Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 637
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1417007, 2024.
Article in English | MEDLINE | ID: mdl-38952389

ABSTRACT

Ovarian aging is a complex process characterized by a decline in oocyte quantity and quality, directly impacting fertility and overall well-being. Recent researches have identified mitochondria as pivotal players in the aging of ovaries, influencing various hallmarks and pathways governing this intricate process. In this review, we discuss the multifaceted role of mitochondria in determining ovarian fate, and outline the pivotal mechanisms through which mitochondria contribute to ovarian aging. Specifically, we emphasize the potential of targeting mitochondrial dysfunction through innovative therapeutic approaches, including antioxidants, metabolic improvement, biogenesis promotion, mitophagy enhancement, mitochondrial transfer, and traditional Chinese medicine. These strategies hold promise as effective means to mitigate age-related fertility decline and preserve ovarian health. Drawing insights from advanced researches in the field, this review provides a deeper understanding of the intricate interplay between mitochondrial function and ovarian aging, offering valuable perspectives for the development of novel therapeutic interventions aimed at preserving fertility and enhancing overall reproductive health.


Subject(s)
Aging , Mitochondria , Ovary , Humans , Female , Mitochondria/metabolism , Aging/physiology , Aging/metabolism , Ovary/metabolism , Ovary/physiology , Animals , Antioxidants/therapeutic use , Oocytes/metabolism , Oocytes/physiology , Mitophagy/physiology
2.
Front Microbiol ; 15: 1414486, 2024.
Article in English | MEDLINE | ID: mdl-38952442

ABSTRACT

Introduction: Oxidative stress plays a pivotal role in modulating the balance of intestinal flora and the gut-liver axis, while also serving as a key determinant of the growth potential of weaned piglets. However, few studies have subdivided and compared acute and chronic oxidative stress. Methods: In this study, an intestinal model of acute oxidative stress in weaned piglets using paraquat (PQ) and a chronic oxidative stress model using D-galactosa in weaned piglets were conducted. And we further systematically compare their effects. Results: Both acute and chronic oxidative stress models impaired intestinal barrier function and liver function. Chronic stress caused by D-galactose can result in severe redox dysregulation, while acute stress caused by paraquat can lead to inflammation and liver damage. Additionally, the components involved in the CAR pathway were expressed differently. Chronic or acute oxidative stress can reduce the diversity and composition of intestinal flora. In the PQ group, the richness of Mogibacterium and Denitratisoma improved, but in the D-gal group, the richness of Catenisphaera and Syntrophococcus increased. Discussion: Not only does this research deepen our understanding of the effects of acute and chronic oxidative stress on intestinal functions, but it also characterizes characteristic changes in the gut flora, potentially identifying novel therapeutic targets and opening new avenues for future research.

4.
Chem Commun (Camb) ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966911

ABSTRACT

Multifunctional fibers represent a cornerstone of human civilization, playing a pivotal role in numerous aspects of societal development. Natural biomaterials, in contrast to synthetic alternatives, offer environmental sustainability, biocompatibility, and biodegradability. Among these biomaterials, natural silk is favored in biomedical applications and smart fiber technology due to its accessibility, superior mechanical properties, diverse functional groups, controllable structure, and exceptional biocompatibility. This review delves into the intricate structure and properties of natural silk fibers and their extensive applications in biomedicine and smart fiber technology. It highlights the critical significance of silk fibers in the development of multifunctional materials, emphasizing their mechanical strength, biocompatibility, and biodegradability. A detailed analysis of the hierarchical structure of silk fibers elucidates how these structural features contribute to their unique properties. The review also encompasses the biomedical applications of silk fibers, including surgical sutures, tissue engineering, and drug delivery systems, along with recent advancements in smart fiber applications such as sensing, optical technologies, and energy storage. The enhancement of functional properties of silk fibers through chemical or physical modifications is discussed, suggesting broader high-end applications. Additionally, the review addresses current challenges and future directions in the application of silk fibers in biomedicine and smart fiber technologies, underscoring silk's potential in driving contemporary technological innovations. The versatility and sustainability of silk fibers position them as pivotal elements in contemporary materials science and technology, fostering the development of next-generation smart materials.

