Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 606
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3330-3339, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041096

ABSTRACT

This study aims to investigate the mechanism of Huangqin Qingre Chubi Capsules(HQC) in delaying chondrocyte senescence of osteoarthritic(OA) rats by regulating the p53/p21 signaling pathway. Rheumatic fever paralysis models of OA rats were induced based on monosodiun iodoacetate(MIA) combined with external rheumatic fever environmental stimuli and divided into normal(Con) group, OA model(MIA) group, OA model+rheumatic fever stimulation model(MIA-M) group, MIA-M+HQC low-dose(MIA-M+HQC-L) group, medium-dose(MIA-M+HQC-M) group, and high-dose(MIA-M+HQC-H) group, and MIA-M+glucosamine(MIA-M+GS) group. The models were successfully prepared and administered by gavage for 30 d. The pathological changes of cartilage were observed by hematoxylin-eosin(HE) and Senna O solid green(SO) staining. The expression of interleukin(IL)-1ß and IL-6 was detected by enzyme-linked immunosorbent assay(ELISA). Flow cytometry(FCM) was used to detect apoptosis and cell cycle. The mRNA expression of MMP13, ADAMTS-5, COLⅡ, and TGF-ß was detected by RT-qPCR. The protein expression of p53/p21, p16, Bax, and Bcl-2 was detected by Western blot. The articular cartilage surface of rats in the Con group was smooth, and the tide line was smooth. The cartilage layer of MIA and MIA-M groups was obviously damaged, and the cartilage matrix was reduced. The above conditions were more severe in the MIA-M group. The cartilage surface of the HQC high-dose group and MIA-M+GS group was basically intact with clear delamination. Compared with the MIA-M+HQC-H group, Mankin's score was higher in the HQC low-dose and medium-dose groups, and the change was not obvious in the MIA-M+GS group. Compared with the Con group, the proportion of chondrocytes G_1 was elevated in the MIA and MIA-M groups, and the proportion of the S phase and G_2 phase was significantly decreased. In addition, the apoptosis rate was increased. Compared with MIA-M, HQC groups inhibited apoptosis and promoted cell proliferation in a concentration-dependent manner. Compared with the MIA-M+HQC-H group, the effect was more significant in the HQC high-dose group than in the HQC medium-low dose, while it was not significant in the MIA-M+GS group. Compared with the Con group, IL-1ß and IL-6 were elevated in the MIA and MIA-M groups, and mRNA levels of MMP13 and ADAMTS-5 were elevated. p53, p21, p16, and Bax protein were elevated, and mRNA levels of COLⅡ and TGF-ß were decreased. Compared with the MIA-M group, IL-1ß and IL-6 decreased after drug interventions of HQC and GS, and mRNA levels of MMP13 and ADAMTS-5, as well as protein levels of p53, p21, Bax, and p16 decreased. In addition, Bcl-2 increased. The improvement of these indexes was significantly better in the MIA-M+HQC-H group than in the HQC low-dose and medium-dose groups, and the difference with the MIA-M+GS group was not significant. HQC delayed MIA-induced chondrocyte senescence in OA rats, inhibited inflammatory response and extracellular matrix(ECM) degradation, and its mechanism may be related to the inhibition of the p53/p21 pathway.


Subject(s)
Chondrocytes , Drugs, Chinese Herbal , Osteoarthritis , Rats, Sprague-Dawley , Signal Transduction , Tumor Suppressor Protein p53 , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Osteoarthritis/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Rats , Signal Transduction/drug effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Male , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Capsules , Humans , Apoptosis/drug effects
2.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 532-537, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38952093

