes, and monocytes in the blood, as well as plasma levels of IL-1ß, IL-4, IL-5, IL-17, TNF-α, and IL-33, while elevating the levels of IL-10 and IL-1RA. CONCLUSION: These findings indicate that APT inhibits the severe asthma phenotype by targeting kinin signaling.


Subject(s)
Asthma , Bradykinin , Humans , Animals , Mice , Male , Interleukin-10 , Interleukin 1 Receptor Antagonist Protein , Interleukin-17 , Interleukin-33 , Interleukin-4 , Interleukin-5 , Tumor Necrosis Factor-alpha
4.
J Asthma ; : 1-10, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38577973

ABSTRACT

BACKGROUND: Asthmatic children present variable degrees of airway inflammation, remodeling, and resistance, which correlate with disease control and severity. The chronic inflammatory process of the airway triggers airway remodeling, which reflects the degree of airway resistance. Pro-inflammatory and pro-fibrotic mediators are centrally involved in this process. OBJECTIVE: To investigate whether the levels of pulmonary and systemic pro-inflammatory and pro-fibrotic mediators present a correlation with the resistance of the respiratory system and of the proximal and distal airways. METHODS: 39 Asthmatic children (persistent mild and moderate) and 39 non-asthmatic children (both between 6 and 13 years old) were evaluated for anthropometric characteristics, lung function and mechanics, and pulmonary and systemic immune responses. RESULTS: Asthmatic children showed an increased number of blood eosinophils (p < 0.04), basophils (p < 0.04), monocytes (p < 0.002) and lymphocytes (p < 0.03). In addition, asthmatic children showed impaired lung function, as demonstrated by FEV1 (p < 0.0005) and FEV1/FVC (p < 0.004), decreased total resistance of the respiratory system (R5Hz; p < 0.009), increased resistance of the proximal airways (R20Hz; p < 0.02), increased elastance (Z5Hz; p < 0.02) and increased reactance (X5Hz; p < 0.002) compared to non-asthmatic children. Moreover, the following inflammatory factors were significantly higher in asthmatic than non-asthmatic children: GM-CSF in the breath condensate (BC) (p < 0.0001) and in the serum (p < 0.0001); TGF-beta in the BC (p < 0.0001) and in the serum (p < 0.004); IL-5 in the BC (p < 0.02) and in the serum (p < 0.01); IL-4 in the serum (p < 0.0002). CONCLUSIONS: Impulse oscillometry is a sensitive method to detect airway resistance in persistent mild and moderate asthmatic children, an event followed by increased levels of pro-inflammatory and pro-fibrotic mediators.

5.
Tissue Cell ; 88: 102368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583225

ABSTRACT

Air pollution (AP) is one of the main recent concerns in reproductive healthy due to its potential to promote negative outcomes during pregnancy and male and female fertility. Several studies have demonstrated that AP exposure has been linked to increased embryonic implantation failures, alterations in embryonic, fetal and placental development. For a well-succeeded implantation, both competent blastocyst and receptive endometrium are required. Based on the lack of data about the effect of AP in endometrial receptivity, this study aimed to evaluate he particulate matter (PM) exposure impact on uterine receptive markers in mice and associate the alterations to increased implantation failures due to AP. For this study, ten dams per group were exposed for 39 days to either filter (F) or polluted air (CAP). At fourth gestational day (GD4), females were euthanized. Morphological, ultrastructural, immunohistochemical and molecular analysis of uterine and ovarian samples were performed. CAP-exposed females presented a reduced number of corpus luteum; glands and epithelial cells were increased with pinopodes formation impairment. Immunohistochemistry analysis revealed decreased LIF protein levels. These preliminary data suggests that PM exposure may exert negative effects on endometrial receptivity by affecting crucial parameters to embryonic implantation as uterine morphological differentiation, corpus luteum quantity and LIF expression during implantation window.