5.
Int J Antimicrob Agents ; : 107262, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945178

ABSTRACT

PURPOSE: Polymyxin B, with its unique structure and mechanism of action, has emerged as a key therapeutic agent against Gram-negative bacteria. The study aims to explore potential factors to influence its effectiveness and safety. METHODS: A Model-Based Meta-Analysis (MBMA) of 96 articles was conducted, focusing on factors like dosage, bacterial species, and combined antibiotic therapy. The analysis evaluated mortality rates and incidence rate of renal dysfunction, also employing parametric survival models to assess 30-day survival rates. RESULTS: In the study involving 96 articles and 9,716 patients, polymyxin B's daily dose showed minimal effect on overall mortality, with high-dose group mortality at 33.57% (95% CI: 29.15-38.00) compared to the low-dose group at 35.44% (95% CI: 28.99-41.88), p=0.64. Mortality significantly varied by bacterial species, with Pseudomonas aeruginosa infections at 58.50% (95% CI: 55.42-63.58). Monotherapy exhibited the highest mortality at 40.25% (95% CI: 34.75-45.76), p<0.01. Renal dysfunction was more common in high-dose patients at 29.75% (95% CI: 28.52-30.98), with no significant difference across antibiotic regimens, p=0.54. The 30-day Overall Survival rate for monotherapy therapy was 63.6% (95% CI: 59.3-67.5) and 70.2% (95% CI: 64.4-76.2) for association therapy with ß-lactam drugs. CONCLUSIONS: The dosage of Polymyxin B doesn't significantly change death rates, but its effectiveness varies based on the bacterial infection. Certain bacteria like Pseudomonas aeruginosa are associated with higher mortality. Combining Polymyxin B with other antibiotics, especially ß-lactam drugs, improves survival rates. Side effects depend on the dose, with lower doses being safer. These findings emphasize the importance of customizing treatment to balance effectiveness and safety.

6.
PLoS Pathog ; 20(6): e1012271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829910

ABSTRACT

Proper transcription regulation by key transcription factors, such as IRF3, is critical for anti-viral defense. Dynamics of enhancer activity play important roles in many biological processes, and epigenomic analysis is used to determine the involved enhancers and transcription factors. To determine new transcription factors in anti-DNA-virus response, we have performed H3K27ac ChIP-Seq and identified three transcription factors, NR2F6, MEF2D and MAFF, in promoting HSV-1 replication. NR2F6 promotes HSV-1 replication and gene expression in vitro and in vivo, but not dependent on cGAS/STING pathway. NR2F6 binds to the promoter of MAP3K5 and activates AP-1/c-Jun pathway, which is critical for DNA virus replication. On the other hand, NR2F6 is transcriptionally repressed by c-Jun and forms a negative feedback loop. Meanwhile, cGAS/STING innate immunity signaling represses NR2F6 through STAT3. Taken together, we have identified new transcription factors and revealed the underlying mechanisms involved in the network between DNA viruses and host cells.


Subject(s)
Herpesvirus 1, Human , Immunity, Innate , Humans , Animals , Herpesvirus 1, Human/immunology , Mice , Virus Replication , Herpes Simplex/immunology , Herpes Simplex/virology , Herpes Simplex/metabolism , Signal Transduction , HEK293 Cells , Repressor Proteins
7.
Nat Rev Chem ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886549
8.
Nat Neurosci ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862791

ABSTRACT

Injuries to the brain result in tunable cell responses paired with stimulus properties, suggesting the existence of intrinsic processes that encode and transmit injury information; however, the molecular mechanism of injury information encoding is unclear. Here, using ATP fluorescent indicators, we identify injury-evoked spatiotemporally selective ATP dynamics, Inflares, in adult mice of both sexes. Inflares are actively released from astrocytes and act as the internal representations of injury. Inflares encode injury intensity and position at their population level through frequency changes and are further decoded by microglia, driving changes in their activation state. Mismatches between Inflares and injury severity lead to microglia dysfunction and worsening of injury outcome. Blocking Inflares in ischemic stroke in mice reduces secondary damage and improves recovery of function. Our results suggest that astrocytic ATP dynamics encode injury information and are sensed by microglia.

