Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.412
Filter
1.
Article in English | MEDLINE | ID: mdl-38949761

ABSTRACT

BACKGROUND: Sjogren's Syndrome (SS) plays important roles in the development of essential hypertension. Nevertheless, with the limitation of reverse causality and confounder in observational studies, such a relationship remains unclear. We aimed to assess the causal relationship of SS and hypertension by the Mendelian randomization (MR) approach. METHODS: We used MR to investigate a causal association between SS and essential hypertension. Inverse variance weighted (IVW), MR Egger regression, Maximum likelihood, Weighted median, and MR pleiotropy residual sum and outlier test (MR-PRESSO) were used in this MR analysis. RESULTS: In this study, we found that the ratio of IVW is 1.00024 (95% CI: 1.00013- 1.00036, P=0.0387), This result was also confirmed by sensitivity analysis methods such as Maximum likelihood is 1.00025 (95% CI: 1.00013-1.00037, P=0.036), MR Egger is 1.00071 (95% CI: 1.00047-1.00095, P=0.0045), and Weighted median is 1.00040 (95% CI: 1.00021- 1.00059, P=0.0322). And MR-Egger intercept method revealed the absence of horizontal pleiotropy in this investigation (P>0.05). The Cochran's Q Test indicated an absence of heterogeneity among them (P>0.05). Heterogeneity and horizontal pleiotropy tests further demonstrate that the results of MR are relatively stable. The above results all suggest that pSS may promote the risk of hypertension. CONCLUSIONS: Our study provides evidence of a causal relationship of SS and hypertension. It is suggested to pay attention to early screening for hypertension, reduce disability and mortality rates, and improve patient prognosis in patients with SS.

2.
Int J Nanomedicine ; 19: 6377-6397, 2024.
Article in English | MEDLINE | ID: mdl-38952677

ABSTRACT

Background: How to ingeniously design multi-effect photosensitizers (PSs), including multimodal imaging and multi-channel therapy, is of great significance for highly spatiotemporal controllable precise phototherapy of malignant tumors. Methods: Herein, a novel multifunctional zinc(II) phthalocyanine-based planar micromolecule amphiphile (ZnPc 1) was successfully designed and synthesized, in which N atom with photoinduced electron transfer effect was introduced to enhance the near-infrared absorbance and nonradiative heat generation. After simple self-assembling into nanoparticles (NPs), ZnPc 1 NPs would exhibit enhanced multimodal imaging properties including fluorescence (FL) imaging (FLI) /photoacoustic (PA) imaging (PAI) /infrared (IR) thermal imaging, which was further used to guide the combined photodynamic therapy (PDT) and photothermal therapy (PTT). Results: It was that under the self-guidance of the multimodal imaging, ZnPc 1 NPs could precisely pinpoint the tumor from the vertical and horizontal boundaries achieving highly efficient and accurate treatment of cancer. Conclusion: Accordingly, the integration of FL/PA/IR multimodal imaging and PDT/PTT synergistic therapy pathway into one ZnPc 1 could provide a blueprint for the next generation of phototherapy, which offered a new paradigm for the integration of diagnosis and treatment in tumor and a promising prospect for precise cancer therapy.


Subject(s)
Indoles , Isoindoles , Multimodal Imaging , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Multimodal Imaging/methods , Animals , Humans , Indoles/chemistry , Indoles/pharmacology , Photochemotherapy/methods , Nanoparticles/chemistry , Mice , Zinc Compounds/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Cell Line, Tumor , Photoacoustic Techniques/methods , Photothermal Therapy/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy , Neoplasms/drug therapy , Mice, Inbred BALB C , Phototherapy/methods , Female
3.
Int J Food Microbiol ; 422: 110808, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38955022