Subject(s)
Embryo Implantation , Endometrium , Particulate Matter , Animals , Female , Embryo Implantation/drug effects , Endometrium/metabolism , Endometrium/drug effects , Pregnancy , Mice , Biomarkers/metabolism , Male , Leukemia Inhibitory Factor/metabolism
6.
Inflammation ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329636

ABSTRACT

Neutrophilic asthma is generally defined by poorly controlled symptoms and high levels of neutrophils in the lungs. Short-chain fatty acids (SCFAs) are proposed as nonpharmacological therapy for allergic asthma, but their impact on the neutrophilic asthma lacks evidence. SCFAs regulate immune cell responses and impact the inflammasome NLRP3, a potential pharmacological target for neutrophilic asthma. Here, we explored the capacity of SCFAs to mitigate murine-induced neutrophilic asthma and the contribution of NLRP3 to this asthma. The objective of this study is to analyze whether SCFAs can attenuate lung inflammation and tissue remodeling in murine neutrophilic asthma and NLRP3 contribution to this endotype. Wild-type (WT) C57BL6 mice orotracheally received 10 µg of HDM (house dust mite) in 80 µL of saline on days 0, 6-10. To explore SCFAs, each HDM group received 200 mM acetate, propionate, or butyrate. To explore NLRP3, Nlrp3 KO mice received the same protocol of HDM. On the 14th day, after euthanasia, bronchoalveolar lavage fluid (BALF) and lungs were collected to evaluate cellularity, inflammatory cytokines, and tissue remodeling. HDM group had increased BALF neutrophil influx, TNF-α, IFN-γ, IL-17A, collagen deposition, and mucus secretion compared to control. SCFAs distinctively attenuate lung inflammation. Only features of tissue remodeling were Nlrp3-dependent such as collagen deposition, mucus secretion, active TGF-ß cytokine, and IMs CD206+. SCFAs greatly decreased inflammatory cytokines and tissue remodeling. Only tissue remodeling was dependent on NLRP3. It reveals the potential of SCFAs to act as an additional therapy to mitigate neutrophilic asthma and the NLRP3 contribution to asthma.

7.
Nutrients ; 16(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38337668

ABSTRACT

Background: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the overproduction of white blood cells, leading to symptoms such as fatigue, infections, and other complications. CML patients must take measures to prevent infections to mitigate the exacerbation of cancer cell proliferation and comorbidities. Methods: This study investigated whether vitamin C can suppress the hyperinflammatory activation of K-562 cells induced by lipopolysaccharide (LPS) and whether purinergic signaling (ATP and P2X7 receptor) and autophagy play a role in it. Two different doses of vitamin C (5 µg/mL and 10 µg/mL) were employed, along with the lysosome inhibitor chloroquine (CQ; 100 µM), administered 2 h prior to LPS stimulation (10 ng/mL) for a duration of 22 h in K-562 cells (3 × 105 cells/mL/well). Results: Both doses of vitamin C reduced the release of interleukin-6 (IL-6) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and tumor necrosis factor (TNF) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) induced by LPS. Furthermore, in LPS + CQ-stimulated cells, vitamin C at a concentration of 10 µg/mL inhibited the expression of LC3-II (p < 0.05). Conversely, both doses of vitamin C led to the release of the anti-inflammatory cytokine interleukin-10 (IL-10) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01), while only the 10 µg/mL dose of vitamin C induced the release of Klotho (10 µg/mL, p < 0.01). In addition, both doses of vitamin C reduced the accumulation of ATP (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and decreased the expression of the P2X7 receptor at the mRNA level. Conclusions: Vitamin C inhibits the hyperinflammatory state induced by LPS in K-562 cells, primarily by inhibiting the ATP accumulation, P2X7 receptor expression, and autophagy signaling.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Lipopolysaccharides , Humans , Lipopolysaccharides/pharmacology , Ascorbic Acid/pharmacology , Receptors, Purinergic P2X7 , Autophagy , Adenosine Triphosphate/pharmacology
8.
Nucleic Acids Res ; 52(D1): D850-D858, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37855690

ABSTRACT

Studies of model organisms have provided important insights into how natural genetic differences shape trait variation. These discoveries are driven by the growing availability of genomes and the expansive experimental toolkits afforded to researchers using these species. For example, Caenorhabditis elegans is increasingly being used to identify and measure the effects of natural genetic variants on traits using quantitative genetics. Since 2016, the C. elegans Natural Diversity Resource (CeNDR) has facilitated many of these studies by providing an archive of wild strains, genome-wide sequence and variant data for each strain, and a genome-wide association (GWA) mapping portal for the C. elegans community. Here, we present an updated platform, the Caenorhabditis Natural Diversity Resource (CaeNDR), that enables quantitative genetics and genomics studies across the three Caenorhabditis species: C. elegans, C. briggsae and C. tropicalis. The CaeNDR platform hosts several databases that are continually updated by the addition of new strains, whole-genome sequence data and annotated variants. Additionally, CaeNDR provides new interactive tools to explore natural variation and enable GWA mappings. All CaeNDR data and tools are accessible through a freely available web portal located at caendr.org.