9.
ArXiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38855543

ABSTRACT

Discrete diffusion or flow models could enable faster and more controllable sequence generation than autoregressive models. We show that na\"ive linear flow matching on the simplex is insufficient toward this goal since it suffers from discontinuities in the training target and further pathologies. To overcome this, we develop Dirichlet flow matching on the simplex based on mixtures of Dirichlet distributions as probability paths. In this framework, we derive a connection between the mixtures' scores and the flow's vector field that allows for classifier and classifier-free guidance. Further, we provide distilled Dirichlet flow matching, which enables one-step sequence generation with minimal performance hits, resulting in $O(L)$ speedups compared to autoregressive models. On complex DNA sequence generation tasks, we demonstrate superior performance compared to all baselines in distributional metrics and in achieving desired design targets for generated sequences. Finally, we show that our classifier-free guidance approach improves unconditional generation and is effective for generating DNA that satisfies design targets. Code is available at https://github.com/HannesStark/dirichlet-flow-matching.

10.
Anal Chem ; 96(25): 10380-10390, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38860916

ABSTRACT

To reduce the risk of atherosclerotic disease, it is necessary to not only diagnose the presence of atherosclerotic plaques but also assess the vulnerability risk of plaques. Accurate detection of the reactive oxygen species (ROS) level at plaque sites represents a reliable way to assess the plaque vulnerability. Herein, through a simple one-pot reaction, two near-infrared (NIR) fluorescent dyes, one is ROS responsive and the other is inert to ROS, are coassembled in an amphiphilic amino acid-assembled nanoparticle. In the prepared NIR fluorescent amino acid nanoparticle (named FANP), the fluorescent properties and ROS-responsive behaviors of the two fluorescent dyes are well maintained. Surface camouflage through red blood cell membrane (RBCM) encapsulation endows the finally obtained FANP@RBCM nanoprobe with not only further reduced cytotoxicity and improved biocompatibility but also increased immune escape capability, prolonged blood circulation time, and thus enhanced accumulation at atherosclerotic plaque sites. In vitro and in vivo experiments demonstrate that FANP@RBCM not only works well in probing the occurrence of atherosclerotic plaques but also enables plaque vulnerability assessment through the accurate detection of the ROS level at plaque sites in a reliable ratiometric mode, thereby holding great promise as a versatile tool for the diagnosis and risk assessment of atherosclerotic disease.


Subject(s)
Amino Acids , Fluorescent Dyes , Nanoparticles , Plaque, Atherosclerotic , Reactive Oxygen Species , Plaque, Atherosclerotic/diagnostic imaging , Animals , Reactive Oxygen Species/metabolism , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Mice , Amino Acids/chemistry , Humans , Risk Assessment , Optical Imaging , Infrared Rays , RAW 264.7 Cells
11.
Clin Infect Dis ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920297

ABSTRACT

BACKGROUND: Remdesivir, an RNA-polymerase prodrug inhibitor approved for treatment of COVID-19, shortens recovery time and improves clinical outcomes. This prespecified analysis compared remdesivir plus standard-of-care (SOC) with SOC alone in adults hospitalized with COVID-19 requiring oxygen support in the early stage of the pandemic. METHODS: Data for 10-day remdesivir treatment plus SOC from the extension phase of an open-label study (NCT04292899) were compared with real-world, retrospective data on SOC alone (EUPAS34303). Both studies included patients aged ≥18 years hospitalized with SARS-CoV-2 up to 30 May 2020, with oxygen saturation ≤94%, on room air or supplemental oxygen (all forms), and with pulmonary infiltrates. Propensity score weighting was used to balance patient demographics and clinical characteristics across treatment groups. The primary endpoint was time to all-cause mortality or end of study (day 28). Time-to-discharge, with a 10-day landmark to account for duration of remdesivir treatment, was a secondary endpoint. RESULTS: 1974 patients treated with remdesivir plus SOC, and 1426 with SOC alone, were included after weighting. Remdesivir significantly reduced mortality versus SOC (hazard ratio [HR]: 0.46, 95% confidence interval: 0.39-0.54). This association was observed at each oxygen support level, with the lowest HR for patients on low-flow oxygen. Remdesivir significantly increased the likelihood of discharge at day 28 versus SOC in the 10-day landmark analysis (HR: 1.64; 95% confidence interval: 1.43-1.87). CONCLUSIONS: Remdesivir plus early-2020 SOC was associated with a 54% lower mortality risk and shorter hospital stays compared with SOC alone in patients hospitalized with COVID-19 requiring oxygen support. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov NCT04292899 and EUPAS34303.

