Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 928
Filter
1.
Dalton Trans ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995145

ABSTRACT

Density functional theory calculations have been performed to compare the HCHO decomposition on Co3O4(110)-A and (110)-B terminations. The results showed that the energy barriers of the two C-H bond cleavages of HCHO on the (110)-A termination were lower than those on the (110)-B termination, suggesting that the (110)-A termination had stronger HCHO decomposition ability than the (110)-B termination. Electronic structures revealed that the stronger HCHO decomposition ability of the (110)-A termination might be ascribed to the strong covalent bond between HCHO and the (110)-A termination, as well as the higher d-band center of Co3+ ions on the (110)-A termination. Furthermore, we proposed that the preparation of Co3O4 under oxygen-rich growth conditions was beneficial to HCHO decomposition because the (110)-A termination was more stable under oxygen-rich conditions.

2.
Sci Rep ; 14(1): 15884, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987624

ABSTRACT

Behçet's disease (BD) is a multifaceted autoimmune disorder affecting multiple organ systems. Vascular complications, such as venous thromboembolism (VTE), are highly prevalent, affecting around 50% of individuals diagnosed with BD. This study aimed to identify potential biomarkers for VTE in BD patients. Three microarray datasets (GSE209567, GSE48000, GSE19151) were retrieved for analysis. Differentially expressed genes (DEGs) associated with VTE in BD were identified using the Limma package and weighted gene co-expression network analysis (WGCNA). Subsequently, potential diagnostic genes were explored through protein-protein interaction (PPI) network analysis and machine learning algorithms. A receiver operating characteristic (ROC) curve and a nomogram were constructed to evaluate the diagnostic performance for VTE in BD patients. Furthermore, immune cell infiltration analyses and single-sample gene set enrichment analysis (ssGSEA) were performed to investigate potential underlying mechanisms. Finally, the efficacy of listed drugs was assessed based on the identified signature genes. The limma package and WGCNA identified 117 DEGs related to VTE in BD. A PPI network analysis then selected 23 candidate hub genes. Four DEGs (E2F1, GATA3, HDAC5, and MSH2) were identified by intersecting gene sets from three machine learning algorithms. ROC analysis and nomogram construction demonstrated high diagnostic accuracy for these four genes (AUC: 0.816, 95% CI: 0.723-0.909). Immune cell infiltration analysis revealed a positive correlation between dysregulated immune cells and the four hub genes. ssGSEA provided insights into potential mechanisms underlying VTE development and progression in BD patients. Additionally, therapeutic agent screening identified potential drugs targeting the four hub genes. This study employed a systematic approach to identify four potential hub genes (E2F1, GATA3, HDAC5, and MSH2) and construct a nomogram for VTE diagnosis in BD. Immune cell infiltration analysis revealed dysregulation, suggesting potential macrophage involvement in VTE development. ssGSEA provided insights into potential mechanisms underlying BD-induced VTE, and potential therapeutic agents were identified.


Subject(s)
Behcet Syndrome , Biomarkers , Computational Biology , Gene Expression Profiling , Protein Interaction Maps , Humans , Behcet Syndrome/genetics , Behcet Syndrome/complications , Behcet Syndrome/diagnosis , Computational Biology/methods , Protein Interaction Maps/genetics , Biomarkers/blood , Gene Regulatory Networks , Venous Thrombosis/genetics , Venous Thrombosis/etiology , Venous Thrombosis/diagnosis , Venous Thromboembolism/genetics , Venous Thromboembolism/etiology , Venous Thromboembolism/diagnosis , Venous Thromboembolism/blood , GATA3 Transcription Factor/genetics , ROC Curve , Histone Deacetylases/genetics , Machine Learning
3.
Int J Med Sci ; 21(9): 1612-1621, 2024.
Article in English | MEDLINE | ID: mdl-39006840