ABSTRACT

Salmonella contamination of pork products is a significant public health concern. Temperature abuse scenarios, such as inadequate refrigeration or prolonged exposure to room temperature, can enhance Salmonella proliferation. This study aimed to develop and validate models for Salmonella growth considering competition with background microbiota in raw ground pork, under isothermal and dynamic conditions of temperature abuse between 10 and 40 °C. The maximum specific growth rate (µmax) and maximum population density (MPD) were estimated to quantitatively describe the growth behavior of Salmonella. To reflect more realistic microbial interactions in Salmonella-contaminated product, our model considered competition with the background microbiota, measured as mesophilic aerobic plate counts (APC). Notably, the µmax of Salmonella in low-fat samples (∼5 %) was significantly higher (p < 0.05) than that in high-fat samples (∼25 %) at 10, 20, and 30 °C. The average doubling time of Salmonella was 26, 4, 2, 1.5, 0.8, and 1.1 h at 10, 15, 20, 25, 30, and 40 °C, respectively. The initial concentration of Salmonella minimally impacted its growth in ground pork at any temperature. The MPD of APC consistently exceeded that of Salmonella, indicating the growth of APC without competition from Salmonella. The competition model exhibited excellent fit with the experimental data, as 95 % (627/660) of residual errors fell within the desired acceptable prediction zone (pAPZ >0.70). The theoretical minimum and optimum growth temperatures for Salmonella ranged from 5 to 6 °C and 35 to 36 °C, respectively. The dynamic model displayed strong predictive performance, with 90 % (57/63) of residual errors falling within the APZ. Dynamic models could be valuable tools for validating and refining simpler static or isothermal models, ultimately improving their predictive capabilities to enhance food safety.

4.
Proteins ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958516

ABSTRACT

The ongoing global pandemic of the coronavirus 2019 (COVID-19) disease is caused by the virus SARS-CoV-2, with very few highly effective antiviral treatments currently available. The machinery responsible for the replication and transcription of viral RNA during infection is made up of several important proteins. Two of these are nsp12, the catalytic subunit of the viral polymerase, and nsp9, a cofactor of nsp12 involved in the capping and priming of viral RNA. While several recent studies have determined the structural details of the interaction of nsp9 with nsp12 in the context of RNA capping, very few biochemical or biophysical details are currently available. In this study, we have used a combination of surface plasmon resonance (SPR) experiments, size exclusion chromatography (SEC) experiments, and biochemical assays to identify specific nsp9 residues that are critical for nsp12 binding as well as RNAylation, both of which are essential for the RNA capping process. Our data indicate that nsp9 dimerization is unlikely to play a significant functional role in the virus. We confirm that a set of recently discovered antiviral peptides inhibit nsp9-nsp12 interaction by specifically binding to nsp9; however, we find that these peptides do not impact RNAylation. In summary, our results have important implications for future drug discovery efforts to combat SARS-CoV-2 and any newly emerging coronaviruses.

5.
Langmuir ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956832

ABSTRACT

Superhydrophobic coatings are increasingly recognized as a promising approach to enhancing power generation efficiency and prolonging the operational lifespan of wind turbines. In this research, a durable superhydrophobic perfluoroalkoxy alkane (PFA) coating was developed and specifically designed for spray application onto the surface of wind turbine blades. The PFA coating features a micronano hierarchical structure, exhibiting a high water contact angle of 167.0° and a low sliding angle of 1.7°. The optimal PFA coating exhibits stability and maintains a superhydrophobic performance during mechanical and chemical tests. The findings of this study establish a positive association between the surface energy of the coating and its effectiveness in anti-icing. The delayed icing time for the PFA-coated surface is 46.83 times longer than that of an uncoated surface, and the ice adhesion strength is only 1.875 kPa. Additionally, the PFA coating demonstrates remarkably high ice suppression efficiencies of 94.7 and 99.5% in anti-icing experiments at ambient temperatures of -6 and -10 °C, respectively. It is anticipated that this stable superhydrophobic PFA coating will be a candidate for anti-icing applications in wind turbine blades.