Subject(s)
Caenorhabditis , Databases, Genetic , Animals , Caenorhabditis/classification , Caenorhabditis/genetics , Caenorhabditis elegans/genetics , Genome , Genome-Wide Association Study , Genomics
9.
Nutrients ; 15(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068730

ABSTRACT

The effects of regular physical activity on two important anti-atherosclerosis functions of high-density lipoprotein (HDL), namely its capacity to receive both forms of cholesterol and its anti-oxidant function, were investigated in this study comparing older adults with young individuals. One-hundred and eight healthy adult individuals were enrolled and separated into the following groups: active older (60-80 yrs, n = 24); inactive older (60-79 yrs, n = 21); active young (20-34 yrs, n = 39); and inactive young (20-35 yrs, n = 24). All performed cardiopulmonary tests. Blood samples were collected in order to assess the following measures: lipid profile, HDL anti-oxidant capacity, paraoxonase-1 activity, HDL subfractions, and lipid transfer to HDL. Comparing active older and active young groups with inactive older and inactive young groups, respectively, the active groups presented higher HDL-C levels (p < 0.01 for both comparisons), unesterified cholesterol transfer (p < 0.01, p < 0.05), and intermediate and larger HDL subfractions (p < 0.001, p < 0.01) than the respective inactive groups. In addition, the active young group showed higher esterified cholesterol transfer than the inactive young group (p < 0.05). As expected, the two active groups had higher VO2peak than the inactive groups; VO2peak was higher in the two younger than in the two older groups (p < 0.05). No differences in unesterified and esterified cholesterol transfers and HDL subfractions were found between active young and active older groups. HDL anti-oxidant capacity and paraoxonase-1 activity were equal in all four study groups. Our data highlight and strengthen the benefits of regular practice of physical activity on an important HDL function, the capacity of HDL to receive cholesterol, despite the age-dependent decrease in VO2peak.


Subject(s)
Antioxidants , Lipoproteins, HDL , Humans , Aged , Aryldialkylphosphatase , Cholesterol , Cholesterol Esters , Exercise , Cholesterol, HDL
11.
Article in English | MEDLINE | ID: mdl-37837484

ABSTRACT

The asthma-COPD overlap syndrome (ACOS) presents lung inflammation similar to both asthma and chronic obstructive pulmonary disease (COPD). Due to the immune response between the lung and gut, it is possible that ACOS individuals present gut dysbiosis. Due to therapeutic limitations in ACOS, Lactobacillus rhamnosus (Lr) have received attention once Lr has been effective in asthma and COPD. However, there is no data about the Lr effect on both lung inflammation and gut dysbiosis in ACOS. Thus, our study investigated the Lr effect on lung inflammation, bronchoconstriction, airway remodeling, and gut dysbiosis in the murine ACOS model. Treated mice with Lr were exposed to HDM and cigarette smoke to induce ACOS. Sixty days after ACOS induction, mice were euthanized. Lung inflammation was evaluated in leukocytes in bronchoalveolar lavage fluid (BALF), airway remodeling, cytokine secretion, and transcription factor expression in the lung. The gut microbiota was assayed by 16S mRNA sequencing from a fecal sample. Leukocyte population, bronchial hyperreactivity, pro-inflammatory cytokines, and airway remodeling were attenuated in Lr-treated ACOS mice. Likewise, IL-4, IL-5, and IL-13, STAT6 and GATA3, as well as IL-17, IL-21, IL-22, STAT3, and RORÉ£t were reduced after Lr. In addition, IL-2, IL-12, IFN-γ, STAT1, and T-bet as well as IL-10, TGF-ß, STAT5, and Foxp3 were restored after the Lr. Firmicutes was reduced, while Deferribacteres was increased after Lr. Likewise, Lr decreased Staphylococcus and increased Mucispirillum in ACOS mice. Lr improves fecal bacterial ß-diversity. Our findings show for the first time the Lr effect on lung inflammation and gut dysbiosis in murine ACOS.