ABSTRACT

Purpose: This study evaluated the association between maternal serum uric acid-to-creatinine ratio (SUA/SCr) in the first trimester and adverse maternal and neonatal outcomes. Methods: A prospective birth cohort study was conducted between 2018 and 2021. Logistic regression models and restricted cubic splines were utilized to estimate the associations between the SUA/SCr ratio and feto-maternal pregnancy outcomes. Women were stratified according to maternal age and pre-pregnancy body mass index. Results: This study included 33,030 pregnant women with live singleton pregnancies. The overall prevalence of gestational diabetes mellitus (GDM), pregnancy-induced hypertension (PIH), cesarean delivery, preterm birth, large-for-gestational age (LGA), small-for-gestational age, and low Apgar scores were 15.18%, 7.96%, 37.62%, 4.93%, 9.39%, 4.79% and 0.28%, respectively. The highest quartile of SUA/SCr was associated with the highest risk of GDM (odds ratio [OR] 2.14, 95% CI 1.93-2.36), PIH (OR 1.79, 95% CI 1.58-2.04), cesarean delivery (OR 1.24, 95% CI 1.16-1.33), and preterm birth (OR 1.30, 95% CI 1.12-1.51). The associations between SUA/SCr with adverse pregnancy outcomes showed linear relationships except for GDM (P < 0.001 for all, P < 0.001 for non-linearity). Subgroup analyses revealed that the associations between the SUA/SCr ratio and the risks of PIH and LGA were significantly stronger in younger pregnant women (P = 0.033 and 0.035, respectively). Conclusion: Maternal SUA/SCr levels were associated positively with the risk of adverse pregnancy outcomes. Timely monitoring of SUA and SCr levels during early pregnancy may help reduce the risk of adverse pregnancy outcomes and provide a basis for interventions.


Subject(s)
Creatinine , Pregnancy Outcome , Uric Acid , Humans , Pregnancy , Female , Prospective Studies , Adult , Creatinine/blood , Uric Acid/blood , Pregnancy Outcome/epidemiology , Infant, Newborn , Diabetes, Gestational/blood , Diabetes, Gestational/epidemiology , Premature Birth/blood , Premature Birth/epidemiology , Hypertension, Pregnancy-Induced/blood , Hypertension, Pregnancy-Induced/epidemiology , Pregnancy Trimester, First/blood , Cesarean Section/statistics & numerical data , Risk Factors , Pregnancy Complications/blood , Pregnancy Complications/epidemiology , Maternal Age , China/epidemiology
4.
Front Chem ; 12: 1427670, 2024.
Article in English | MEDLINE | ID: mdl-39010937

ABSTRACT

Introduction: Tripterygium species have been traditionally used in Chinese medicine for treating various conditions. The aim of the study was to construct a drug-modified renal infarction targeting liposome (rTor-LIP) containing Tripterygium in order to improve the therapeutic effect on renal injury. Methods: rTor-LIP was prepared using the extruder method containing Tripterygium solution. The preparation was characterized by transmission electron microscopy, Marvin laser particle size analyzer, and Western blotting. In vitro experiments were conducted to verify the biocompatibility of rTor-LIP, and in vivo experiments were conducted to verify the therapeutic effect of rTor- LIP on renal injury. Results and discussion: The surface of rTor-LIP was regular and oval. In vitro results showed that after co-incubation with rTor-LIP, endothelial cells did not show significant apoptosis, and there were no significant abnormalities in the mitochondrial metabolism. The in vivo results showed that the morphology of endothelial cells in the rTor-LIP group was uniform and the cytoplasmic striations were clear, but the local striations had disappeared. Thus, rTor-LIP nano-targeted liposomes can effectively target hypoxic kidney tissue, providing a new idea for the treatment of renal infarction.

5.
Clin Transl Allergy ; 14(7): e12380, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956945

ABSTRACT

BACKGROUND: Airborne pollen is a crucial risk factor in allergic rhinitis (AR). The severity of AR symptoms can vary based on pollen type and concentration. This study aimed to estimate the association between exposure to different pollen types and AR risk. METHODS: We obtained data from patients admitted to the Beijing Tongren Hospital for AR, and data on pollen concentration, meteorological factors, and fine particulate matter (PM2.5) from 13 districts in Beijing from 2016 to 2019. We used a time-stratified case-crossover study design and calculated odds ratios (ORs) related to the risk of AR associated with a 10 grain/1000 mm2 increase in total pollen concentrations for specific pollen types. A stratified analysis was conducted to assess whether the associations were varied by age and sex. RESULTS: The OR of AR associated with a 10 grain/1000 mm2 increase in the 7-day average pollen concentration was 1.014 (95% CI: 1.014, 1.015), 1.076 (95% CI: 1.070, 1.082), 1.024 (95% CI: 1.023, 1.025), 1.042 (95% CI: 1.039, 1.045), 1.142 (95% CI: 1.137, 1.147), 1.092 (95% CI: 1.088, 1.097), 1.046 (95% CI: 1.035, 1.058), and 1.026 (95% CI: 1.024, 1.028) for total pollen, Ulmus, Cupressaceae, Populus, Fraxinus, Pinus, Betula, and Artemisia, respectively. Both tree pollen (Ulmus, Cupressaceae, Populus, Fraxinus, Betula, and Pinus) and weed pollen (Artemisia, Chenopodium, and Humulus) were correlated with an increased risk of AR. These associations remained consistent across distinct subgroups defined by both age and sex. CONCLUSION: Exposure to pollen from trees and weeds might be associated with an increased risk of AR. This research provides valuable scientific support for both clinical practitioners and patients with AR regarding the hazards of pollen exposure.