6.
ACS Sustain Chem Eng ; 12(26): 9822-9832, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38966239

ABSTRACT

Oxalate esters and isosorbide serve as intriguing polymer building blocks, as they can be sourced from renewable resources, such as CO2 and glucose, and the resulting polyesters offer outstanding material properties. However, the low reactivity of the secondary hydroxyl groups makes it difficult to generate high-molecular-weight polymers from isosorbide. Combining diaryl oxalates with isosorbide appears to be a promising approach to produce high-molecular-weight isosorbide-based polyoxalates (PISOX). This strategy seems to be scalable, has a short polymerization time (<5 h), and uniquely, there is no need for a catalyst. PISOX demonstrates outstanding thermal, mechanical, and barrier properties; its barrier to oxygen is 35 times better than PLA, it possesses mechanical properties comparable to high-performance thermoplastics, and the glass transition temperature of 167 °C can be modified by comonomer incorporation. What makes this high-performance material truly exceptional is that it decomposes into CO2 and biomass in just a few months in soil under home-composting conditions and it hydrolyzes without enzymes present in less than a year in 20 °C water. This unique combination of properties has the potential to be utilized in a range of applications, such as biomedical uses, water-resistant coatings, compostable plastic bags for gardening and agriculture, and packaging plastics with diminished environmental impact.

7.
J Environ Sci (China) ; 146: 140-148, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969442

ABSTRACT

Sulfonamide antibiotics (SAs) widely used have potentially negative effects on human beings and ecosystems. Adsorption and advanced oxidation methods have been extensively applied in SAs wastewater treatment. In this study, compared with Al3+@BC500 and Fe3+@BC500, La3+@BC500 for activating persulfate (S2O82-) had the best effect removal performance of sulfadiazine (SDZ) and sulfamethoxazole (SMX). Morphology, acidity, oxygen-containing functional groups, and loading of La3+@BC500 were analyzed by techniques, including EA, BET, XRD, XPS, FT-IR. XRD results show that with the increase of La3+ loading, the surface characteristics of biochar gradually changed from CaCO3 to LaCO3OH. Through EPR technology, it is proved that LaCO3OH on the surface of La3+@BC500 can not only activate S2O82- to generate SO4-•, but also to produce •OH. In the optimization experiment, the optimal dosage of La3+ is between 0.05 and 0.2 (mol/L)/g. SDZ had a good removal effect at pH (5-9), but SMX had a good removal effect only at pH=3. Zeta potential also proves that the material is more stable under acidic conditions. The removal process of SDZ is more in accord with pseudo-first-order kinetics (R2=0.9869), while SMX is more in line with pseudo-second order kinetics (R2=0.9926).


Subject(s)
Anti-Bacterial Agents , Lanthanum , Sulfonamides , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/chemistry , Sulfonamides/chemistry , Lanthanum/chemistry , Charcoal/chemistry , Adsorption , Waste Disposal, Fluid/methods , Water Purification/methods , Wastewater/chemistry
9.
J Environ Manage ; 366: 121594, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971061

ABSTRACT

In the management of urban drainage networks, great interest has been generated in the removal of sediments from sewer systems. The unsteady three-dimensional (3D) flow and turbulent coherent structures surrounding sediment reduction plates in a sewer system are investigated by means of the detached-eddy simulation (DES). Particular emphasis is given to detailing the instantaneous velocity and vorticity fields within the grooves, along with an examination of the three-dimensional, long-term, average flow structure at a Reynolds number of approximately 105. Velocity vectors demonstrate continuous flapping of the flow on the groove wall, periodically interacting with ejections of positive and negative vorticity originating from the grooves. The interaction between the three-dimensional groove flow and the shear flow leads to the downstream transport of patches of positive and negative vorticity, which significantly influence sediment transport. The high-velocity shear flows and strong vortices generated in undulating topography, as identified by the Q-criteria, are the key factors contributing to the efficient sediment reduction capabilities of the sediment reduction plates. The sediment reduction plates with partially enclosed structures exhibit low sedimentation rates in grooves on the plate, a broader acceleration region, and a lesser impact on the flow capacity. The results improve the understanding of the hydrodynamics and turbulent coherent structures surrounding the sediment reduction plates while elucidating the driving factors behind the enhancement of sediment scouring and suspension capacities. These results indicate that the redesign of the plates as partially enclosed structures contributes to further improving their sediment reduction performance.

