Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731689

ABSTRACT

An advantage of masticators is the calibration and possible standardization of intra- and inter-individual mastication variability. However, mastication of soft, sticky and melting products, such as processed cream cheeses, is challenging to reproduce with a masticator. The objectives of this work were, for the cheese studied: (1) to compare child and adult mastication and (2) to find in vitro parameters which best reproduce their in vivo chewing. Five parameters influencing mastication (mouth volume, quantity consumed, saliva volume, mastication time and number of tongue-palate compressions) were measured in 30 children (5-12 years old) and 30 adults (18-65 years old) and compared between the two populations. They were then transposed to a masticator (Oniris device patent). The initial cheese, a homogeneous white paste, was surface-colored to investigate its in-mouth destructuring. In vivo boli were collected at three chewing stages (33, 66 and 99% of mastication time) and in vitro boli were obtained by varying the number of tongue-palate compressions and the rotation speed. In vivo and in vitro boli were compared by both image and texture analysis. Child masticatory parameters were proportionally smaller than those of adults. The in vivo child boli were less homogeneous and harder than adult ones. Comparison of in vivo and in vitro bolus color and texture enabled the successful determination of two in vitro settings that closely represented the mastication of the two populations studied.

2.
Dev Psychobiol ; 66(3): e22474, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38419350

ABSTRACT

Human milk odor is attractive and appetitive for human newborns. Here, we studied behavioral and heart-rate (HR) responses of 2-day-old neonates to the odor of human colostrum. To evaluate detection in two conditions of stimulus delivery, we first presented the odor of total colostrum against water. Second, the hedonic specificity of total colostrum odor was tested against vanilla odor. Third, we delivered only the fresh effluvium of colostrum separated from the colostrum matrix; the stability of this colostrum effluvium was then tested after deep congelation; finally, after sorptive extraction of fresh colostrum headspace, we assessed the activity of colostrum volatiles eluting from the gas chromatograph (GC). Regardless of the stimulus-delivery method, neonates displayed attraction reactions (HR decrease) as well as appetitive oral responses to the odor of total colostrum but not to vanilla odor. The effluvium separated from the fresh colostrum matrix remained appetitive but appeared labile under deep freezing. Finally, volatiles from fresh colostrum effluvium remained behaviorally active after GC elution, although at lower magnitude. In sum, fresh colostrum effluvium and its eluate elicited a consistent increase in newborns' oral activity (relative to water or vanilla), and they induced shallow HR decrease. Newborns' appetitive oral behavior was the most reproducible response criterion to the effluvium of colostrum. In conclusion, a set of unidentified volatile compounds from human colostrum is robust enough after extraction from the original matrix and chromatographic processing to continue eliciting appetitive responses in neonates, thus opening new directions to isolate and assay specific volatile molecules of colostrum.


Subject(s)
Colostrum , Odorants , Female , Pregnancy , Humans , Infant, Newborn , Odorants/analysis , Smell/physiology , Milk, Human , Water
3.
Molecules ; 28(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894701

ABSTRACT

Controlling flavor perception by analyzing volatile and taste compounds is a key challenge for food industries, as flavor is the result of a complex mix of components. Machine-learning methodologies are already used to predict odor perception, but they are used to a lesser extent to predict aroma perception. The objectives of this work were, for the processed cream cheese models studied, to (1) analyze the impact of the composition and process on the sensory perception and VOC release and (2) predict "fresh cream" aroma perception from the VOC characteristics. Sixteen processed cream cheese models were produced according to a three-factor experimental design: the texturing agent type (κ-carrageenan, agar-agar) and level and the heating time. A R-A-T-A test on 59 consumers was carried out to describe the sensory perception of the cheese models. VOC release from the cheese model boli during swallowing was investigated with an in vitro masticator (Oniris device patent), followed by HS-SPME-GC-(ToF)MS analysis. Regression trees and random forests were used to predict "fresh cream" aroma perception, i.e., one of the main drivers of liking of processed cheeses, from the VOC release during swallowing. Agar-agar cheese models were perceived as having a "milk" odor and favored the release of a greater number of VOCs; κ-carrageenan samples were perceived as having a "granular" and "brittle" texture and a "salty" and "sour" taste and displayed a VOC retention capacity. Heating induced firmer cheese models and promoted Maillard VOCs responsible for "cooked" and "chemical" aroma perceptions. Octa-3,5-dien-2-one and octane-2,3-dione were the two main VOCs that contributed positively to the "fresh cream" aroma perception. Thus, regression trees and random forests are powerful statistical tools to provide a first insight into predicting the aroma of cheese models based on VOC characteristics.