12.
Front Med (Lausanne) ; 10: 1206545, 2023.
Article in English | MEDLINE | ID: mdl-37746072

ABSTRACT

Background: Although aging is a process associated with the development of obesity, metabolic syndrome (MetS), and sarcopenia, the prevalence of these conditions in older adults from São Paulo, Brazil, is unclear. Methods: Therefore, the current study aimed to investigate the prevalence of obesity, sarcopenia, and MetS, both separately and together, in a community-based sample of older adults from São Paulo, Brazil. Data from the medical records of 418 older adults of both genders, aged 60 years or older (mean age 69.3 ± 6.5 years), who were not physically active, were used to conduct this retrospective cross-sectional study. Anthropometric variables were used to determine both body mass index (BMI) and Conicity index (C index). Sarcopenia and MetS were defined according to the criteria of the European Working Group on Sarcopenia in Older People and by the Brazilian Society of Endocrinology and Metabolism, respectively. Results: Based on BMI, the group of older men (n = 91) showed a predominance of adequate weight (n = 49) and the group of older women (n = 327) showed a predominance of obesity (n = 181). In association with obesity, while only the group of older women presented with sarcopenia (n = 5), 52 older women and 9 older men presented with MetS, and two older women presented with sarcopenia + MetS [prevalence ratio = 0.0385, 95% CI (0.007;0.1924)]. Based on the C index, 58 older women and 11 older men presented with MetS, while the occurrence of sarcopenia or MetS + sarcopenia was found in 32 and 5 older women, respectively [prevalence ratio = 0.0910, 95% CI (0.037;0.2241)]. Discussion: Our results suggest that obesity, as measured by BMI or the C Index, was more closely associated with the occurrence of MetS than sarcopenia, regardless of gender, and also that sarcopenic obesity was only found in the group of older women. Additionally, the prevalence ratio of obesity, sarcopenia, and MetS evidenced using the C index was 2.3 times higher than the values found using the BMI classification.

13.
Nutrients ; 15(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37571250

ABSTRACT

Obesity is a troubling public health problem as it increases risks of sleep disorders, respiratory complications, systemic arterial hypertension, cardiovascular diseases, type 2 diabetes mellitus, and metabolic syndrome (MetS). As a measure to counteract comorbidities associated with severe obesity, bariatric surgery stands out. This study aimed to investigate the adiponectin/leptin ratio in women with severe obesity with and without MetS who had undergone Roux-en-Y gastric bypass (RYGB) and to characterize the biochemical, glucose, and inflammatory parameters of blood in women with severe obesity before and after RYGB. Were enrolled females with severe obesity undergoing RYGP with MetS (n = 11) and without (n = 39). Anthropometric data and circulating levels of glucose, total cholesterol, high-density lipoprotein (HDL), non-HDL total cholesterol, low-density lipoprotein (LDL), adiponectin, and leptin were assessed before and 6 months after RYGB. Significant reductions in weight, body mass index, and glucose, total cholesterol, LDL, and leptin were observed after surgery, with higher levels of HDL, adiponectin, and adiponectin/leptin ratio being observed after surgery compared to the preoperative values of those. This study demonstrated that weight loss induced by RYGB in patients with severe obesity with or without MetS improved biochemical and systemic inflammatory parameters, particularly the adiponectin/leptin ratio.


Subject(s)
Diabetes Mellitus, Type 2 , Gastric Bypass , Metabolic Syndrome , Obesity, Morbid , Humans , Female , Leptin , Metabolic Syndrome/complications , Obesity, Morbid/complications , Obesity, Morbid/surgery , Adiponectin , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/surgery , Diabetes Mellitus, Type 2/metabolism , Obesity/complications , Cholesterol , Glucose
14.
Front Med (Lausanne) ; 10: 1206989, 2023.
Article in English | MEDLINE | ID: mdl-37534321