10.
Clin Transl Oncol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967738

ABSTRACT

OBJECTIVE: To examine the impact of a combined craniocaudal approach on pain and complications during laparoscopic D3 lymph node dissection in clients diagnosed with right colon cancer (RCC). METHODS: 100 RCC patients were divided into Group A and Group B. Both groups underwent laparoscopic D3 lymph node dissection, with Group A undergoing an intermediate approach and Group B undergoing a combined head and tail approach. Two groups of patients' perioperative (surgical time, intraoperative blood loss, number of lymph node dissection) indicators, postoperative recovery (postoperative exhaust time, postoperative hospital stay, drainage tube removal time) indicators, perioperative pain level (VAS scores 1, 3, and 5 days following surgery), and incidence of complications (vascular injury, intestinal obstruction, anastomotic bleeding, incision infection), and the therapeutic efficacy [CEA, CA19-9] indicators were compared. RESULTS: Clients in the B team had substantially shorter operating times and considerably fewer intraoperative hemorrhage than those in the A team. The VAS grades of clients in the B team were considerably lower than those in the A team the day following surgery. Clients in the B team experienced vascular injury at a substantially lower rate than those in the A team. The overall incidence rate of problems did not differ statistically significantly between the A team and the B team. Following therapy, teams A and B's CEA and CA19-9 levels were considerably lower than those of the same team prior to therapy. CONCLUSION: Combined craniocaudal technique can significantly reduce intraoperative bleeding, postoperative pain, and the risk of sequelae from vascular injuries.

11.
Nat Commun ; 15(1): 5444, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937459

ABSTRACT

Refraction is a basic beam bending effect at two media's interface. While traditional studies focus on stationary boundaries, moving boundaries or potentials could enable new laws of refractions. Meanwhile, media's discretization plays a pivotal role in refraction owing to Galilean invariance breaking principle in discrete-wave mechanics, making refraction highly moving-speed dependent. Here, by harnessing a synthetic temporal lattice in a fiber-loop circuit, we observe discrete time refraction by a moving gauge-potential barrier. We unveil the selection rules for the potential moving speed, which can only take an integer v = 1 or fractional v = 1/q (odd q) value to guarantee a well-defined refraction. We observe reflectionless/reflective refractions for v = 1 and v = 1/3 speeds, transparent potentials with vanishing refraction/reflection, refraction of dynamic moving potential and refraction for relativistic Zitterbewegung effect. Our findings may feature applications in versatile time control and measurement for optical communications and signal processing.

12.
Biomaterials ; 311: 122674, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897028

ABSTRACT

Clinical results with photovoltaic subretinal prosthesis (PRIMA) demonstrated restoration of sight via electrical stimulation of the interneurons in degenerated retina, with resolution matching the 100 µm pixel size. Since scaling the pixels below 75 µm in the current bipolar planar geometry will significantly limit the penetration depth of the electric field and increase stimulation threshold, we explore the possibility of using smaller pixels based on a novel 3-dimensional honeycomb-shaped design. We assessed the long-term biocompatibility and stability of these arrays in rats by investigating the anatomical integration of the retina with flat and 3D implants and response to electrical stimulation over lifetime - up to 32-36 weeks post-implantation in aged rats. With both flat and 3D implants, signals elicited in the visual cortex decreased after the day of implantation by more than 3-fold, and gradually recovered over the next 12-16 weeks. With 25 µm high honeycomb walls, the majority of bipolar cells migrate into the wells, while amacrine and ganglion cells remain above the cavities, which is essential for selective network-mediated stimulation of the retina. Retinal thickness and full-field stimulation threshold with 40 µm-wide honeycomb pixels were comparable to those with planar devices - 0.05 mW/mm2 with 10 ms pulses. However, fewer cells from the inner nuclear layer migrated into the 20 µm-wide wells, and stimulation threshold increased over 12-16 weeks, before stabilizing at about 0.08 mW/mm2. Such threshold is still significantly lower than 1.8 mW/mm2 with a previous design of flat bipolar pixels, confirming the promise of the 3D honeycomb-based approach to high resolution subretinal prosthesis.