12.
Crit Rev Oncol Hematol ; 199: 104380, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718939

ABSTRACT

Cancer is a leading cause of death in both China and developed countries due to its high incidence and low cure rate. Immune function is closely linked to the development and progression of tumors. Platelets, which are primarily known for their role in hemostasis, also play a crucial part in the spread and progression of tumors through their interaction with the immune microenvironment. The impact of platelets on tumor growth and metastasis depends on the type of cancer and treatment method used. This article provides an overview of the relationship between platelets and the immune microenvironment, highlighting how platelets can either protect or harm the immune response and cancer immune escape. We also explore the potential of available platelet-targeting strategies for tumor immunotherapy, as well as the promise of new platelet-targeted tumor therapy methods through further research.


Subject(s)
Blood Platelets , Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Blood Platelets/immunology , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/pathology , Immunotherapy/methods , Animals , Tumor Escape
13.
Biochem Biophys Res Commun ; 719: 150048, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38763044

ABSTRACT

Double knockout of miR-183 and miR-96 results in retinal degeneration in mice; however, single knockout of miR-96 leads to developmental delay but not substantial retinal degeneration. To further explore the role of miR-96, we overexpressed this miRNA in mouse retinas. Interestingly, we found that overexpression of miR-96 at a safe dose results in retinal degeneration in the mouse retina. The retinal photoreceptors dramatically degenerated in the miR-96-overexpressing group, as shown by OCT, ERG and cryosectioning at one month after subretinal injection. Degenerative features such as TUNEL signals and reactive gliosis were observed in the miR-96-overexpressing retina. RNA-seq data revealed that immune responses and microglial activation occurred in the degenerating retina. Further qRT‒PCR and immunostaining experiments verified the microglial activation. Moreover, the number of microglia in the miR-96-overexpressing retinas was significantly increased. Our findings demonstrate that appropriate miR-96 expression is required for mouse retinal homeostasis.


Subject(s)
Mice, Inbred C57BL , MicroRNAs , Microglia , Retinal Degeneration , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Degeneration/metabolism , Mice , Microglia/metabolism , Microglia/pathology , Retina/metabolism , Retina/pathology
14.
Zool Res ; 45(3): 535-550, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38747058

ABSTRACT

Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function. Synaptic abnormalities, such as defects in the density and morphology of postsynaptic dendritic spines, underlie the pathology of various neuropsychiatric disorders. Protocadherin 17 (PCDH17) is associated with major mood disorders, including bipolar disorder and depression. However, the molecular mechanisms by which PCDH17 regulates spine number, morphology, and behavior remain elusive. In this study, we found that PCDH17 functions at postsynaptic sites, restricting the number and size of dendritic spines in excitatory neurons. Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety- and depression-like behaviors in mice. Mechanistically, PCDH17 interacts with actin-relevant proteins and regulates actin filament (F-actin) organization. Specifically, PCDH17 binds to ROCK2, increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3 (Ser3). Inhibition of ROCK2 activity with belumosudil (KD025) ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression, suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development. Hence, these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior, providing pathological insights into the neurobiological basis of mood disorders.


Subject(s)
Actin Cytoskeleton , Cadherins , Dendritic Spines , Protocadherins , rho-Associated Kinases , Animals , Mice , Actin Cytoskeleton/metabolism , Cadherins/metabolism , Cadherins/genetics , Dendritic Spines/metabolism , Dendritic Spines/physiology , Gene Expression Regulation , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Protocadherins/genetics , Protocadherins/metabolism
15.
Poult Sci ; 103(7): 103778, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703760