ABSTRACT

Objective To observe the expression of anti-ß2 glycoprotein I (ß2GPI) autoantibody in connective tissue diseases and its relationship with the degree of inflammation and immune function. Methods Patients with broad connective tissue diseases including connective tissue disease (CTD), rheumatoid arthritis (RA), Sjogren's syndrome (SS), and systemic lupus erythematosus (SLE) were observed. ß2GPI was quantified by chemiluminescence, ESR was measured by Weil's method, and C-reactive protein (CRP), rheumatoid factor (RF), anti-cyclic citrullinated polypeptide (CCP) antibody were measured by automatic biochemical analyzer. Results ß2GPI and their subtypes were significantly higher in RA patients compared with CTD, SS, and SLE patients. CRP was positively associated with anti-ß2GPI antibody and anti-ß2GPI antibody IgM in patients with connective tissue disease. ESR was positively associated with anti-ß2GPI antibody. Anti-ß2GPI antibody and anti-ß2GPI antibody IgM were elevated in the abnormal CRP group compared with the normal CRP group. Compared with the ESR normal group, anti-ß2GPI antibody and anti-ß2GPI antibody IgG were elevated in the ESR abnormal group. Anti-ß2GPI antibody was positively correlated with ESR and anti-CCP antibody in RA patients. Anti-ß2GPI antibody IgG was positively correlated with RF. Conclusion ß2GPI can be used as a predictor of the degree of inflammation and assessment of immune disorders in CTD.


Subject(s)
Autoantibodies , Connective Tissue Diseases , Inflammation , beta 2-Glycoprotein I , Humans , Autoantibodies/blood , Autoantibodies/immunology , beta 2-Glycoprotein I/immunology , Connective Tissue Diseases/immunology , Connective Tissue Diseases/blood , Female , Male , Middle Aged , Adult , Inflammation/immunology , Inflammation/blood , C-Reactive Protein/analysis , C-Reactive Protein/immunology , Rheumatoid Factor/blood , Rheumatoid Factor/immunology , Aged , Sjogren's Syndrome/immunology , Sjogren's Syndrome/blood , Young Adult , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/blood
3.
Int J Legal Med ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060444

ABSTRACT

In Chinese criminal law, the ages of 12, 14, 16, and 18 years old play a significant role in the determination of criminal responsibility. In this study, we developed an epiphyseal grading system based on magnetic resonance image (MRI) of the hand and wrist for the Chinese Han population and explored the feasibility of employing deep learning techniques for bone age assessment based on MRI of the hand and wrist. This study selected 282 Chinese Han Chinese males aged 6.0-21.0 years old. In the course of our study, we proposed a novel deep learning model for extracting and enhancing MRI hand and wrist bone features to enhance the prediction of target MRI hand and wrist bone age and achieve precise classification of the target MRI and regression of bone age. The evaluation metric for the classification model including precision, specificity, sensitivity, and accuracy, while the evaluation metrics chosen for the regression model are MAE. The epiphyseal grading was used as a supervised method, which effectively solved the problem of unbalanced sample distribution, and the two experts showed strong consistency in the epiphyseal plate grading process. In the classification results, the accuracy in distinguishing between adults and minors was 91.1%, and the lowest accuracy in the three minor classifications (12, 14, and 16 years of age) was 94.6%, 91.1% and 96.4%, respectively. The MAE of the regression results was 1.24 years. In conclusion, the deep learning model proposed enabled the age assessment of hand and wrist bones based on MRI.

4.
IEEE Trans Cybern ; PP2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976459

ABSTRACT

In this article, the novel adaptive neural networks (NNs) tracking control scheme is presented for nonlinear partial differential equation (PDE)-ordinary differential equation (ODE) coupled systems subject to deception attacks. Because of the special infinite-dimensional characteristics of PDE subsystem and the strong coupling of PDE-ODE systems, it is more difficult to achieve the tracking control for coupled systems than single ODE system under the circumstance of deception attacks, which result in the states and outputs of both PDE and ODE subsystems unavailable by injecting false information into sensors and actuators. For efficient design of the controllers to realize the tracking performance, a new coordinate transformation is developed under the backstepping method, and the PDE subsystem is transformed into a new form. In addition, the effect of the unknown control gains and the uncertain nonlinearities caused by attacks are alleviated by introducing the Nussbaum technology and NNs. The proposed tracking control scheme can guarantee that all signals in the coupled systems are bounded and the good tracking performance can be achieved, despite both sensors and actuators of the studied systems suffering from attacks. Finally, a simulation example is given to verify the effectiveness of the proposed control method.