13.
Environ Pollut ; : 124473, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945191

ABSTRACT

Machine learning (ML) as a novel model-based approach has been used in studying aquatic toxicology in the environmental field. Zebrafish, as an ideal model organism in aquatic toxicology research, has been widely used to study the toxic effects of various pollutants. However, toxicity testing on organisms may cause significant harm, consume considerable time and resources, and raise ethical concerns. Therefore, ML is used in related research to reduce animal experiments and assist researchers in conducting toxicological research. Although ML techniques have matured in various fields, research on ML-based aquatic toxicology is still in its infancy due to the lack of comprehensive large-scale toxicity databases for environmental pollutants and model organisms. Therefore, to better understand the recent research progress of ML in studying the development, behavior, nerve, and genotoxicity of zebrafish, this review mainly focuses on using ML modeling to assess and predict the toxic effects of zebrafish exposure to different toxic chemicals. Meanwhile, the opportunities and challenges faced by ML in the field of toxicology were analyzed. Finally, suggestions and perspectives were proposed for the toxicity studies of ML on zebrafish in future applications.

14.
Int J Biol Macromol ; : 133251, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38945708

ABSTRACT

Bioactive hydrogels are currently receiving significant attention. In this study, silk fibroin tyramine-modified gelatin hydrogels (SF-TG) with varying degrees of tyramine root substitution were explored. The physicochemical property and biocompatibility of low degree of substitution tyramine-modified gelatin hydrogel (SF-LTG) and high degree of substitution tyramine-modified gelatin hydrogel (SF-HTG) were compared. The results showed that SF-LTG possessed better mechanical property and higher biocompatibility. Thus, SF-LTG was selected as a bioactive matrix and loaded with basic fibroblast growth factor (bFGF); subsequently, curcumin-coupled chitosan rods (CCCRs-EGF) enriched with epidermal growth factor (EGF) were added to obtain SF-LTG-bFGF@CCCRs-EGF hydrogels. The results showed that SF-LTG-bFGF@CCCRs-EGF retained the basic structural and mechanical properties of the SF-LTG matrix gel material and underwent multiple loading and orderly release with different activities while displaying antioxidant, anti-inflammatory, antimicrobial, and pro-cellular proliferation activities and orderly regulation of activity during wound healing. Therefore, the SF-LTG-bFGF@CCCRs-EGF hydrogel is of great value in healing complex wounds.

15.
Biology (Basel) ; 13(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38927240

ABSTRACT

Flooding and drought are the two most devastating natural hazards limiting maize production. Exogenous glycinebetaine (GB), an osmotic adjustment agent, has been extensively used but there is limited research on its role in mitigating the negative effects of different abiotic stresses. This study aims to identify the different roles of GB in regulating the diverse defense regulation of maize against drought and flooding. Hybrids of Yindieyu 9 and Heyu 397 grown in pots in a ventilated greenhouse were subjected to flooding (2-3 cm standing layer) and drought (40-45% field capacity) at the three-leaf stage for 8 d. The effects of different concentrations of foliar GB (0, 0.5, 1.0, 5.0, and 10.0 mM) on the physiochemical attributes and growth of maize were tested. Greater drought than flooding tolerance in both varieties to combat oxidative stress was associated with higher antioxidant activities and proline content. While flooding decreased superoxide dismutase and guaiacol peroxidase (POD) activities and proline content compared to normal water, they all declined with stress duration, leading to a larger reactive oxygen species compared to drought. It was POD under drought stress and ascorbate peroxidase under flooding stress that played crucial roles in tolerating water stress. Foliar GB further enhanced antioxidant ability and contributed more effects to POD to eliminate more hydrogen peroxide than the superoxide anion, promoting growth, especially for leaves under water stress. Furthermore, exogenous GB made a greater increment in Heyu 397 than Yindieyu 9, as well as flooding compared to drought. Overall, a GB concentration of 5.0 mM, with a non-toxic effect on well-watered maize, was determined to be optimal for the effective mitigation of water-stress damage to the physiochemical characteristics and growth of maize.

