Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Res ; 25(3A): 1817-22, 2005.
Article in English | MEDLINE | ID: mdl-16033105

ABSTRACT

UNLABELLED: The higher soy intake in the Asian population compared to Europeans is believed to be an essential factor for the lower incidence of hormone-dependent tumours in Asia. It has already been shown that soya beans, with their ingredients genistein and daidzein from the isoflavonoid group, have protective effects on hormone-caused diseases. Lignans are another, less investigated, group of phytoestrogens. The aim of this study was to investigate the effects of flax-seed, which is typically found in Northern European diets, on the proliferation and hormone production of an estrogen receptor (ER)-positive trophoblast tumour cell line. MATERIALS AND METHODS: Trophoblast tumour cells of the cell line Jeg3 were incubated with 2 different concentrations of the isolated crude extract of flax-seed and 7 chemically partitioned extract fractions. Untreated cells were used as controls. After 48 h of stimulation, cell proliferation was measured using the BrdU method. The concentrations of hCG and progesterone produced by the trophoblast tumour cells were measured 48 h after stimulation. Extract fractions with antiproliferative effects in the BrdU- test were analysed by HPLC-MS. RESULTS: Our study showed an inhibitory influence of some of the isolated flax-seed fractions on the Jeg3 tumour cells. Proliferation of the Jeg3 cells was decreased by flax-seed fractions I, V, VI and VII in a dose-dependent manner. Inhibition of hCG production by flax-seed extracts III, V, VI and VII was also dose-dependent. Extract fractions V and VI decreased the production of progesterone by 58% to 86%. Some extract fractions showed a stimulating effect on hormone production and cell proliferation. HPLC-MS analysis showed the presence of matairesinol and biochanin A in flax-seed fraction VI. DISCUSSION: Flax-seed seems to have similar inhibitory effects to soya on hormone production and proliferation of hormone-sensitive tumour cells. Our results showed a dose-dependent inhibition by isolated flax-seed extracts on the Jeg3 cell line. Matairesinol and biochanin A seem to be useful candidates for extended tests on other tumour cell lines and normal tissues to evaluate the potential benefit of a lignan-containing therapy in hormone-dependent diseases.


Subject(s)
Choriocarcinoma/metabolism , Flax/chemistry , Phytoestrogens/pharmacology , Plant Extracts/pharmacology , Receptors, Estrogen/metabolism , Cell Division/drug effects , Cell Line, Tumor , Choriocarcinoma/pathology , Chromatography, High Pressure Liquid , Humans , Immunohistochemistry , Mass Spectrometry
2.
Anticancer Res ; 23(2A): 1081-6, 2003.
Article in English | MEDLINE | ID: mdl-12820351

ABSTRACT

INTRODUCTION: Phytoestrogens are a diverse group of nonsteroidal plant compounds that occur naturally in many plants. Because they possess a ring system similar to estrogens they are able to bind to estrogen receptors in humans. With this study we tested the effects of the phytoestrogens genistein and daidzein in cell proliferation and the production of progesterone and hCG in trophoblast tumour cells of the cell lines BeWo and Jeg3. MATERIALS AND METHODS: The phytoestrogens genistein and daidzein were incubated in different concentrations with trophoblast tumour cells. Untreated cells were used as controls. At designated times, aliquots were removed and tested for progesterone and hCG. In addition we tested the effects of phytoestrogens on cell proliferation. Different concentrations of genistein and daidzein were cultivated with trophoblast tumour cells. After designated times, 1 microCi thymidin-(methyl-3H) was added. Methyl-3H thymidin incorporation was tested and compared to incorporation results of untreated cells. RESULTS: With this study we could show that the production of the steroid hormone progesterone and the protein hormone hCG is influenced by the phytoestrogens genistein and daidzein in trophoblast tumour cells of the cell lines BeWo and Jeg3. We found a correlation between the effects on the proliferation and the production of progesterone and hCG at high concentrations of genistein and daidzein in the cell lines tested. With low concentrations of genistein and daidzein we observed a stimulation of the production of hCG and a weak inhibition of proliferation in both cell lines BeWo and Jeg3. DISCUSSION: The results obtained with this study suggest that only high doses of phytoestrogens (> 1 mumol/ml) can reduce the proliferation of trophoblast tumour cells significantly. Low doses of phytoestrogens induced a higher hCG production in both cell lines tested. Although high hCG production did not lead to a higher proliferation rate of the tumour cells tested, hCG is able to induce neovascularisation in tumour cells. In summary, with this in vitro study we showed that high doses of phytoestrogens inhibit proliferation and progesterone production in trophoblast tumour cells. High doses of phytoestrogens could be useful candidates for special diet programs for prevention and surgery for patients with this type of disease. In addition we found a useful cell culture model for the testing of new types of phytoestrogens.


Subject(s)
Estrogens, Non-Steroidal/pharmacology , Genistein/pharmacology , Isoflavones/pharmacology , Cell Division/drug effects , Chorionic Gonadotropin/metabolism , Dose-Response Relationship, Drug , Female , Humans , Phytoestrogens , Plant Preparations , Pregnancy , Progesterone/metabolism , Trophoblastic Neoplasms , Tumor Cells, Cultured , Uterine Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...