5.
Adv Sci (Weinh) ; : e2402018, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38887207

ABSTRACT

Efficient 2D membranes play a critical role in water purification and desalination. However, most 2D membranes, such as graphene oxide (GO) membranes, tend to swell or disintegrate in liquid, making precise ionic sieving a tough challenge. Herein, the fabrication of the polyoxometalate clusters (PW12) intercalated reduced graphene oxide (rGO) membrane (rGO-PW12) is reported through a polyoxometalate-assisted in situ photoreduction strategy. The intercalated PW12 result in the interlayer spacing in the sub-nanometer scale and induce a nanoconfinement effect to repel the ions in various salt solutions. The permeation rate of rGO-PW12 membranes are about two orders of magnitude lower than those through the GO membrane. The confinement of nanochannels also generate the excellent non-swelling stability of rGO-PW12 membranes in aqueous solutions up to 400 h. Moreover, when applied in forward osmosis, the rGO-PW12 membranes with a thickness of 90 nm not only exhibit a high-water permeance of up to 0.11790 L m-2 h-1 bar-1 and high NaCl rejection (98.3%), but also reveal an ultrahigh water/salt selectivity of 4740. Such significantly improved ion-exclusion ability and high-water flux benefit from the multi-interactions and nanoconfinement effect between PW12 and rGO nanosheets, which afford a well-interlinked lamellar structure via hydrogen bonding and van der Waals interactions.

6.
Imeta ; 3(1): e158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38868515

ABSTRACT

Antimicrobial resistance (AMR) is a major threat to global public health, and antibiotic resistance genes (ARGs) are widely distributed across humans, animals, and environment. Farming environments are emerging as a key research area for ARGs and antibiotic resistant bacteria (ARB). While the skin is an important reservoir of ARGs and ARB, transmission mechanisms between farming environments and human skin remain unclear. Previous studies confirmed that swine farm environmental exposures alter skin microbiome, but the timeline of these changes is ill defined. To improve understanding of these changes and to determine the specific time, we designed a cohort study of swine farm workers and students through collected skin and environmental samples to explore the impact of daily occupational exposure in swine farm on human skin microbiome. Results indicated that exposure to livestock-associated environments where microorganisms are richer than school environment can reshape the human skin microbiome and antibiotic resistome. Exposure of 5 h was sufficient to modify the microbiome and ARG structure in workers' skin by enriching microorganisms and ARGs. These changes were preserved once formed. Further analysis indicated that ARGs carried by host microorganisms may transfer between the environment with workers' skin and have the potential to expand to the general population using farm workers as an ARG vector. These results raised concerns about potential transmission of ARGs to the broader community. Therefore, it is necessary to take corresponding intervention measures in the production process to reduce the possibility of ARGs and ARB transmission.

7.
ACS Synth Biol ; 13(6): 1831-1841, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38863339

ABSTRACT

Antimicrobial resistance poses a significant global challenge, demanding innovative approaches, such as the CRISPR-Cas-mediated resistance plasmid or gene-curing system, to effectively combat this urgent crisis. To enable successful curing of antimicrobial genes or plasmids through CRISPR-Cas technology, the development of an efficient broad-host-range delivery system is paramount. In this study, we have successfully designed and constructed a novel functional gene delivery plasmid, pQ-mini, utilizing the backbone of a broad-host-range Inc.Q plasmid. Moreover, we have integrated the CRISPR-Cas12f system into the pQ-mini plasmid to enable gene-curing in broad-host of bacteria. Our findings demonstrate that pQ-mini facilitates the highly efficient transfer of genetic elements to diverse bacteria, particularly in various species in the order of Enterobacterales, exhibiting a broader host range and superior conjugation efficiency compared to the commonly used pMB1-like plasmid. Notably, pQ-mini effectively delivers the CRISPR-Cas12f system to antimicrobial-resistant strains, resulting in remarkable curing efficiencies for plasmid-borne mcr-1 or blaKPC genes that are comparable to those achieved by the previously reported pCasCure system. In conclusion, our study successfully establishes and optimizes pQ-mini as a broad-host-range functional gene delivery vector. Furthermore, in combination with the CRISPR-Cas system, pQ-mini demonstrates its potential for broad-host delivery, highlighting its promising role as a novel antimicrobial tool against the growing threat of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , CRISPR-Cas Systems , Gram-Negative Bacteria , Plasmids , CRISPR-Cas Systems/genetics , Plasmids/genetics , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Gene Transfer Techniques , Gene Editing/methods
8.
Microbiol Spectr ; : e0430723, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916339