16.
Science ; 384(6703): 1453-1460, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38870272

ABSTRACT

Insects detect and discriminate a diverse array of chemicals using odorant receptors (ORs), which are ligand-gated ion channels comprising a divergent odorant-sensing OR and a conserved odorant receptor co-receptor (Orco). In this work, we report structures of the ApOR5-Orco heterocomplex from the pea aphid Acyrthosiphon pisum alone and bound to its known activating ligand, geranyl acetate. In these structures, three ApOrco subunits serve as scaffold components that cannot bind the ligand and remain relatively unchanged. Upon ligand binding, the pore-forming helix S7b of ApOR5 shifts outward from the central pore axis, causing an asymmetrical pore opening for ion influx. Our study provides insights into odorant recognition and channel gating of the OR-Orco heterocomplex and offers structural resources to support development of innovative insecticides and repellents for pest control.


Subject(s)
Acetates , Aphids , Insect Proteins , Receptors, Odorant , Receptors, Odorant/chemistry , Receptors, Odorant/metabolism , Receptors, Odorant/genetics , Animals , Insect Proteins/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Aphids/chemistry , Acetates/chemistry , Acetates/metabolism , Ligands , Terpenes/chemistry , Terpenes/metabolism , Odorants/analysis , Protein Subunits/chemistry , Protein Subunits/metabolism , Ion Channel Gating , Cryoelectron Microscopy , Acyclic Monoterpenes
17.
J Phys Chem Lett ; 15(25): 6489-6495, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38869432

ABSTRACT

Independent electrical control of spin and valley degrees of freedom (DOFs) in 2D materials is difficult due to the coupling of spin and valley DOFs. Here we propose that spin-filter transport and valley polarization can be independently manipulated by an electric field in 2D breathing kagome Ta3I8 due to the possession of both triferroic (ferromagnetism, ferroelectric, and ferrovalley) and bipolar magnetic semiconducting characteristics. The spin-filter transport can be realized by applying a bias voltage without altering the semiconducting characteristic. The flip of valley polarization is fulfilled by switching the ferroelectric polarization with a gate voltage. Our results demonstrate the potential to control different DOFs independently by adjusting the direction of the electric field.

18.
Front Cardiovasc Med ; 11: 1401143, 2024.
Article in English | MEDLINE | ID: mdl-38911517

ABSTRACT

Introduction: Arrhythmia is an important indication of underlying cardiovascular diseases (CVD) and is prevalent worldwide. Accurate diagnosis of arrhythmia is crucial for timely and effective treatment. Electrocardiogram (ECG) plays a key role in the diagnosis of arrhythmia. With the continuous development of deep learning and machine learning processes in the clinical field, ECG processing algorithms have significantly advanced the field with timely and accurate diagnosis of arrhythmia. Methods: In this study, we combined the wavelet time-frequency maps with the novel Swin Transformer deep learning model for the automatic detection of cardiac arrhythmias. In specific practice, we used the MIT-BIH arrhythmia dataset, and to improve the signal quality, we removed the high-frequency noise, artifacts, electromyographic noise and respiratory motion effects in the ECG signals by the wavelet thresholding method; we used the complex Morlet wavelet for the feature extraction, and plotted wavelet time-frequency maps to visualise the time-frequency information of the ECG; we introduced the Swin Transformer model for classification and achieve high classification accuracy of ECG signals through hierarchical construction and self attention mechanism, and combines windowed multi-head self-attention (W-MSA) and shifted window-based multi-head self-attention (SW-MSA) to comprehensively utilise the local and global information. Results: To enhance the confidence of the experimental results, we evaluated the performance using intra-patient and inter-patient paradigm analyses, and the model classification accuracies reached 99.34% and 98.37%, respectively, which are better than the currently available detection methods. Discussion: The results reveal that our proposed method is superior to currently available methods for detecting arrhythmia ECG. This provides a new idea for ECG based arrhythmia diagnosis.