Subject(s)
Cheese , Volatile Organic Compounds , Cheese/analysis , Odorants/analysis , Volatile Organic Compounds/analysis , Agar , Carrageenan , Perception , Taste
4.
Molecules ; 27(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36014548

ABSTRACT

The odor of human milk induces search-like movements and oral activation in newborns, which increases their chances of taking advantage of milk intake and benefits. However, the underlying volatile fraction of human milk remains understudied. This study aimed to devise a simple method to extract a wide range of volatile compounds from small-volume human milk samples. Headspace solid phase micro-extraction (HS-SPME) with a Car/PDMS fiber and dynamic headspace extraction (D-HS) with a Tenax or a trilayer sorbent were tested because of their selective affinity for volatiles. Then, innovative variations of these methods were developed to combine their respective advantages in a one-step extraction: Static headspace with multiple SPME fibers (S-HS-MultiSPME), Dynamic headspace with multiple SPME fibers (D-HS-MultiSPME) and dynamic headspace with multiple SPME fibers and Tenax (D-HS-MultiSPME/Tenax). The extracts were analyzed by gas chromatography coupled with mass spectrometric and flame ionization detection. The relative performances of these methods were compared based on qualitative and semi-quantitative analyses of the chromatograms. The D-HS technique showed good sensitivity for most compounds, whereas HS-SPME favored the extraction of acids. The D-HS-MultiSPME/Tenax identified more than 60 compounds from human milk (some for the first time) and evidence of individual singularities. This method that can be applied to volatilome analysis of any biological fluid should further our understanding of human milk odor.


Subject(s)
Milk, Human , Solid Phase Microextraction , Flame Ionization , Gas Chromatography-Mass Spectrometry/methods , Humans , Infant, Newborn , Odorants , Solid Phase Microextraction/methods
5.
Data Brief ; 24: 103725, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31016210

ABSTRACT

This paper describes data collected on 2 sets of 8 French red wines from two grape varieties: Pinot Noir (PN) and Cabernet Franc (CF). It provides, for the 16 wines, (i) sensory descriptive data obtained with a trained panel, (ii) volatile organic compounds (VOC) quantification data obtained by Headspace Solid Phase Micro-Extraction - Gas Chromatography - Mass Spectrometry (HS-SPME-GC-MS) and (iii) odor-active compounds identification by Headspace Solid Phase Micro-Extraction - Gas Chromatography - Mass Spectrometry - Olfactometry (HS-SPME-GC-MS-O). The raw data are hosted on an open-access research data repository [1].

6.
J Agric Food Chem ; 53(5): 1514-20, 2005 Mar 09.
Article in English | MEDLINE | ID: mdl-15740033

ABSTRACT

Proteins often stabilize food emulsions and are also able to promote or delay lipid oxidation in complex systems. The purpose of this work was to investigate the relationship between metal ion availability and oxidative stability of oil-in-water emulsions stabilized by bovine serum albumin (BSA) or sodium caseinate (NaCas). Emulsions with similar and stable droplet size distributions were prepared with stripped sunflower oil (30 vol %) and protein solutions (20 g L(-)(1); pH = 6.5). In the absence of the water-soluble metal chelator EDTA, oxygen uptake, conjugated dienes, and volatile compounds developed faster in NaCas-stabilized emulsions than in those prepared with BSA. This effect is attributed to the chelating properties of NaCas and to electrostatic interactions that attract some metal ions at the interface where they could initiate lipid oxidation. When EDTA (100 muM) was present, oxidation was delayed to a greater extent in emulsions made with NaCas than in BSA stabilized emulsions. These conditions probably enabled NaCas to exert free-radical-scavenging activity.


Subject(s)
Caseins/chemistry , Emulsions/chemistry , Metals/chemistry , Serum Albumin, Bovine/chemistry , Caseins/metabolism , Chelating Agents/chemistry , Chemical Phenomena , Chemistry, Physical , Drug Stability , Edetic Acid/pharmacology , Free Radical Scavengers/chemistry , Iron/chemistry , Iron/metabolism , Oxidation-Reduction , Serum Albumin, Bovine/metabolism , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...