ABSTRACT

Mycophenolate mofetil (MMF) is commonly utilized for the treatment of neuromyelitis optica spectrum disorders (NMOSD). However, a subset of patients experience significant gastrointestinal (GI) adverse effects following MMF administration. The present study aims to elucidate the underlying mechanisms of MMF-induced GI toxicity in NMOSD. Utilizing a vancomycin-treated mouse model, we compiled a comprehensive data set to investigate the microbiome and metabolome in the GI tract to elucidate the mechanisms of MMF GI toxicity. Furthermore, we enrolled 17 female NMOSD patients receiving MMF, who were stratified into non-diarrhea NMOSD and diarrhea NMOSD (DNM) groups, in addition to 12 healthy controls. The gut microbiota of stool samples was analyzed using 16S rRNA gene sequencing. Vancomycin administration prevented weight loss and tissue injury caused by MMF, affecting colon metabolomes and microbiomes. Bacterial ß-glucuronidase from Bacteroidetes and Firmicutes was linked to intestinal tissue damage. The DNM group showed higher alpha diversity and increased levels of Firmicutes and Proteobacteria. The ß-glucuronidase produced by Firmicutes may be important in causing gastrointestinal side effects from MMF in NMOSD treatment, providing useful information for future research on MMF. IMPORTANCE: Neuromyelitis optica spectrum disorder (NMOSD) patients frequently endure severe consequences like paralysis and blindness. Mycophenolate mofetil (MMF) effectively addresses these issues, but its usage is hindered by gastrointestinal (GI) complications. Through uncovering the intricate interplay among MMF, gut microbiota, and metabolic pathways, this study identifies specific gut bacteria responsible for metabolizing MMF into a potentially harmful form, thus contributing to GI side effects. These findings not only deepen our comprehension of MMF toxicity but also propose potential strategies, such as inhibiting these bacteria, to mitigate these adverse effects. This insight holds broader implications for minimizing complications in NMOSD patients undergoing MMF therapy.

9.
ACS Nano ; 18(27): 17600-17610, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38916257

ABSTRACT

Hafnia-based ferroelectric (FE) thin films are promising candidates for semiconductor memories. However, a fundamental challenge that persists is the lack of understanding regarding dimensional scaling, including thickness scaling and area scaling, of the functional properties and their heterogeneity in these films. In this work, excellent ferroelectricity and switching endurance are demonstrated in 4 nm-thick Hf0.5Zr0.5O2 (HZO) capacitors with molybdenum electrodes in capacitors as small as 65 nm × 45 nm in size. The HZO layer in these capacitors can be crystallized into the ferroelectric orthorhombic phase at the low temperature of 400 °C, making them compatible for back-end-of-line (BEOL) FE memories. With the benefits of thickness scaling, low operation voltage (1.2 V) is achieved with high endurance (>1010 cycles); however, a significant fatigue regime is noted. We observed that the bottom electrode, rather than the top electrode, plays a dominant role in the thickness scaling of HZO ferroelectric behavior. Furthermore, ultrahigh switched polarization (remanent polarization 2Pr ∼ 108 µC cm-2) is observed in some nanoscale devices. This study advances the understanding of dimensional scaling effects in HZO capacitors for high-performance FE memories.

