Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 345: 112111, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734143

ABSTRACT

Cyclic Nucleotide-Gated Channels (CNGCs) serve as Ca2+ permeable cation transport pathways, which are involved in the regulation of various biological functions such as plant cell ion selective permeability, growth and development, responses to biotic and abiotic stresses. At the present study, a total of 31 CNGC genes were identified and bioinformatically analyzed in kenaf. Among these genes, HcCNGC21 characterized to localize at the plasma membrane, with the highest expression levels in leaves, followed by roots. In addition, HcCNGC21 could be significantly induced under salt or drought stress. Virus-induced gene silencing (VIGS) of HcCNGC21 in kenaf caused notable growth inhibition under salt or drought stress, characterized by reductions in plant height, stem diameter, leaf area, root length, root surface area, and root tip number. Meanwhile, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly decreased, accompanied by reduced levels of osmoregulatory substances and total chlorophyll content. However, ROS accumulation and Na+ content increased. The expression of stress-responsive genes, such as HcSOD, HcPOD, HcCAT, HcERF3, HcNAC29, HcP5CS, HcLTP, and HcNCED, was significantly downregulated in these silenced lines. However, under salt or drought stress, the physiological performance and expression of stress-related genes in transgenic Arabidopsis thaliana plants overexpressing HcCNGC21 were diametrically opposite to those of TRV2-HcCNGC21 kenaf line. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that HcCNGC21 interacts with HcAnnexin D1. These findings collectively underscore the positive role of HcCNGC21 in plant resistance to salt and drought stress.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Hibiscus , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Hibiscus/genetics , Hibiscus/physiology , Hibiscus/metabolism , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Salt Stress/genetics , Stress, Physiological/genetics
2.
J Agric Food Chem ; 72(19): 10862-10878, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712687

ABSTRACT

Bama County is a world-famous longevity county in the Guangxi Province, China. Bama hemp is a traditional seed used in hemp cultivation in the Bama County. The seeds contain abundant unsaturated fatty acids, particularly linoleic acid (LA) and linolenic acid in the golden ratio. These two substances have been proven to be related to human health and the prevention of various diseases. However, the seed development and seed oil accumulation mechanisms remain unclear. This study employed a combined analysis of physiological, transcriptomic, and metabolomic parameters to elucidate the fatty acid formation patterns in Bama hemp seeds throughout development. We found that seed oil accumulated at a late stage in embryo development, with seed oil accumulation following an "S″-shaped growth curve, and positively correlated with seed size, sugar content, protein content, and starch content. Transcriptome analysis identified genes related to the metabolism of LA, α-linolenic acid (ALA), and jasmonic acid (JA). We found that the FAD2 gene was upregulated 165.26 folds and the FAD3 gene was downregulated 6.15 folds at day 21. Metabolomic changes in LA, ALA, and JA compounds suggested a competitive relationship among these substances. Our findings indicate that the peak period of substance accumulation and nutrient accumulation in Bama hemp seeds occurs during the midstage of seed development (day 21) rather than in the late stage (day 40). The results of this research will provide a theoretical basis for local cultivation and deep processing of Bama hemp.


Subject(s)
Cannabis , Gene Expression Regulation, Plant , Linoleic Acid , Metabolomics , Plant Proteins , Seeds , Transcriptome , alpha-Linolenic Acid , Seeds/metabolism , Seeds/growth & development , Seeds/genetics , Seeds/chemistry , alpha-Linolenic Acid/metabolism , Cannabis/genetics , Cannabis/growth & development , Cannabis/metabolism , Cannabis/chemistry , Linoleic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , China , Gene Expression Profiling
3.
Plant Sci ; 331: 111663, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36841339

ABSTRACT

Soil heavy metal pollution is one of the most challenging problems. Kenaf is an important natural fiber crop with strong heterosis and a higher tolerance to heavy metals. However, little is known about the molecular mechanisms of kenaf heavy metal tolerance, especially the mechanism of genomic DNA methylation regulating heterosis. In this study, kenaf cultivars CP085, CP089, and their hybrid F1 seedlings were subjected to 300 µM cadmium stress and found obvious heterosis of cadmium resistance in morphology and antioxidant enzyme activity of F1 hybrid seedlings. Through methylation-sensitive amplification polymorphism (MSAP) analysis, we highlighted that the total DNA methylation level under cadmium decreased by 16.9 % in F1 and increased by 14.0 % and 3.0 % in parents CP085 and CP089, respectively. The hypomethylation rate was highest (21.84 %), but hypermethylation was lowest (17.24 %) in F1 compared to parent cultivars. In particular, principal coordinates analysis (PCoA) indicates a significant epigenetic differentiation between F1 and its parents under cadmium. Furthermore, 21 differentially methylated DNA fragments (DMFs) were analyzed. Especially, the expression of NPF2.7, NADP-ME, NAC71, TPP-D, LRR-RLKs, and DHX51 genes were changed due to cadmium stress and related to cytosine methylation regulation. Finally, the knocked-down of the differentially methylated gene NPF2.7 by virus-induced gene silencing (VIGS) resulted in increased sensitivity of kenaf seedlings under cadmium stress. It is speculated that low DNA methylation levels can regulate gene expression that led to the heterosis of cadmium tolerance in kenaf.