7.
Mitochondrial DNA B Resour ; 9(6): 793-796, 2024.
Article in English | MEDLINE | ID: mdl-38895509

ABSTRACT

In this study, the complete mitochondrial genome of Anidiocerus bimaculatus was sequenced and annotated for the first time, which belongs to the subfamily Eurymelinae. The mitogenome of A. bimaculatus was 15,267 bp in length and contained 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and one non-coding control region. In this mitogenome, all the PCGs are initially encoded by ATT, ATA, ATG, or TTG, and terminated by TAA, or single T. The overall base composition of A. bimaculatus is 43.6% adenines, 36.0% thymines, 9.1% guanines, and 11.3% cytosines. ML phylogenetic analyses confirmed that Idiocerini forms a monophyletic clade and the newly sequenced A. bimaculatus clustered within the Idiocerini clade based on 13 protein-coding genes and two rRNA genes.

8.
BMC Genomics ; 25(1): 625, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902611

ABSTRACT

BACKGROUND: Autophagy is a conserved catabolic process in eukaryotes that contributes to cell survival in response to multiple stresses and is important for organism fitness. Extensive research has shown that autophagy plays a pivotal role in both viral infection and replication processes. Despite the increasing research dedicated to autophagy, investigations into shrimp autophagy are relatively scarce. RESULTS: Based on three different methods, a total of 20 members of the ATGs were identified from F. chinensis, all of which contained an autophagy domain. These genes were divided into 18 subfamilies based on their different C-terminal domains, and were found to be located on 16 chromosomes. Quantitative real-time PCR (qRT-PCR) results showed that ATG genes were extensively distributed in all the tested tissues, with the highest expression levels were detected in muscle and eyestalk. To clarify the comprehensive roles of ATG genes upon biotic and abiotic stresses, we examined their expression patterns. The expression levels of multiple ATGs showed an initial increase followed by a decrease, with the highest expression levels observed at 6 h and/or 24 h after WSSV injection. The expression levels of three genes (ATG1, ATG3, and ATG4B) gradually increased until 60 h after injection. Under low-salt conditions, 12 ATG genes were significantly induced, and their transcription abundance peaked at 96 h after treatment. CONCLUSIONS: These results suggested that ATG genes may have significant roles in responding to various environmental stressors. Overall, this study provides a thorough characterization and expression analysis of ATG genes in F. chinensis, laying a strong foundation for further functional studies and promising potential in innate immunity.


Subject(s)
Penaeidae , Stress, Physiological , Animals , Stress, Physiological/genetics , Penaeidae/genetics , Penaeidae/virology , Autophagy/genetics , Gene Expression Profiling , Phylogeny , Autophagy-Related Proteins/genetics , Transcriptome
9.
Talanta ; 278: 126426, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38908135