10.
Fa Yi Xue Za Zhi ; 40(2): 118-127, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38847025

ABSTRACT

In the study of age estimation in living individuals, a lot of data needs to be analyzed by mathematical statistics, and reasonable medical statistical methods play an important role in data design and analysis. The selection of accurate and appropriate statistical methods is one of the key factors affecting the quality of research results. This paper reviews the principles and applicable principles of the commonly used medical statistical methods such as descriptive statistics, difference analysis, consistency test and multivariate statistical analysis, as well as machine learning methods such as shallow learning and deep learning in the age estimation research of living individuals, and summarizes the relevance and application prospects between medical statistical methods and machine learning methods. This paper aims to provide technical guidance for the age estimation research of living individuals to obtain more scientific and accurate results.


Subject(s)
Machine Learning , Humans , Age Determination by Skeleton/methods , Multivariate Analysis , Age Determination by Teeth/methods
11.
Indian J Ophthalmol ; 72(7): 1064-1067, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38905465

ABSTRACT

The aim of this study is to describe a modified technique for internal refixation of dislocated scleral-sutured polymethylmethacrylate (PMMA) intraocular lenses (IOLs) with eyelets. Three-port pars plana vitrectomy was performed. Through the scleral fixation site, a 30-gauge needle loaded with an 8-0 polypropylene suture was inserted into the vitreous cavity. The suture end was passed through the eyelet of IOL with 25-gauge forceps. Next, it was guided out of the eye through the original scleral fixation point. The end of the exterior suture was buried with a flapless intrascleral knotting technique. Six eyes of six patients were successfully treated with this technique and followed up for 6-12 months postsurgery. In all cases, there was significant improvement in uncorrected visual acuity. IOLs were stable with proper centration and no major complications. This modified technique offers an effective and minimally invasive surgical alternative for refixation of dislocated scleral-sutured PMMA IOLs with eyelets.


Subject(s)
Artificial Lens Implant Migration , Lenses, Intraocular , Polymethyl Methacrylate , Reoperation , Sclera , Suture Techniques , Visual Acuity , Vitrectomy , Humans , Male , Female , Suture Techniques/instrumentation , Vitrectomy/methods , Middle Aged , Sclera/surgery , Artificial Lens Implant Migration/surgery , Follow-Up Studies , Aged , Sutures , Adult
12.
Mol Immunol ; 171: 47-55, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795684

ABSTRACT

Myopia is regarded as a worldwide epidemic ocular disease, has been proved related to inflammation. CD55, also known as decay-accelerating factor (DAF) can modulate the activation of complement through inhibiting the formation of complement 3 convertase and its dysregulation is involved in various inflammatory diseases. To investigate the association between CD55 and myopia, and to test whether CD55 can inhibit myopia development by suppressing inflammation in the eye, we use three different animal models including monocular form-deprivation myopia, myopia induced by TNF-α administration and allergic conjunctivitis animal model to reveal the CD55 in myopia development. The tears of thirty-eight participants with different spherical equivalents were collected and CD55 in the tears were also analyzed. Complement 3 and complement 5 levels increased while CD55 levels decreased in allergic conjunctivitis and myopic eyes. After anti-inflammatory drugs administration, CD55 expression was increased in monocular form-deprivation myopia model. We also found inflammatory cytokines TGF-ß, IL-6, TNF-α, and IL-1ß may enhance complement 3 and complement 5 activation while CD55 level was suppressed contrary. Moreover, lower CD55 levels were found in the tears of patients with myopia with decreased diopter values. Finally, CD55-Fc administration on the eyelids can inhibit the elongation of axial length and change of refractive error. CD55-Fc application also suppress myopia development subsequent to complement 3 and complement 5 reduction and can lower myopia-specific (MMP-2 and TGF-ß) cytokine expression in TNF-α induced myopia animal model. This suggests that CD55 can inhibit myopia development by suppression of complement activation and eventual down-regulation of inflammation.