Subject(s)
Hibiscus , Metals, Heavy , DNA Methylation , Cadmium/toxicity , Hybrid Vigor/genetics , Epigenesis, Genetic
4.
Chemosphere ; 314: 137566, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563724

ABSTRACT

Soil Cadmium (Cd) contamination has become a severe environmental problem around the world. Kenaf has great potential for utilization and phytoremediation of soil contaminated with heavy metal. Arbuscular mycorrhizal fungi (AMF) can help plants alleviate Cd stress, but the underlying mechanism remains completely unknown. In this study, kenaf was inoculated or not inoculated with AMF at cadmium concentrations of 10 mg kg-1 and 50 mg kg-1 from the seedling stage to the vigorous growth stage. The results showed that AMF symbionts improved nutrient transport efficiency and significantly improved plant growth. Additionally, AMF colonization increased cell wall polysaccharide content which help to bind Cd in the cell wall and reduced the transport of Cd to aboveground plant tissues. The increase in soil pH (6.9), total balcomycin and easily extractable balcomycin content facilitated the chelation of metal by mycorrhizal fungi and reduced the biological effectiveness of Cd. Furthermore, AMF upregulated the expression levels of key kenaf genes, such as Hc.GH3.1, Hc.AKR, and Hc.PHR1, which plays an important role in enhancing kenaf Cd tolerance. Our findings systematically revealed the mechanisms by which AMF responds to Cd stress in kenaf, inoculation of AMF with kenaf could be used to enhance the removal of Cd from soil pollution in mining areas by phytoremediation.


Subject(s)
Hibiscus , Mycorrhizae , Soil Pollutants , Mycorrhizae/metabolism , Cadmium/analysis , Hibiscus/metabolism , Plant Roots/metabolism , Soil Pollutants/analysis , Soil/chemistry
5.
Cardiovasc Ther ; 34(4): 199-208, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27085964

ABSTRACT

OBJECTIVE: Circulating microRNAs (miRNAs) in patient body fluids have recently been considered to hold the potential of being novel disease biomarkers and drug targets. We aimed to investigate the correlation between the levels of circulating miR-23a and the expression of epidermal growth factor receptor (EGFR) in the pathogenesis of patients with coronary heart disease to further explore the mechanism involved in its vasculogenesis. METHOD: Three different cohorts, including 13 acute myocardial infarction (AMI) patients, 176 angina pectoris patients, and 127 control subjects, were enrolled to investigate the expression levels of circulating miR-23a in patients with myocardial ischemia and also the relationship between plasma miR-23a and severity of coronary stenosis. Plasma miR-23a levels of participants were examined by real-time quantitative PCR. Simultaneously, plasma cardiac troponin I (cTnI) concentrations were measured by ELISAs. We further detected the correlation of miR-23a and EGFR by molecular and animal assays. RESULT: MiR-23a was enriched in not only diseased endothelial progenitor cells (EPCs) but also in the plasma of patients with coronary artery disease (CAD). Besides, we found out miR-23a was able to suppress EGFR expression and EPC activities. Reporter assays confirmed the direct binding and repression of miR-23a to the 3'-UTR of EGFR mRNA. Knockdown of miR-23a not only restored EGFR levels and angiogenic activities of diseased EPCs in vitro, but further promoted blood flow recovery in ischemic limbs of mice. CONCLUSION: Circulating miR-23a may be a new biomarker for CAD and as a potential diagnostic tool. And increased miR-23a level may be used to predict the presence and severity of coronary lesions in patients with CAD.


Subject(s)
Angina Pectoris/genetics , Coronary Artery Disease/genetics , Coronary Stenosis/genetics , Endothelial Progenitor Cells/metabolism , ErbB Receptors/genetics , MicroRNAs/genetics , Myocardial Infarction/genetics , Neovascularization, Physiologic , 3' Untranslated Regions , Angina Pectoris/blood , Angina Pectoris/physiopathology , Animals , Binding Sites , Case-Control Studies , Cell Movement , Cell Proliferation , Coronary Artery Disease/blood , Coronary Artery Disease/physiopathology , Coronary Stenosis/blood , Coronary Stenosis/physiopathology , Disease Models, Animal , Endothelial Progenitor Cells/transplantation , ErbB Receptors/metabolism , Gene Knockdown Techniques , Genetic Markers , HEK293 Cells , Hindlimb , Humans , Ischemia/blood , Ischemia/genetics , Ischemia/physiopathology , Ischemia/surgery , Mice, Nude , MicroRNAs/blood , Muscle, Skeletal/blood supply , Myocardial Infarction/blood , Myocardial Infarction/physiopathology , Severity of Illness Index , Time Factors , Transfection , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...