ABSTRACT

Background: Inflammaging is a phenomenon that has been associated with the development and progression of sarcopenia and frailty syndrome. According to the literature, on the one side, the increase in body fat is associated with a systemic pro-inflammatory status, which consequently favors inflammaging, and on the other side, the regular practice of physical exercise can mitigate the development of this scenario. Therefore, here, we aimed to evaluate the association between inflammaging and physical factors, both body and functional, in a group of physically active older women. Methods: Seventy older women (mean age 72.66 ± 6.17 years) participated in this observational cross-sectional and were separated into the eutrophic, overweight, and obese groups. It was assessed: by bioimpedance-body fat percentage (Fat%) and total (Fat kg), skeletal muscle mass (muscle), and free fat mass both in percentage (FFM%) and total (FFMkg); by the International Physical Activity Questionnaire (IPAQ)-the time of moderate-intensity physical activity per week; by physical tests-handgrip (HG), sit-up-stand-on-the-chair in 5 repetitions (Sit-up) and vertical squat jump test (SJ); in addition to the determination of serum cytokine concentration (IL-6, TNF-α, IL-10, and IL-8), and also body mass index (BMI) and calf circumference (Calf). Results: Higher FFM% and lower body fat (both kg and %) were found in the eutrophic group than in the other groups. The eutrophic group also performed more weekly physical activity, jumped higher, and presented not only higher serum IL-6 concentration but also an increased ratio of IL-10/IL-6, IL-10/TNF-α, IL-10/IL-8 as compared to the values found in the overweight group. The obese group presented higher body fat (kg and %) and lower FFM% than the other groups and also higher serum IL-6 concentration than the overweight group. Interestingly, several significant negative and positive correlations between body composition, physical tests, and serum cytokine concentrations were found in the eutrophic and obese groups. Conclusion: While the eutrophic older women group showed a remarkable regulation of the systemic inflammatory status with positive associations in the physical parameters assessed, the overweight and obese groups presented impairment regulations of the inflammaging, which could be related to less weekly physical activity and higher body fat.

15.
Diabetol Metab Syndr ; 15(1): 19, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36788619

ABSTRACT

BACKGROUND: Obesity remains a public health problem worldwide. The high prevalence of this condition in the population raises further concerns, considering that comorbidities are often associated with obesity. Among the comorbidities closely associated with obesity, metabolic syndrome (MS) is particularly important, which potentially increases the risk of manifestation of other disorders, such as the prothrombotic and systemic pro-inflammatory states. METHODS: A randomized, controlled clinical trial was performed involving female patients (n = 32) aged between 18 and 65 years, with a clinical diagnosis of MS, with severe obesity undergoing Roux-en-Y gastric bypass (RYGB). The study design followed the Consolidated Standards of Reporting Trials statement (CONSORT). Lipid profile, blood glucose and adipokines (adiponectin, leptin, and resistin) and (cytokines IL-1ß, IL-6, IL-17, IL-23, and TNF-α) in blood plasma samples were evaluated before and six months after RYGB. RESULTS: Patients undergoing RYGB (BSG) showed a significant improvement from preoperative grade III obesity to postoperative grade I obesity. The results showed that while HDL levels increased, the other parameters showed a significant reduction in their postoperative values when compared not only to the values observed before surgery in the BSG group, but also to the values obtained in the control group (CG). As for systemic inflammatory markers adiponectin, leptin, resistin, IL-1ß, IL-6, IL-17, IL-23 and TNF- α it was observed that the levels of resistin and IL-17 in the second evaluation increased significantly when compared to the levels observed in the first evaluation in the CG. In the BSG group, while the levels of adiponectin increased, the levels of the other markers showed significant reductions in the postoperative period, in relation to the respective preoperative levels. The analysis of Spearman's correlation coefficient showed a significant positive correlation between IL-17 and IL-23 in the preoperative period, significant positive correlations between TNF-α and IL-6, TNF-α and IL-17, IL-6 and IL-17, and IL-17 and IL-23 were observed postoperatively. CONCLUSIONS: According to our results, the reduction of anthropometric measurements induced by RYGB, significantly improves not only the plasma biochemical parameters (lipid profile and glycemia), but also the systemic inflammatory status of severely obese patients with MS. Trials registration NCT02409160.