Subject(s)
CD55 Antigens , Disease Models, Animal , Inflammation , Myopia , Adolescent , Animals , Female , Humans , Male , Young Adult , CD55 Antigens/metabolism , Complement Activation/drug effects , Complement C3/metabolism , Conjunctivitis, Allergic/immunology , Conjunctivitis, Allergic/metabolism , Cytokines/metabolism , Myopia/metabolism , Tears/metabolism , Tumor Necrosis Factor-alpha/metabolism , Complement C5/metabolism
13.
Biomater Sci ; 12(12): 3003-3026, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38695621

ABSTRACT

Janus structure hydrogels (JSHs) are novel materials. Their primary fabrication methods and various applications have been widely reported. JSHs are primarily composed of Janus particles (JNPs) and polysaccharide components. They exhibit two distinct physical or chemical properties, generating intriguing characteristics due to their asymmetric structure. Normally, one side (adhesive interface) is predominantly constituted of polysaccharide components, primarily serving excellent adhesion. On the other side (functional surface), they integrate diverse functionalities, concurrently performing a plethora of synergistic functions. In the biomedical field, JSHs are widely applied in anti-adhesion, drug delivery, wound healing, and other areas. It also exhibits functions in seawater desalination and motion sensing. Thus, JSHs hold broad prospects for applications, and they possess significant research value in nanotechnology, environmental science, healthcare, and other fields. Additionally, this article proposes the challenges and future work facing these fields.


Subject(s)
Hydrogels , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals , Polysaccharides/chemistry , Drug Delivery Systems , Wound Healing/drug effects
14.
SLAS Technol ; : 100149, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38796035

ABSTRACT

OBJECTIVE: This study aims to diagnose Rotator Cuff Tears (RCT) and classify the severity of RCT in patients with Osteoporosis (OP) through the analysis of shoulder joint anteroposterior (AP) X-ray-based localized proximal humeral bone mineral density (BMD) measurements and clinical information based on machine learning (ML) models. METHODS: A retrospective cohort of 89 patients was analyzed, including 63 with both OP and RCT (OPRCT) and 26 with OP only. The study analyzed a series of shoulder radiographs from April 2021 to April 2023. Grayscale values were measured after plotting ROIs based on AP X-rays of shoulder joint. Five kinds of ML models were developed and compared based on their performance in predicting the occurrence and severity of RCT from ROIs' greyscale values and clinical information (age, gender, advantage side, lumbar BMD, and acromion morphology (AM)). Further analysis using SHAP values illustrated the significant impact of selected features on model predictions. RESULTS: R1-6 had a positive correlation with BMD respectively. The nine variables, including greyscale R1-6, age, BMD, and AM, were used in the prediction models. The RF model was determined to be superior in effectively diagnosing RCT in OP patients, with high AUC scores of 0.998, 0.889, and 0.95 in the training, validation, and testing sets, respectively. SHAP values revealed that the most influential factors on the diagnostic outcomes were the grayscale values of all cancellous bones in ROIs. A column-line graph prediction model based on nine variables was constructed, and DCA curves indicated that RCT prediction in OP patients was favored based on this model. Furthermore, the RF model was also the most superior in predicting the types of RCT within the OPRCT group, with an accuracy of 86.364% and 73.684% in the training and test sets, respectively. SHAP values indicated that the most significant factor affecting the predictive outcomes was the AM, followed by the grayscale values of the greater tubercle, among others. CONCLUSIONS: ML models, particularly the RF algorithm, show significant promise in diagnosing RCT occurrence and severity in OP patients using conventional shoulder X-rays based on the nine variables. This method presents a cost-effective, accessible, and non-invasive diagnostic strategy that has the potential to substantially enhance the early detection and management of RCT in OP patient population.

16.
Nat Commun ; 15(1): 3871, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719862

ABSTRACT

Temperature is one of the seven fundamental physical quantities. The ability to measure temperatures approaching absolute zero has driven numerous advances in low-temperature physics and quantum physics. Currently, millikelvin temperatures and below are measured through the characterization of a certain thermal state of the system as there is no traditional thermometer capable of measuring temperatures at such low levels. In this study, we develop a kind of diamond with sp2-sp3 composite phase to tackle this problem. The synthesized composite phase diamond (CPD) exhibits a negative temperature coefficient, providing an excellent fit across a broad temperature range, and reaching a temperature measurement limit of 1 mK. Additionally, the CPD demonstrates low magnetic field sensitivity and excellent thermal stability, and can be fabricated into probes down to 1 micron in diameter, making it a promising candidate for the manufacture of next-generation cryogenic temperature sensors. This development is significant for the low-temperature physics researches, and can help facilitate the transition of quantum computing, quantum simulation, and other related technologies from research to practical applications.