ABSTRACT

The gut-brain axis is essential in maintaining the homeostasis of neuronal system, endocrine system, and intestinal microbiota in both the afferent and efferent directions. This axis is considered to be a key mechanism that regulates feed efficiency (FE). This study aimed to investigate the regulatory mechanisms of gut-brain axis-related genes on the residual feed intake (RFI) in H-strain small-sized meat ducks. A total of 500 ducks with similar initial BW (635.2 ± 15.1 g) were selected and reared in the same experimental facility until slaughter at 42 d of age. RFI was calculated from the average daily gain (ADG), average daily feed intake (ADFI), and metabolic body weight (MBW0.75). Thirty high-RFI (H-RFI) and 30 low-RFI (L-RFI) birds were selected for further evaluation of growth performance, carcass characteristics, and blood biochemical parameter measurements. Six L-RFI and 6 H-RFI birds were then subjected to hypothalamic transcriptomic and cecal microbial sequencing analyses. Results indicated that L-RFI birds exhibited lower production performance (ADFI, FCR, and RFI) and blood biochemical indices (total cholesterol and ghrelin content) compared with H-RFI birds (P < 0.05). Gene expression differed significantly between the L-RFI and H-RFI birds, with 70 upregulated and 50 downregulated genes. The bacterial communities of L-RFI birds showed higher abundances of Bacteroides, Bifidobacterium, and Lactococcus, and lower abundances of Erysipelatoclostridium, Parasutterella, Fournierella, and Blautia compared with H-RFI birds (P < 0.05). Interactive analysis revealed bacterial communities associated with FE were significantly correlated with hypothalamic genes (P < 0.05), for example, Bacteroides was positively correlated with DGKH and LIPT2, while negatively correlated with CAPN9, GABRD, and PDE1A. Bifidobacterium showed significant correlations with ATP2A3, CALHM6, and TMEM121B. Overall, RFI was a crucial indicator of FE, regulated by interactions between brain gene expression and gut microbiota through cAMP signaling, neuroactive ligand-receptor interaction, and calcium signaling pathways. Notably, increased expression of hypothalamic genes and abundance of carbohydrate-utilization microbiota in L-RFI meat ducks improved FE by enhancing energy metabolism and volatile fatty acids absorption.


Subject(s)
Ducks , Gastrointestinal Microbiome , Animals , Ducks/physiology , Ducks/growth & development , Ducks/genetics , Gastrointestinal Microbiome/physiology , Brain-Gut Axis/physiology , Eating , Male
16.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731398

ABSTRACT

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Subject(s)
Adenosine Triphosphate , Carbon , Citric Acid , Polyethyleneimine , Protein Kinases , Quantum Dots , Animals , Humans , Mice , Adenosine Triphosphate/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Carbon/chemistry , Cell Line , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Polyethyleneimine/chemistry , Protein Kinases/metabolism , Protein Kinases/genetics , Quantum Dots/chemistry , Reactive Oxygen Species/metabolism
17.
ACS Appl Mater Interfaces ; 16(22): 29003-29015, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788155

ABSTRACT

Navigating more effective methods to enhance the photon utilization of photodetectors poses a significant challenge. This study initially investigates the impact of morphological alterations in 2H-MoS2 on photodetector (PD) performance. The results reveal that compared to layered MoS2 (MoS2 NLs), MoS2 nanotubes (MoS2 NTs) impart a cavity enhancement effect through multiple light reflections. This structural feature significantly enhances the photodetection performance of the MoS2-based PDs. We further employ the heterojunction strategy to construct Y-TiOPc NPs:MoS2 NTs, utilizing Y-TiOPc NPs (Y-type titanylphthalocyanine) as the vis-NIR photosensitizer and MoS2 NTs as the photon absorption enhancer. This approach not only addresses the weak absorption of MoS2 NTs in the near-infrared region but also enhances carrier generation, separation, and transport efficiency. Additionally, the band bending phenomenon induced by trapped-electrons at the interface between ITO and the photoactive layer significantly enhances the hole tunneling injection capability from the external circuit. By leveraging the synergistic effects of the aforementioned strategies, the PD based on Y-TiOPc NPs:MoS2 NTs (Y:MT-PD) exhibits superior photodetection performance in the wavelength range of 365-940 nm compared to MoS2 NLs-based PD and MoS2 NTs-based PD. Particularly noteworthy are the peak values of key metrics for Y:MT-PD, such as EQE, R, and D* that are 4947.6%, 20588 mA/W, and 1.94 × 1012 Jones, respectively. The multiperiod time-resolved photocurrent response curves of Y:MT-PD also surpass those of the other two PDs, displaying rapid, stable, and reproducible responses across all wavelengths. This study provides valuable insights for the further development of photoactive materials with a high photon utilization efficiency.