ABSTRACT

BACKGROUND: Ankylosing spondylitis (AS), Osteoarthritis (OA), and Sjögren's syndrome (SS) are three prevalent autoimmune diseases. If left untreated, which can lead to severe joint damage and greatly limit mobility. Once the disease worsens, patients may face the risk of long-term disability, and in severe cases, even life-threatening consequences. RESULT: In this study, the Raman spectral data of AS, OA, and SS are analyzed to auxiliary disease diagnosis. For the first time, the Euclidean distance(ED) upscaling technique was used for the conversation from one-dimensional(1D) disease spectral data to two-dimensional(2D) spectral images. A dual-attention mechanism network was then constructed to analyze these two-dimensional spectral maps for disease diagnosis. The results demonstrate that the dual-attention mechanism network achieves a diagnostic accuracy of 100 % when analyzing 2D ED spectrograms. Furthermore, a comparison and analysis with s-transforms(ST), short-time fourier transforms(STFT), recurrence maps(RP), markov transform field(MTF), and Gramian angle fields(GAF) highlight the significant advantage of the proposed method, as it significantly shortens the conversion time while supporting disease-assisted diagnosis. Mutual information(MI) was utilized for the first time to validate the 2D Raman spectrograms generated, including ED, ST, STFT, RP, MTF, and GAF spectrograms. This allowed for evaluation of the similarity between the original 1D spectral data and the generated 2D spectrograms. SIGNIFICANT: The results indicate that utilizing ED to transform 1D spectral data into 2D images, coupled with the application of convolutional neural network(CNN) for analyzing 2D ED Raman spectrograms, holds great promise as a valuable tool in assisting disease diagnosis. The research demonstrated that the 2D spectrogram created with ED closely resembles the original 1D spectral data. This indicates that ED effectively captures key features and important information from the original data, providing a strong descript.

10.
Anal Chem ; 96(25): 10274-10282, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38860851

ABSTRACT

Multiple intracellular microRNA (miRNA) detection is essential for disease diagnosis and management. Nonetheless, the real-time detection of multiple intracellular miRNAs has remained challenging. Herein, we have developed an ultrasound (US)-powered nanomotor-based dynamic fluorescent probe for the real-time OFF-ON fluorescent determination of multiple intracellular miRNAs. The new probe relies on the utilization of multicolored quantum dot (QD)-labeled single-stranded DNA (ssDNA)/graphene oxide (GO)-coated US-powered gold nanowire (AuNW) nanomotors. The fluorescence of QDs is quenched due to π-π interactions with the GO. Upon binding to target miRNAs, the QDs-ssDNA is now distant from the AuNWs, resulting in effective OFF-ON QD fluorescence switching. Compared with conventional passive probes, the dynamic fluorescent probe enhances probe-target interactions by using the US-propelled nanomotor, resulting in exceptionally efficient and prompt hybridization. Simultaneous quantitative analysis of miR-10b and miR-21 in vitro can be achieved within 15 min with high sensitivity and specificity. Additionally, multicolor QDs provide strong signal intensity and multiplexed detection, enabling one-step real-time discrimination between cancer cells (A549) and normal cells (L02). The obtained results are in good agreement with those from qRT-PCR. This dynamic fluorescent probe based on a nanomotor and QDs enables rapid "on the move" specific detection of multiple intracellular miRNAs in intact cells, facilitating real-time monitoring of diverse intracellular miRNA expression, and it could pave the way for novel applications of nanomotors in biodetection.


Subject(s)
Fluorescent Dyes , Graphite , MicroRNAs , Quantum Dots , MicroRNAs/analysis , Humans , Fluorescent Dyes/chemistry , Quantum Dots/chemistry , Graphite/chemistry , Gold/chemistry , DNA, Single-Stranded/chemistry , Nanowires/chemistry , Ultrasonic Waves , A549 Cells
11.
Front Public Health ; 12: 1392224, 2024.
Article in English | MEDLINE | ID: mdl-38939568

ABSTRACT

Aim: This study aims to assess the extent of social alienation in patients undergoing peritoneal dialysis and examine how personal mastery and perceived social support mediate the association between emotional intelligence and social alienation in this patient population. Methods: This study adopts a cross-sectional survey design. A total of 192 patients were recruited from a tertiary hospital located in Henan Province, China, using a convenience sampling method. We have developed a structural equation model to investigate the mediating influence of personal mastery and perceived social support on the emotional intelligence and social alienation of patients undergoing Peritoneal dialysis. Results: Peritoneal patients exhibited an social alienation score of 42.01 ± 3.15. Elevated EI levels (coefficient = -0.616, p < 0.001) were significantly correlated with reduced social alienation. The mediation model demonstrated that personal mastery and perceived social support fully mediated the impact of emotional intelligence on social alienation. Conclusion: The social alienation of peritoneal dialysis patients is serious, and healthcare professionals should pay attention to patients' social alienation, improve patients' emotional intelligence through relevant interventions, increase personal mastery and perceived social support, and finally reduce social alienation.