19.
JCI Insight ; 9(12)2024 May 21.
Article in English | MEDLINE | ID: mdl-38912580

ABSTRACT

Peripheral nerve injury-induced neuronal hyperactivity in the dorsal root ganglion (DRG) participates in neuropathic pain. The calcium-activated potassium channel subfamily N member 1 (KCNN1) mediates action potential afterhyperpolarization (AHP) and gates neuronal excitability. However, the specific contribution of DRG KCNN1 to neuropathic pain is not yet clear. We report that chronic constriction injury (CCI) of the unilateral sciatic nerve or unilateral ligation of the fourth lumbar nerve produced the downregulation of Kcnn1 mRNA and KCNN1 protein in the injured DRG. This downregulation was partially attributed to a decrease in DRG estrogen-related receptor gamma (ESRRG), a transcription factor, which led to reduced binding to the Kcnn1 promoter. Rescuing this downregulation prevented CCI-induced decreases in total potassium voltage currents and AHP currents, reduced excitability in the injured DRG neurons, and alleviated CCI-induced development and maintenance of nociceptive hypersensitivities, without affecting locomotor function and acute pain. Mimicking the CCI-induced DRG KCNN1 downregulation resulted in augmented responses to mechanical, heat, and cold stimuli in naive mice. Our findings indicate that ESRRG-controlled downregulation of DRG KCNN1 is likely essential for the development and maintenance of neuropathic pain. Thus, KCNN1 may serve as a potential target for managing this disorder.


Subject(s)
Down-Regulation , Ganglia, Spinal , Neuralgia , Sensory Receptor Cells , Animals , Neuralgia/metabolism , Neuralgia/genetics , Ganglia, Spinal/metabolism , Mice , Sensory Receptor Cells/metabolism , Male , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/genetics , Mice, Inbred C57BL , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Disease Models, Animal , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Action Potentials
20.
Langmuir ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915238

ABSTRACT

Colloidal gas aphrons (CGAs) are applied in pollutant removal due to their large specific surface area and high surface activity. The structure and properties of the prepared CGAs were investigated in the process of oil removal from oily sludge. The prepared CGAs had a liquid film thickness was 5-10 µm with high stability. CGA interfacial tension was as low as 3.157 mN/m. Then it was found that the oil removal rate of CGAs was higher than that of chemical treatments, showing that CGAs could increase the mass transfer surface area and provide additional attachment sites for pollutants, enhancing the oil removal. The treatment conditions of the oil removal were optimized through response surfaces, showing that under optimal treatment conditions, the oil removal rate of oily sludge reached 96.07%. Additionally, the interaction between surfactant concentration and temperature was the most significant of all of the influencing factors. The behavior and mechanism of CGAs in the cleaning process of oily sludge were further investigated using an inverted fluorescence microscope, SEM, FTIR, and two-dimensional fluorescence spectrometer, showing that pollutants transferred from the liquid film surface of CGAs to the inside the film, and CGAs could specifically adsorb negatively charged organic compounds and aromatic hydrocarbons. The results show that CGAs achieved liquid membrane solubilization. Many negatively charged organic compounds and aromatic hydrocarbons are adsorbed onto the CGAs liquid membrane surface via electrostatic and hydrophobic interactions and then migrated to the hydrophobic layer of the CGAs liquid membrane due to the distribution effect, thus enabling rapid pollutant migration between solid and liquid phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...