18.
J Phys Chem Lett ; 15(22): 5875-5882, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38804846

ABSTRACT

Engineering atomic vacancies in metal sulfide semiconductors allows for the efficient tuning of their electronic and chemical properties. In this work, we synthesized hollow tubular structures constructed by bimetallic ZnIn2S4 using a metal-organic framework (MOF) as the template. We found that the sulfur vacancies in ZnIn2S4 enabled extremely fast NO2 detection with high response at room temperature (RT), and the material with high sulfur vacancy content delivers a 2 times higher response to 10 ppm NO2 than the device with low sulfur vacancy content. To unveil the crucial role played by sulfur vacancies, DFT calculations were conducted to reveal that sulfur vacancies greatly enhance the interaction and electron transfer between ZnIn2S4 and NO2. This study will provide hints for the engineering of bimetallic sulfide materials for low-power gas sensors at RT.

19.
J Contam Hydrol ; 264: 104358, 2024 May.
Article in English | MEDLINE | ID: mdl-38692144

ABSTRACT

The water quality evolution of surface and groundwater caused by mining activities and mine drainage is a grave public concern worldwide. To explore the effect of mine drainage on sulfate evolution, a multi-aquifer system in a typical coal mine in Northwest China was investigated using multi-isotopes (δ34SSO4, δ18OSO4, δD, and δ18Owater) and Positive Matrix Factorization (PMF) model. Before mining, the Jurassic aquifer was dominated by gypsum dissolution, accompanied by cation exchange and bacterial sulfate reduction, and the phreatic aquifers and surface water were dominated by carbonate dissolution. Significant increase in sulfate in phreatic aquifers due to mine drainage during the early stages of coal mining. However, in contrast to common mining activities that result in sulfate contamination from pyrite oxidation, mine drainage in this mining area resulted in accelerated groundwater flow and enhanced hydraulic connections between the phreatic and confined aquifers. Dilution caused by the altered groundwater flow system controlled the evolution of sulphate, leading to different degrees of sulfate decrease in all aquifers and surface water. As the hydrogeochemical characteristic of Jurassic aquifer evolved toward phreatic aquifer, this factor should be considered to avoid misjudgment in determining the source of mine water intrusion. The study reveals the hydrogeochemical evolution induced by mine drainage, which could benefit to the management of groundwater resources in mining areas.


Subject(s)
Environmental Monitoring , Groundwater , Sulfates , Water Pollutants, Chemical , Groundwater/chemistry , Sulfates/analysis , Water Pollutants, Chemical/analysis , China , Coal Mining , Water Movements , Mining
20.
Acta Pharmacol Sin ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760542

ABSTRACT

This study aimed to analyze potential ethnic disparities in the dose-exposure-response relationships of trilaciclib, a first-in-class intravenous cyclin-dependent kinase 4/6 inhibitor for treating chemotherapy-induced myelosuppression in patients with extensive-stage small cell lung cancer (ES-SCLC). This investigation focused on characterizing these relationships in both Chinese and non-Chinese patients to further refine the dosing regimen for trilaciclib in Chinese patients with ES-SCLC. Population pharmacokinetic (PopPK) and exposure-response (E-R) analyses were conducted using pooled data from four randomized phase 2/3 trials involving Chinese and non-Chinese patients with ES-SCLC. PopPK analysis revealed that trilaciclib clearance in Chinese patients was approximately 17% higher than that in non-Chinese patients with ES-SCLC. Sex and body surface area influenced trilaciclib pharmacokinetics in both populations but did not exert a significant clinical impact. E-R analysis demonstrated that trilaciclib exposure increased with a dosage escalation from 200 to 280 mg/m2, without notable changes in myeloprotective or antitumor efficacy. However, the incidence of infusion site reactions, headaches, and phlebitis/thrombophlebitis rose with increasing trilaciclib exposure in both Chinese and non-Chinese patients with ES-SCLC. These findings suggest no substantial ethnic disparities in the dose-exposure-response relationship between Chinese and non-Chinese patients. They support the adoption of a 240-mg/m2 intravenous 3-day or 5-day dosing regimen for trilaciclib in Chinese patients with ES-SCLC.

SELECTION OF CITATIONS
SEARCH DETAIL
...