Subject(s)
Emotional Intelligence , Peritoneal Dialysis , Social Support , Humans , Male , Female , Peritoneal Dialysis/psychology , Middle Aged , Cross-Sectional Studies , China , Adult , Surveys and Questionnaires , Aged
12.
ACS Appl Mater Interfaces ; 16(26): 32983-32991, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38898566

ABSTRACT

Chemodynamic therapy (CDT) has received widespread attention as a tumor optical treatment strategy in the field of malignant tumor therapy. Nonmetallic multifunctional nanomaterials as CDT agents, due to their low toxicity, long-lasting effects, and safety characteristics, have promising applications in the integrated diagnosis and treatment of cancer. Here, we modified the supramolecular framework of boron clusters, coupled with a variety of dyes to develop a series of metal-free agent compounds, and demonstrated that these nonmetallic compounds have excellent CDT activities through experiments. Subsequently, the best performing Methylene Blue/[closo-B12H12]2- (MB@B12H12) was used as an example. Through theoretical calculations, electron paramagnetic resonance spectroscopy, and 808 nm light irradiation, we confirmed that MB@B12H12 exhibited photothermal performance and CDT activity further. More importantly, we applied MB@B12H12 to melanoma cells and subcutaneous tumor, demonstrating its effective suppression of melanoma growth in vitro and in vivo through the synergistic effects of photothermal performance and CDT activity. This study emphasizes the generalizability of the coupling of dyes to [closo-B12H12]2- with important clinical translational potential for CDT reagents. Among them, MB@B12H12 may have a brighter future, paving the way for the rapid development of metal-free CDT reagents.


Subject(s)
Antineoplastic Agents , Animals , Mice , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Catalysis , Photothermal Therapy , Cell Line, Tumor , Humans , Boron/chemistry , Cell Survival/drug effects , Methylene Blue/chemistry , Cell Proliferation/drug effects
13.
FASEB J ; 38(13): e23758, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38923594

ABSTRACT

Physiological processes within the human body are regulated in approximately 24-h cycles known as circadian rhythms, serving to adapt to environmental changes. Bone rhythms play pivotal roles in bone development, metabolism, mineralization, and remodeling processes. Bone rhythms exhibit cell specificity, and different cells in bone display various expressions of clock genes. Multiple environmental factors, including light, feeding, exercise, and temperature, affect bone diurnal rhythms through the sympathetic nervous system and various hormones. Disruptions in bone diurnal rhythms contribute to the onset of skeletal disorders such as osteoporosis, osteoarthritis and skeletal hypoplasia. Conversely, these bone diseases can be effectively treated when aimed at the circadian clock in bone cells, including the rhythmic expressions of clock genes and drug targets. In this review, we describe the unique circadian rhythms in physiological activities of various bone cells. Then we summarize the factors synchronizing the diurnal rhythms of bone with the underlying mechanisms. Based on the review, we aim to build an overall understanding of the diurnal rhythms in bone and summarize the new preventive and therapeutic strategies for bone disorders.


Subject(s)
Bone and Bones , Circadian Rhythm , Humans , Circadian Rhythm/physiology , Animals , Bone and Bones/metabolism , Bone and Bones/physiology , Bone Diseases/physiopathology , Bone Diseases/metabolism , Circadian Clocks/physiology
14.
Dalton Trans ; 53(28): 11713-11719, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38922443

ABSTRACT

As the two typical basic binary solid solutions of the relaxor-PbTiO3 family, Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) has been widely investigated, whereas Pb(Ni1/3Nb2/3)O3-PbTiO3 (PNN-PT) has not. Here, 1.5 mol% Sm-doped (1 - x)Pb(Ni1/3Nb2/3)O3-xPbTiO3, (1 - x)PNN-xPT:0.015Sm with x = 0.33-0.39, ceramics have been prepared and the chemical composition-induced evolution of crystal structure, domain, and electrical properties investigated systematically. With increasing PT content, evolution of the rhombohedral-tetragonal structure was observed. A rhombohedral-tetragonal morphotropic phase boundary occurred around x = 0.36-0.37, which showed a peak piezoelectric property with piezoelectric constant d33 = 531 pC N-1 and planar electromechanical coupling factor kp = 0.37 at room temperature. At the same time, the x = 0.36 composition showed improved ferroelectric behavior with remanent polarization Pr = 13.4 µC cm-2 and coercive field Ec = 3.2 kV cm-1. Interestingly, different from its PMN-PT counterpart, there is no temperature-driven phase transition between room temperature and the Curie temperature for (1 - x)PNN-xPT:0.015Sm. These parameters indicated that the PNN-PT system is worthy of more attention and is a promising platform for further development of high-performance piezo/ferroelectric materials.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124671, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38906060