17.
Hum Mol Genet ; 33(13): 1176-1185, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38588587

ABSTRACT

Genetic sequencing has identified high-confidence ASD risk genes with loss-of-function mutations. How the haploinsufficiency of distinct ASD risk genes causes ASD remains to be elucidated. In this study, we examined the role of four top-ranking ASD risk genes, ADNP, KDM6B, CHD2, and MED13, in gene expression regulation. ChIP-seq analysis reveals that gene targets with the binding of these ASD risk genes at promoters are enriched in RNA processing and DNA repair. Many of these targets are found in ASD gene database (SFARI), and are involved in transcription regulation and chromatin remodeling. Common gene targets of these ASD risk genes include a network of high confidence ASD genes associated with gene expression regulation, such as CTNNB1 and SMARCA4. We further directly examined the transcriptional impact of the deficiency of these ASD risk genes. Our mRNA profiling with qPCR assays in cells with the knockdown of Adnp, Kdm6b, Chd2 or Med13 has revealed an intricate pattern of their cross-regulation, as well as their influence on the expression of other ASD genes. In addition, some synaptic genes, such as Snap25 and Nrxn1, are strongly regulated by deficiency of the four ASD risk genes, which could be through the direct binding at promoters or indirectly through the targets like Ctnnb1 or Smarca4. The identification of convergent and divergent gene targets that are regulated by multiple ASD risk genes will help to understand the molecular mechanisms underlying common and unique phenotypes associated with haploinsufficiency of ASD-associated genes.


Subject(s)
Autism Spectrum Disorder , Gene Expression Regulation , Gene Regulatory Networks , Genetic Predisposition to Disease , Humans , Autism Spectrum Disorder/genetics , Gene Expression Regulation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , beta Catenin/genetics , beta Catenin/metabolism , DNA Helicases/genetics , Haploinsufficiency/genetics , Mediator Complex/genetics , Mediator Complex/metabolism , DNA-Binding Proteins/genetics , Promoter Regions, Genetic/genetics , Nuclear Proteins/genetics , Nerve Tissue Proteins/genetics
18.
Am J Transl Res ; 16(3): 973-987, 2024.
Article in English | MEDLINE | ID: mdl-38586085

ABSTRACT

OBJECTIVES: Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joint synovium. The traditional Chinese medicine Xinfeng capsule (XFC) has a remarkable alleviating effect on inflammatory symptoms, such as joint pain and swelling, in patients with RA. However, the underlying mechanism of action remains to be elucidated. This study intended to conduct network pharmacology, animal experiments, data mining, and molecular docking to explore the molecular mechanism through which XFC can improve the inflammatory symptoms of RA. METHODS: The Apriori association rules and a random walk model were employed to evaluate the effect of XFC on the clinical inflammatory indexes of RA. The active ingredients and the potential target genes of XFC were obtained from public databases. Based on the search tool for recurring instances of neighboring genes (STRING) database, the Database for Annotation, Visualization and Integrated Discovery (DAVID) database, Cytoscape software, and molecular docking method, the molecular mechanism by which XFC acts on RA was also analyzed. Finally, an adjuvant arthritis rat model was established to verify the effects of XFC on inflammation-related signaling pathways and inflammatory factors. RESULTS: XFC significantly reduced the level of C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and the erythrocyte sedimentation rate (ESR). The docking space structures of the active ingredients in XFC, namely triptolide and quercetin, and the key targets were stable. Inflammation-related biological processes were identified as the key factors involved in the development of RA, and the regulation of the toll-like receptor (TLR) signaling pathway may be the key link for XFC toward improving the inflammatory state of RA. The expression levels of toll-like receptor 4 (TLR4), myeloid differentiation primary response protein MyD88 (MyD88), interleukin-1 receptor-associated kinase 1 (IRAK1), TNF receptor-associated factor 6 (TRAF6), TGF-beta-activated kinase 1 (TAK1), phospho-Inhibitor of NF-κB kinaseß (p-IKKß), phospho-Nuclear factor-k-gene binding (p-NF-κB), and interleukin-1ß (IL-1ß) can all be decreased by XFC. XFC improves joint inflammation symptoms by lowering pro-inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interferon-γ (INF-γ) levels. CONCLUSIONS: XFC could effectively improve the clinical inflammatory indexes of RA. The active ingredients of XFC improved the inflammatory state of RA by regulating the TLR-signaling pathway.