16.
Article in English | MEDLINE | ID: mdl-36767315

ABSTRACT

BACKGROUND: In this study, we aimed to investigate the specific-antibody response to the COVID-19 vaccination and the immunophenotyping of T cells in older adults who were engaged or not in an exercise training program before the pandemic. METHODS: Ninety-three aged individuals (aged between 60 and 85 years) were separated into 3 groups: practitioners of physical exercise vaccinated with CoronaVac (PE-Co, n = 46), or vaccinated with ChadOx-1 (PE-Ch, n = 23), and non-practitioners vaccinated with ChadOx-1 (NPE-Ch, n = 24). Blood samples were collected before (pre) and 30 days after vaccination with the second vaccine dose. RESULTS: Higher IgG levels and immunogenicity were found in the PE-Ch and NPE-Ch groups, whereas increased IgA levels were found only in the PE-Ch group post-vaccination. The PE-Co group showed a positive correlation between the IgA and IgG values, and lower IgG levels post-vaccination were associated with age. Significant alterations in the percentage of naive (CD28+CD57-), double-positive (CD28+CD57+), and senescent (CD28-CD57+) CD4+ T and CD8+ T cells were found post-vaccination, particularly in the PE-Ch group. CONCLUSIONS: The volunteers vaccinated with the ChadOx-1 presented not only a better antibody response but also a significant modulation in the percentage of T cell profiles, mainly in the previously exercised group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Aged , Middle Aged , Aged, 80 and over , COVID-19/prevention & control , CD28 Antigens , Pandemics , Vaccination , Exercise , Immunity , Immunoglobulin G , Immunoglobulin A , Antibodies, Viral
17.
Biomed Pharmacother ; 159: 114263, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36652732

ABSTRACT

Leukemia is among the most common types of hematological cancers and the use of herbal medicines to prevent and treat leukemia are under quick development. Among several molecular pathways involved in leukemia pathogenesis and exacerbations, purinergic signaling is revealed as a key component. In the present study, the effects of two doses (5 ug/mL and 10 ug/mL) of Immunity-6™, a phytocomplex composed by beta-glucan, green tea (Camelia sinensis), chamomile (Matricaria chamomilla), and ascorbic acid (vitamin C) was tested in vitro, using chronic myelogenous leukemia cell line (K-562; 5 ×104/mL/well), which were challenged with lipopolysaccharide (LPS; 1 ug/mL) for 24 h. The results demonstrated that both doses of Immunity-6™ inhibited ATP release (p < 0.001) and P2×7 receptor at mRNA levels expression (p < 0.001). Purinergic inhibition by Immunity-6™ was followed by reduced release of proinflammatory cytokines IL-1beta (p < 0.001) and IL-6 (p < 0.001), while only 5 ug/mL of Immunity-6™ reduced the release of TNF-alpha (p < 0.001). Beyond to inhibit the release of pro-inflammatory cytokines, both doses of Immunity-6™ induced the release of anti-inflammatory cytokine IL-10 (p < 0.001), while only the higher dose (10 ug/mL) of Immunity-6™ induced the release of anti-inflammatory IL-1ra (p < 0.05) and klotho (p < 0.001). Thus, Immunity-6™ may be a promising adjuvant in the treatment of leukemia and further clinical trials are guaranteed.


Subject(s)
Cytokines , Leukemia , Phytotherapy , Humans , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Cytokines/metabolism , Interleukin-1beta/metabolism , Leukemia/drug therapy , Lipopolysaccharides/pharmacology , Receptors, Purinergic P2X7/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
18.
J Diet Suppl ; 20(2): 156-170, 2023.
Article in English | MEDLINE | ID: mdl-35930300

ABSTRACT

Even after virus elimination, numerous sequelae of coronavirus disease 2019 (COVID-19) persist. Based on accumulating evidence, large amounts of proinflammatory cytokines are released to drive COVID-19 progression, severity, and mortality, and their levels remain elevated after the acute phase of COVID-19, playing a central role in the disease' sequelae. In this manner, bronchial epithelial cells are the first cells hyperactivated by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), leading to massive cytokine release, triggering the hyperactivation of leukocytes and other cells, and mediating COVID-19 sequelae. Therefore, proinflammatory cytokine production is initiated by the host. This in vitro study tested the hypothesis that ImmuneRecov™, a nutritional blend, inhibits the SARS-CoV-2-induced hyperactivation of human bronchial epithelial cells (BEAS-2B). BEAS-2B (5x104/mL/well) cells were cocultivated with 1 ml of blood from a SARS-CoV-2-infected patient for 4 h, and the nutritional blend (1 µg/mL) was added in the first minute of coculture. After 4 h, the cells were recovered and used for analyses of cytotoxicity with the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay and the expression of the IL-1ß, IL-6, and IL-10 mRNAs. The supernatant was collected to measure cytokine levels. SARS-CoV-2 incubation resulted in increased levels of IL-1ß and IL-6 in BEAS-2B cells (p < 0.001). Treatment with the nutritional blend resulted in reduced levels of the proinflammatory cytokines IL-1ß and IL-6 (p < 0.001) and increased levels of the anti-inflammatory cytokine IL-10 (p < 0.001). Additionally, the nutritional blend reduced the expression of the IL-1ß and IL-6 mRNAs in SARS-CoV-2-stimulated cells and increased the expression of the IL-10 and IFN-γ mRNAs. In conclusion, the nutritional blend exerts important anti-inflammatory effects on cells in the context of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Interleukin-10 , Interleukin-6 , Cytokines/metabolism , Epithelial Cells/metabolism , Anti-Inflammatory Agents
19.
Front Med (Lausanne) ; 9: 1005732, 2022.
Article in English | MEDLINE | ID: mdl-36479097