ABSTRACT

Herein, a novel ratiometric strategy for ultra-sensitive detection of o-phenylenediamine (OPD) was proposed based on combinatorial reactions of in-situ fluorogenic reaction and in-situ formation of red fluorescent dithiothreitol-copper nanoparticles (DTT-CuNPs). Here, Cu2+ is used both as an oxidant and as a precursor. Dehydroascorbic acid (DHAA) is formed via redox reaction of AA and Cu2+. Then, DHAA reacts with OPD to yield blue fluorescent quinoxaline (OXD) with emission peak at 434 nm through in-situ fluorogenic reaction. Red emitting DTT-CuNPs with emission peak at 666 nm is instantly generated due to the coordination reaction between DTT and the residual Cu2+ which is not consumed by AA. The fluorescence intensity (FI) of OXD at 434 nm is closely relied on the concentration of OPD, which can be used as a response signal for OPD detection. Meanwhile, FI of DTT-CuNPs at 666 nm has no significant change, which can be used as a reference signal for OPD detection. Thus, the ratio (F434/F666) of the Cu2+/AA/DTT sensing system is successfully employed to quantify OPD, exhibiting a wide linear range from 0.2 µM to 60 µM, with LOD of 0.09 µM.

16.
Cancer Lett ; 598: 217088, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945203

ABSTRACT

The causal link between long terminal repeat (LTR) retrotransposon-derived lncRNAs and hepatocellular carcinoma (HCC) remains elusive and whether these cancer-exclusive lncRNAs contribute to the effectiveness of current HCC therapies is yet to explore. Here, we investigated the activation of LTR retrotransposon-derived lncRNAs in a broad range of liver diseases. We found that LTR retrotransposon-derived lncRNAs are mainly activated in HCC and is correlated with the proliferation status of HCC. Furthermore, we discovered that an LTR retrotransposon-derived lncRNA, LINC01446, exhibits specific expression in HCC. HCC patients with higher LINC01446 expression had shorter overall survival times. In vitro and in vivo assays showed that LINC01446 promoted HCC growth and angiogenesis. Mechanistically, LINC01446 bound to serine/arginine protein kinase 2 (SRPK2) and activated its downstream target, serine/arginine splicing factor 1 (SRSF1). Furthermore, activation of the SRPK2-SRSF1 axis increased the splicing and expression of VEGF isoform A165 (VEGFA165). Notably, inhibiting LINC01446 expression dramatically impaired tumor growth in vivo and resulted in better therapeutic outcomes when combined with antiangiogenic agents. In addition, we found that the transcription factor MESI2 bound to the cryptic MLT2B3 LTR promoter and drove LINC01446 transcription in HCC cells. Taken together, our findings demonstrate that LTR retrotransposon-derived LINC01446 promotes the progression of HCC by activating the SRPK2/SRSF1/VEGFA165 axis and highlight targeting LINC01446 as a potential therapeutic strategy for HCC patients.

17.
Plant Physiol Biochem ; 213: 108792, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851149

ABSTRACT

Tuber flesh pigmentation, conferred by the presence of secondary metabolite anthocyanins, is one of many key agronomic traits for potato tubers. Although several genes of potato anthocyanin biosynthesis have been reported, transcription factors (TFs) contributing to tuber flesh pigmentation are still not fully understood. In this study, transcriptomic profiling of diploid potato accessions with or without tuber flesh pigmentation was conducted and genes of the anthocyanin biosynthesis pathway were found significantly enriched within the 1435 differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) and connectivity analysis pinpointed a subset of 173 genes closely related to the key biosynthetic gene StDFR. Of the eight transcription factors in the subset, group III WRKY StWRKY70, was chosen for showing high connectivity to StDFR and ten other anthocyanin biosynthetic genes and homology to known WRKYs of anthocyanin pathway. The transient activation assay showed StWRKY70 predominantly stimulated the expression of StDFR and StANS as well as the accumulation of anthocyanins by enhancing the function of the MYB transcription factor StAN1. Furthermore, the interaction between StWRKY70 and StAN1 was verified by Y2H and BiFC. Our analysis discovered a new transcriptional activator StWRKY70 which potentially involved in tuber flesh pigmentation, thus may lay the foundation for deciphering how the WRKY-MYB-bHLH-WD40 (WRKY-MBW) complex regulate the accumulation of anthocyanins and provide new strategies to breed for more nutritious potato varieties with enhanced tuber flesh anthocyanins.