19.
J Colloid Interface Sci ; 664: 838-847, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38493649

ABSTRACT

Photoelectrochemical (PEC) water splitting has been widely investigated for solar-to-hydrogen conversion. However, issues like high charge recombination rate and slow surface water oxidation kinetics severely hinder its (PEC) conversion efficiency. Herein, we constructed MOF-derived CoOOH cocatalyst on BiVO4 photoanode, using a feasible electrochemical activation strategy. The BiVO4-based photoanode obtained shows a high photocurrent density of 3.15 mA/cm2 at 1.23 VRHE and low onset potential. Detailed experiments and theoretical calculations show that during the activation of CoZn-MOFs, there was a partial breakage of 2-methylimidazole (mIM) linker, an increase in the oxidation state of Cobalt ion (Co), and increased O2-. The high PEC performance is mainly attributed to the MOF-derived CoOOH, which provides rich active sites for hole extraction and reduces the overpotential for oxygen evolution reaction. Furthermore, when CoZnNiFe-LDHs were decorated on BiVO4 using the ions exchange method, the photocurrent density of BiVO4/CoZnNiFe-LDHs photoanode got to 4.0 mA/cm2 at 1.23 VRHE, accompanied with high stability. This study provides insights into understanding the key role played by the structural transformation of MOF cocatalyst in PEC water splitting processes.

20.
Heliyon ; 10(5): e26759, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38455534

ABSTRACT

Background: osteoporosis is a skeletal disorder disease features low bone mass and poor bone architecture, which predisposes to increased risk of fracture. Copper death is a newly recognized form of cell death caused by excess copper ions, which presumably involve in various disease. Accordingly, we intended to investigate the molecular clusters related to the cuproptosis in osteoporosis and to construct a predictive model. Methods: we investigated the expression patterns of cuproptosis regulators and immune signatures in osteoporosis based on the GSE56815 dataset. Through analysis of 40 osteoporosis samples, we investigated molecular clustering on the basis of cuproptosis--related genes, together with the associated immune cell infiltration. The WGCNA algorithm was applied to detect cluster-specific differentially expressed genes. Afterwards, the optimum machine model was selected by calculating the performance of the support vector machine model, random forest model, eXtreme Gradient Boosting and generalized linear model. Nomogram, decision curve analysis, calibration curves, and the GSE7158 dataset was utilizing to confirm the prediction efficiency. Results: Differences between osteoporotic and non-osteoporotic controls confirm poorly adjusted copper death-related genes and triggered immune responses. In osteoporosis, two clusters of molecules in connection with copper death proliferation were outlined. The assessed levels of immune infiltration showed prominent heterogeneity between the different clusters. Cluster 2 was characterized by a raised immune score accompanied with relatively high levels of immune infiltration. The functional analysis we performed showed a close relationship between the different immune responses and specific differentially expressed genes in cluster 2. The random forest machine model showed the optimum discriminatory performance due to relatively low residuals and root mean square errors. Finally, a random forest model based on 5 genes was built, showing acceptable performance in an external validation dataset (AUC = 0.750). Calibration curve, Nomogram, and decision curve analyses also evinced fidelity in predicting subtypes of osteoporosis. Conclusion: Our study identifies the role of cuproptosis in OP and essentially illustrates the underlying molecular mechanisms that lead to OP heterogeneity.

SELECTION OF CITATIONS
SEARCH DETAIL