ABSTRACT

Background: The application of early mobilization (EM) in intensive care units (ICUs) has shown to improve the physical and ventilatory status of critically ill patients, even after ICU stay. This study aimed to describe the practices regarding EM in ICUs in Latin America. Methods: We conducted an observational, cross-sectional study of professionals from all countries in Latin America. Over 3 months, professionals working in ICU units in Latin America were invited to answer the survey, which was designed by an expert committee and incorporated preliminary questions based on studies about EM recommendations. Results: As many as 174 health professionals from 17 countries completed the survey. The interventions carried out within each ICU were active mobilization (90.5%), passive mobilization (85.0%), manual and instrumental techniques for drainage of mucus secretion (81.8%), and positioning techniques (81%). The professionals who most participated in the rehabilitation process in ICUs were physiotherapists (98.7%), intensive care physicians (61.6%), nurses (56.1%), and respiratory therapists (43.8%). In only 36.1% of the ICUs, protocols were established to determine when a patient should begin EM. In 38.1% of the cases, the onset of EM was established by individual evaluation, and in 25.0% of the cases, it was the medical indication to start rehabilitation and EM. Conclusion: This report shows us that EM of critically ill patients is an established practice in our ICUs like in other developed countries.

20.
Nutrients ; 14(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36501011

ABSTRACT

Collagen-based products are found in different pharmaceuticals, medicine, food, and cosmetics products for a wide variety of applications. However, its use to prevent or improve the health of skin is growing dizzyingly. Therefore, this study investigated whether collagen peptides could induce fibroblast and keratinocyte proliferation and activation beyond reducing an inflammatory response induced by lipopolysaccharide (LPS). Human skin fibroblasts (CCD-1072Sk) and human keratinocytes (hKT-nh-skp-KT0026) were seeded at a concentration of 5 × 104 cells/mL. LPS (10 ng/mL) and three doses of collagen peptides (2.5 mg/mL, 5 mg/mL, 10 mg/mL) were used. The readout parameters were cell proliferation; expression of inducible nitric oxide synthase (iNOS); expression of pro-collagen-1α by fibroblasts; and secretion of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor α (TNF-α), transforming growth factor ß (TGF-ß), and vascular endothelial growth factor (VEGF) by both cell types. The results demonstrated that all doses of collagen supplementation induced increased proliferation of both human fibroblasts (p < 0.01) and human keratinocytes (p < 0.001), while only the dose of 10 mg/mL induced an increased expression of pro-collagen-1α by fibroblasts. Similarly, only the dose of 10 mg/mL reduced LPS-induced iNOS expression in fibroblasts (p < 0.05) and keratinocytes (p < 0.01). In addition, collagen supplementation reduced the LPS-induced IL-1ß (p < 0.05), IL-6 (p < 0.001), IL-8 (p < 0.01), and TNF-α (p < 0.05), and increased the TGF-ß and VEGF expression in fibroblasts. Furthermore, collagen supplementation reduced the LPS-induced IL-1ß (p < 0.01), IL-6 (p < 0.01), IL-8 (p < 0.01), and TNF-α (p < 0.001), and increased the TGF-ß (p < 0.05) and VEGF (p < 0.05) expression in keratinocytes. In conclusion, collagen peptides were found to induce fibroblast and keratinocyte proliferation and pro-collagen-1α expression, involving increased expression of TGF-ß and VEGF, as well as the suppression of an inflammatory response induced by LPS.


Subject(s)
Interleukin-8 , Tumor Necrosis Factor-alpha , Humans , Anti-Inflammatory Agents/metabolism , Cell Proliferation , Cells, Cultured , Fibroblasts/metabolism , Interleukin-1/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Keratinocytes/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Collagen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...