Subject(s)
Anthocyanins , Gene Expression Profiling , Gene Expression Regulation, Plant , Pigmentation , Plant Proteins , Plant Tubers , Solanum tuberosum , Transcription Factors , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/genetics , Plant Tubers/metabolism , Pigmentation/genetics , Anthocyanins/metabolism , Anthocyanins/biosynthesis , Anthocyanins/genetics , Transcriptome/genetics
18.
Cell Commun Signal ; 22(1): 339, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898473

ABSTRACT

BACKGROUND: Endocrine resistance driven by sustained activation of androgen receptor (AR) signaling pathway in advanced prostate cancer (PCa) is fatal. Characterization of mechanisms underlying aberrant AR pathway activation to search for potential therapeutic strategy is particularly important. Rac GTPase-activating protein 1 (RACGAP1) is one of the specific GTPase-activating proteins. As a novel tumor proto-oncogene, overexpression of RACGAP1 was related to the occurrence of various tumors. METHODS: Bioinformatics methods were used to analyze the relationship of expression level between RACGAP1 and AR as well as AR pathway activation. qRT-PCR and western blotting assays were performed to assess the expression of AR/AR-V7 and RACGAP1 in PCa cells. Immunoprecipitation and immunofluorescence experiments were conducted to detect the interaction and co-localization between RACGAP1 and AR/AR-V7. Gain- and loss-of-function analyses were conducted to investigate the biological roles of RACGAP1 in PCa cells, using MTS and colony formation assays. In vivo experiments were conducted to evaluate the effect of RACGAP1 inhibition on the tumor growth. RESULTS: RACGAP1 was a gene activated by AR, which was markedly upregulated in PCa patients with CRPC and enzalutamide resistance. AR transcriptionally activated RACGAP1 expression by binding to its promoter region. Reciprocally, nuclear RACGAP1 bound to the N-terminal domain (NTD) of both AR and AR-V7, blocking their interaction with the E3 ubiquitin ligase MDM2. Consequently, this prevented the degradation of AR/AR-V7 in a ubiquitin-proteasome-dependent pathway. Notably, the positive feedback loop between RACGAP1 and AR/AR-V7 contributed to endocrine therapy resistance of CRPC. Combination of enzalutamide and in vivo cholesterol-conjugated RIG-I siRNA drugs targeting RACGAP1 induced potent inhibition of xenograft tumor growth of PCa. CONCLUSION: In summary, our results reveal that reciprocal regulation between RACGAP1 and AR/AR-V7 contributes to the endocrine resistance in PCa. These findings highlight the therapeutic potential of combined RACGAP1 inhibition and enzalutamide in treatment of advanced PCa.


Subject(s)
Drug Resistance, Neoplasm , GTPase-Activating Proteins , Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Animals , Proto-Oncogene Mas , Gene Expression Regulation, Neoplastic/drug effects , Phenylthiohydantoin/pharmacology , Mice, Nude , Nitriles/pharmacology , Mice , Benzamides/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
19.
Mol Neurobiol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856794

ABSTRACT

Post-stroke depression (PSD) is a significant complication in stroke patients, increases long-term mortality, and exaggerates ischemia-induced brain injury. However, the underlying molecular mechanisms and effective therapeutic targets related to PSD have remained elusive. Here, we employed an animal behavioral model of PSD by combining the use of middle cerebral artery occlusion (MCAO) followed by spatial restraint stress to study the molecular underpinnings and potential therapies of PSD. Interestingly, we found that sub-chronic application of gastrodin (Gas), a traditional Chinese medicinal herb Gastrodia elata extraction, relieved depression-related behavioral deficits, increased the impaired expression of synaptic transmission-associated proteins, and restored the altered spine density in hippocampal CA1 of PSD animals. Furthermore, our results indicated that the anti-PSD effect of Gas was dependent on membrane cannabinoid-1 receptor (CB1R) expression. The contents of phosphorated protein kinase A (p-PKA) and phosphorated Ras homolog gene family member A (p(ser188)-RhoA) were decreased in the hippocampus of PSD-mice, which was reversed by Gas treatment, and CB1R depletion caused a diminished efficacy of Gas on p-PKA and p-RhoA expression. In addition, the anti-PSD effect of Gas was partially blocked by PKA inhibition or RhoA activation, indicating that the anti-PSD effect of Gas is associated with the CB1R-mediated PKA/RhoA signaling pathway. Together, our findings revealed that Gas treatment possesses protective effects against the post-stroke depressive-like state; the CB1R-involved PKA/RhoA signaling pathway is critical in mediating Gas's anti-PSD potency, suggesting that Gas application may be beneficial in the prevention and adjunctive treatment of PSD.

20.
Cell Commun Signal ; 22(1): 313, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844957

ABSTRACT

BACKGROUND: Non-small-cell lung cancer (NSCLC) accounts for 80-85% of all lung cancer and is the leading cause of cancer-related deaths globally. Although various treatment strategies have been introduced, the 5-year survival rate of patients with NSCLC is only 20-30%. Thus, it remains necessary to study the pathogenesis of NSCLC and develop new therapeutic drugs. Notably, PYK2 has been implicated in the progression of many tumors, including NSCLC, but its detailed mechanism remains unclear. In this study, we aimed to elucidate the mechanisms through which PYK2 promotes NSCLC progression. METHODS: The mRNA and protein levels of various molecules were measured using qRT-PCR, western blot (WB), and immunohistochemistry (IHC), respectively. We established stable PYK2 knockdown and overexpression cell lines, and CCK-8, EdU, and clonogenic assays; wound healing, transwell migration, and Matrigel invasion assays; and flow cytometry were employed to assess the phenotypes of tumor cells. Protein interactions were evaluated with co-immunoprecipitation (co-IP), immunofluorescence (IF)-based colocalization, and nucleocytoplasmic separation assays. RNA sequencing was performed to explore the transcriptional regulation mediated by PYK2. Secreted VGF levels were examined using ELISA. Dual-luciferase reporter system was used to detect transcriptional regulation site. PF4618433 (PYK2 inhibitor) and Stattic (STAT3 inhibitor) were used for rescue experiments. A public database was mined to analyze the effect of these molecules on NSCLC prognosis. To investigate the role of PYK2 in vivo, mouse xenograft models of lung carcinoma were established and examined. RESULTS: The protein level of PYK2 was higher in human NSCLC tumors than in the adjacent normal tissue, and higher PYK2 expression was associated with poorer prognosis. PYK2 knockdown inhibited the proliferation and motility of tumor cells and caused G1-S arrest and cyclinD1 downregulation in A549 and H460 cells. Meanwhile, PYK2 overexpression had the opposite effect in H1299 cells. The siRNA-induced inhibition of integrins alpha V and beta 1 led to the downregulation of p-PYK2(Tyr402). Activated PYK2 could bind to STAT3 and enhance its phosphorylation at Tyr705, regulating the nuclear accumulation of p-STAT3(Tyr705). This further promoted the expression of VGF, as confirmed by RNA sequencing in a PYK2-overexpressing H1299 cell line and validated by rescue experiments. Two sites in promoter region of VGF gene were confirmed as binding sites of STAT3 by Dual-luciferase assay. Data from the TGCA database showed that VGF was related to the poor prognosis of NSCLC. IHC revealed higher p-PYK2(Tyr402) and VGF expression in lung tumors than in adjacent normal tissues. Moreover, both proteins showed higher levels in advanced TNM stages than earlier ones. A positive linear correlation existed between the IHC score of p-PYK2(Tyr402) and VGF. Knockdown of VGF inhibited tumor progression and reversed the tumor promoting effect of PYK2 overexpression in NSCLC cells. Finally, the mouse model exhibited enhanced tumor growth when PYK2 was overexpressed, while the inhibitors PF4618433 and Stattic could attenuate this effect. CONCLUSIONS: The Integrin αVß1-PYK2-STAT3-VGF axis promotes NSCLC development, and the PYK2 inhibitor PF4618433 and STAT3 inhibitor Stattic can reverse the pro-tumorigenic effect of high PYK2 expression in mouse models. Our findings provide insights into NSCLC progression and could guide potential therapeutic strategies against NSCLC with high PYK2 expression levels.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Disease Progression , Focal Adhesion Kinase 2 , Lung Neoplasms , STAT3 Transcription Factor , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Focal Adhesion Kinase 2/metabolism , Focal Adhesion Kinase 2/genetics , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Animals , Cell Proliferation/genetics , Mice , Cell Movement/genetics , Mice, Nude , Cell Line, Tumor , Signal Transduction/genetics , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL