Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.318
Filter
1.
Article in English | MEDLINE | ID: mdl-39352537

ABSTRACT

5-aminosalicylic acid (5-ASA) is widely used in the treatment of ulcerative colitis (UC), but its anti-inflammatory mechanism is complex and has not been fully understood. DSS model was used to test the effect of 5-ASA. Tight junction and Ki-67 were detected by western blot, immunofluorescence, and immunohistochemistry or qPCR. 16S rRNA gene sequencing of gut microbiota and subsequent bioinformatics and statistical analysis were performed to identify the specific bacteria which were associated with the treatment effect of 5-ASA. GC-MS was performed to test short-chain fatty acids (SCFAs). Antibiotic-treated mice were used to demonstrate the key role of endogenous gut microbiota. Here, we found that 5-ASA alleviated dextran sulfate sodium (DSS)-induced colitis in mice. Moreover, 5-ASA significantly repaired the intestinal barrier. At the molecular level, 5-ASA markedly raised the expression of tight junction proteins including JAM-A and occludin and cell proliferation marker Ki-67 in mice. In addition, bacterial 16S rRNA gene sequencing and bioinformatics analysis showed that 5-ASA significantly modulated the DSS-induced gut bacterial dysbiosis. In detail, it stimulated the growth of protective bacteria belonging to Faecalibaculum and Dubosiella, which were negatively correlated with colitis parameters, and blocked the expansion of pro-inflammatory bacteria such as Escherichia-Shigella and Oscillibacter, which were positively correlated with colitis in mice. Meanwhile, 5-ASA increased the cecal acetate level. Most notably, 5-ASA was no longer able to treat colitis and reverse gut barrier dysfunction in antibiotic-treated mice that lacked endogenous gut microbiota. Our data suggested that the anti-inflammatory activity of 5-ASA required the inherent intestinal flora, and the gut microbiota was a potential and effective target for the treatment of ulcerative colitis.

2.
J Hazard Mater ; 480: 136017, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39362121

ABSTRACT

Considering the unexpected nuclear power waste emission and potential nuclear leakage, the exploration of robust materials for the effective capture and storage of radioactive iodine is of great importance but still remains a challenge. In this work, we report the rational synthesis of functionalized NH2-UiO-66-on-ZIF-67 architecture to enhance the static adsorption and retention of volatile iodine. Such MOF-on-MOF heterostructures was fabricated through seeding ZIF-67 core on the surface of NH2-UiO-66 satellite via a facile polyvinylpyrrolidone (PVP) regulated internal extended growth strategies. NH2-UiO-66-on-ZIF-67 exhibited unique core-satellite structure, which significantly promotes the binding interactions with iodine through synergizing of the N-rich imidazole moieties and surface functionalized amino groups within the porosity channels. As a result, the as fabricated NH2-UiO-66-on-ZIF-67 achieves enhanced mass diffusion and high capture capacity of 3600 mg/g for iodine vapor under static sorption conditions. Moreover, water vapor in humid conditions (relative humidity of 18 %) has almost no effect on the static iodine adsorption performance of the material. This study sheds light on a reliable MOF-on-MOF hybrid strategy for effective radioiodine treatment to ensure the safety nuclear waste management.

3.
Front Neurosci ; 18: 1398913, 2024.
Article in English | MEDLINE | ID: mdl-39371609

ABSTRACT

Introduction: Ischemic stroke is a leading cause of morbidity and mortality in older adults. Therefore, in this study, we sought to understand the interplay between the microbiota, gut, and brain in the context of stroke in older adults. Objective: To determine whether gut microbiota from younger individuals promotes recovery through angiogenesis in both elderly stroke patients and aged stroke mice, we explored the changes in gut microbiota and the correlation between short-chain fatty acids (SCFAs) and angiogenesis in the aged stroke population. Then, we altered the gut microbiome in aged mice by transplanting microbiota from younger donors before inducing experimental stroke to explore the mechanism by which gut microbiota-derived SCFAs promote angiogenesis. Methods: Part I: We conducted a single-center, double-blind trial to compare gut microbiota diversity and SCFA levels in fecal samples from older stroke patients with those from younger stroke patients. Additionally, we measured levels of vascular endothelial growth factor (VEGF) and VEGFC levels in plasma to assess their correlation with SCFA levels. Part II: We performed fecal microbiota transplantation (FMT) 3 days before inducing ischemic stroke in aged male mice (16-18) via distal middle cerebral artery occlusion (dMCAO). The FMT was conducted using gut microbiomes from either young donors (2-3 months) or aged donors (16-18 months). Results: In older stroke patients, gut microbiota diversity was significantly reduced compared to that in younger stroke patients. Furthermore, levels of acetate, a bacterially derived SCFA, were lower and positively correlated with angiogenesis markers (VEGF and VEGF-C). In aged stroke mice, transplantation of young microbiota improved stroke outcomes by promoting angiogenesis, which was facilitated by lymphatic ingrowth into the cortex. This protective effect was linked to gut microbiota-derived acetate, which enhanced lymphangiogenesis by replenishing acetyl coenzyme A. Conclusions: (a) Gut microbiota-derived acetate promotes angiogenesis post-stroke and (b) lymphatic ingrowth into the cerebral cortex was observed in post-dMCAO mice. These findings suggest that selectively promoting SCFA-producing bacteria, particularly acetate-producers, could be a promising therapeutic strategy to reduce functional impairments in older stroke subjects.

4.
mBio ; : e0199424, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373534

ABSTRACT

Gene duplication events happen prevalently during evolution, and the mechanisms governing the loss or retention of duplicated genes are mostly elusive. Our genome scanning analysis revealed that trigger factor (TF), the one and only bacterial ribosome-associated molecular chaperone, is singly copied in virtually every bacterium except for a very few that possess two or more copies. However, even in these exceptions, only one complete TF copy exists, while other homologs lack the N-terminal domain that contains the conserved ribosome binding site (RBS) motif. Consistently, we demonstrated that the overproduction of the N-terminal complete TF proteins is detrimental to the cell, which can be rescued by removing the N-terminal domain. Our findings also indicated that TF overproduction leads to a decrease in protein productivity and profile changes in proteome due to its characteristic ribosome binding and holdase activities. Additionally, these N-terminal deficient TF homologs in bacteria with multiple TF homologs partition the function of TF via subfunctionalization. Our results revealed that TF is subjected to a dosage constraint that originates from its own intrinsic functions, which may drive the evolution and fates of duplicated TFs in bacteria. IMPORTANCE: Gene duplication events presumably occur in tig, which encodes the ribosome-associated molecular chaperone trigger factor (TF). However, TF is singly copied in virtually every bacterium, and these exceptions with multiple TF homologs always retain only one complete copy while other homologs lack the N-terminal domain. Here, we reveal the manner and mechanism underlying the evolution and fates of TF duplicates in bacteria. We discovered that the mutation-to-loss or retention-to-sub/neofunctionalization of TF duplicates is associated with the dosage constraint of N-terminal complete TF. The dosage constraint of TF is attributed to its characteristic ribosome binding and substrate-holding activities, causing a decrease in protein productivity and profile changes in cellular proteome.

5.
Adv Sci (Weinh) ; : e2407055, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373849

ABSTRACT

Direct in situ imaging of nucleic acids on biological samples is advantageous for rapid analysis without DNA extraction. However, traditional nucleic acid amplification in aqueous solutions tends to lose spatial information because of the high mobility of molecules. Similar to a cellular matrix, hydrogels with biomimetic 3D nanoconfined spaces can limit the free diffusion of nucleic acids, thereby allowing for ultrafast in situ enzymatic reactions. In this study, hydrogel-based in situ space-confined interfacial amplification (iSCIA) is developed for direct imaging of single nucleic acid and single pathogen on biological samples without formaldehyde fixation. With a polyethylene glycol hydrogel coating, nucleic acids on the sample are nanoconfined with restricted movement, while in situ amplification can be successfully performed. As a result, the nucleic acids are lighted-up on the large-scale surface in 20 min, with a detection limit as low as 1 copy/10 cm2. Multiplex imaging with a deep learning model is also established to automatically analyze multiple targets. Furthermore, the iSCIA imaging of pathogens on plant leaves and food is successfully used to monitor plant health and food safety. The proposed technique, a rapid and flexible system for in situ imaging, has great potential for food, environmental, and clinical applications.

6.
J Clin Lab Anal ; : e25100, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305165

ABSTRACT

BACKGROUND: The clinical value of procalcitonin (PCT) in infection diagnosis and antibiotic stewardship is still unclear. This study aimed to investigate the association between serum PCT and different clinical conditions as well as other infectious/inflammatory parameters in different septic patients in order to elucidate the value of PCT detection in infection management. METHODS: Chemiluminescence immunoassay was used for serum PCT analysis. Hematology analysis was used for complete blood cell count. Digital automated cell morphology analysis was used for blood cell morphology examination. Blood, urine, and stool cultures were performed according to routine clinical laboratory standard operating procedures. C-reactive protein (CRP) was analyzed by immunoturbidimetry. Erythrocyte sedimentation rate test was performed using natural sedimentation methods. RESULTS: Outpatients, ICU patients, and patients under 2 years of age with respiratory infections had higher serum PCT levels. Septic patients had the highest-serum PCT levels and other infection indexes. PCT levels in the blood, urine, and stool culture-positive patients were significantly higher than in culture-negative patients. The neutrophil granulation and reactive lymphocytes were observed together with the PCT-level increments in different septic patients, and these alterations were lessened after treatment. There was no significant change in monocyte morphology between pre- and posttreatment septic patients. CONCLUSIONS: Serum PCT is associated with neutrophil cytotoxicity and lymphocyte morphology changes in sepsis; thus, the combination of neutrophil and lymphocyte digital cell morphology evaluations with PCT detection may be a useful examination for guiding the clinical management of sepsis.

8.
Water Environ Res ; 96(9): e11111, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39229823

ABSTRACT

Due to the overexploitation of deep groundwater, the largest cone of depression in the world has formed in the North China Plain. This led to severe geological hazards, including land subsidence and ground fissures, and also caused economic losses. The prevention and treatment of subsidence needs to rely on the accurate prediction of subsidence amount. According to the one-dimensional consolidation theory and effective stress principle, combined with stratum structure, groundwater flow, stress distribution, and so forth, the high-pressure consolidation test results of 569.6 m deep borehole soil samples are adopted; with a specific focus on stress and deformation parameters under exploitation of groundwater condition, the soil-water coupling prediction model of groundwater level lowering depth and land subsidence has been established. Verification with measured subsidence data near the study sites demonstrated that the predicted curve is consistent with the measured one and the differences between them are acceptable. The model can be applied in different areas after making adjustment based on different regional stratigraphic structures. Its key advantage lies in the ability to provide land subsidence prediction for areas lacking monitoring data, making it highly valuable for widespread application. PRACTITIONER POINTS: There is a compressible stratum structure; it is the internal factors of land subsidence. The groundwater level decline causes the soil body stress to change. It is land subsidence of the external factors. Based on the one-dimensional consolidation theory and by combining stratigraphic structures, groundwater flow, and stress distribution, a ground settlement prediction model was established.


Subject(s)
Groundwater , Soil , Soil/chemistry , China , Models, Theoretical , Water Movements , Environmental Monitoring
9.
Plant J ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259840

ABSTRACT

Trichomes, which originate from the epidermal cell of aerial organs, provide plants with defense and secretion functions. Although numerous genes have been implicated in trichome development, the molecular mechanisms underlying trichome cell formation in plants remain incompletely understood. Here, we using genome-wide association study (GWAS) across 1037 diverse accessions in upland cotton (Gossypium hirsutum) to identify three loci associated with leaf pubescence (hair) amount, located on chromosome A06 (LPA1), A08 (LPA2) and A11 (LPA3), respectively. GhHD1, a previously characterized candidate gene, was identified on LPA1 and encodes an HD-Zip transcription factor. For LPA2 and LPA3, we identified two candidate genes, GhGIR1 and GhGIR2, both encoding proteins with WD40 and RING domains that act as inhibitors of leaf hair formation. Expression analysis revealed that GhHD1 was predominantly expressed in hairy accessions, whereas GhGIR1 and GhGIR2 were expressed in hairless accessions. Silencing GhHD1 or overexpressing GhGIR1 in hairy accessions induced in a hairless phenotype, whereas silencing GhGIR2 in hairless accessions resulted in a hairy phenotype. We also demonstrated that GhHD1 interact with both GhGIR1 and GhGIR2, and GhGIR1 can interact with GhGIR2. Further investigation indicated that GhHD1 functions as a transcriptional activator, binding to the promoters of the GhGIR1 and GhGIR2 to active their expression, whereas GhGIR1 and GhGIR2 can suppress the transcriptional activation of GhHD1. Our findings shed light on the intricate regulatory network involving GhHD1, GhGIR1 and GhGIR2 in the initiation and development of plant epidermal hairs in cotton.

10.
Clin Lab ; 70(9)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39257112

ABSTRACT

BACKGROUND: This study aimed to explore the genetic basis of a fetus with ultrasound indicating a thickening of the nuchal translucency (NT) and a choroid plexus cyst. METHODS: Fetal amniotic fluid and peripheral blood were collected for a G-banding karyotype analysis and single nucleotide polymorphism array (SNP-array) detection. RESULTS: The chromosome karyotypes of the fetus and its parents were normal. SNP-array showed the fetus had carried 277 kb microdeletion at 14q11.2, which was a new mutation. After the induced abortion, the fetus was diagnosed with macrocephaly. CONCLUSIONS: A prenatal diagnosis of a fetus with 14q11.2 microdeletion-induced intrauterine growth retardation was confirmed, which has provided guidance for the subsequent pregnancy.


Subject(s)
Chromosome Deletion , Polymorphism, Single Nucleotide , Ultrasonography, Prenatal , Humans , Female , Pregnancy , Adult , Chromosomes, Human, Pair 14/genetics , Fetal Growth Retardation/genetics , Fetal Growth Retardation/diagnostic imaging , Fetal Growth Retardation/diagnosis , Karyotyping , Nuchal Translucency Measurement , Fetus/diagnostic imaging , Fetus/abnormalities , Megalencephaly/genetics , Megalencephaly/diagnostic imaging
12.
Int J Mol Sci ; 25(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39273092

ABSTRACT

The utilization of electroporation for delivering CRISPR/Cas9 system components has enabled efficient gene editing in mammalian zygotes, facilitating the development of genome-edited animals. In this study, our research focused on targeting the ACTG1 and MSTN genes in sheep, revealing a threshold phenomenon in electroporation with a voltage tolerance in sheep in vitro fertilization (IVF) zygotes. Various poring voltages near 40 V and pulse durations were examined for electroporating sheep zygotes. The study concluded that stronger electric fields required shorter pulse durations to achieve the optimal conditions for high gene mutation rates and reasonable blastocyst development. This investigation also assessed the quality of Cas9/sgRNA ribonucleoprotein complexes (Cas9 RNPs) and their influence on genome editing efficiency in sheep early embryos. It was highlighted that pre-complexation of Cas9 proteins with single-guide RNA (sgRNA) before electroporation was essential for achieving a high mutation rate. The use of suitable electroporation parameters for sheep IVF zygotes led to significantly high mutation rates and heterozygote ratios. By delivering Cas9 RNPs and single-stranded oligodeoxynucleotides (ssODNs) to zygotes through electroporation, targeting the MSTN (Myostatin) gene, a knock-in efficiency of 26% was achieved. The successful generation of MSTN-modified lambs was demonstrated by delivering Cas9 RNPs into IVF zygotes via electroporation.


Subject(s)
CRISPR-Cas Systems , Electroporation , Fertilization in Vitro , Gene Editing , RNA, Guide, CRISPR-Cas Systems , Ribonucleoproteins , Zygote , Animals , Gene Editing/methods , Electroporation/methods , Zygote/metabolism , Fertilization in Vitro/methods , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , Sheep , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Myostatin/genetics , Female , Animals, Genetically Modified
13.
Cancer Res ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292817

ABSTRACT

Currently, only 20-40% of cancer patients benefit from immune checkpoint inhibitors. Understanding the mechanisms underlying the immunosuppressive tumor microenvironment (TME) and characterizing dynamic changes in the immunological landscape during treatment are critical for improving responsiveness to immunotherapy. Here, we identified JNK signaling in cancer-associated fibroblasts (CAFs) as a regulator of the immunosuppressive tumor microenvironment. Single-cell RNA sequencing of bladder cancer treated with a JNK inhibitor revealed enhanced cytotoxicity and effector functions of CD8+ T cells. In untreated tumors, CAFs interacted frequently with CD8+ T cells and mediated their exhaustion. JNK inhibition abrogated the immunosuppression function of CAFs by downregulating the expression of TSLP, thereby restoring CD8+ T cell cytotoxicity. In addition, blockade of CAF-derived TSLP in combination with anti-PD1 treatment promoted tumor elimination by CD8+ T cells in vivo. Collectively, these results indicate that JNK signaling plays an important immunosuppressive role in the tumor microenvironment by promoting expression of TSLP in CAFs and suggest that inhibiting JNK signaling could be a promising immunotherapeutic strategy for cancer treatment.

14.
J Adv Res ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243942

ABSTRACT

INTRODUCTION: Brain organoids are believed to be able to regenerate impaired neural circuits and reinstate brain functionality. The neuronal activity of organoids is considered a crucial factor for restoring host function after implantation. However, the optimal stage of brain organoid post-transplantation has not yet been established. External electrical signal plays a crucial role in the physiology and development of a majority of human tissues. However, whether electrical input modulates the development of brain organoids, making them ideal transplant donors, is elusive. METHODS: Bioelectricity was input into cortical organoids by electrical stimulation (ES) with a multi-electrode array (MEA) to obtain a better-transplanted candidate with better viability and maturity, realizing structural-functional integration with the host brain. RESULTS: We found that electrical stimulation facilitated the differentiation and maturation of organoids, displaying well-defined cortical plates and robust functional electrophysiology, which was probably mediated via the pathway of calcium-calmodulin (CaM) dependent protein kinase II (CAMK II)-protein kinase A (PKA)-cyclic-AMP response binding protein (pCREB). The ES-pretreated D40 organoids displayed superior cell viability and higher cell maturity, and were selected to transplant into the damaged primary sensory cortex (S1) of host. The enhanced maturation was exhibited within grafts after transplantation, including synapses and complex functional activities. Moreover, structural-functional integration between grafts and host was observed, conducive to strengthening functional connectivity and restoring the function of the host injury. CONCLUSION: Our findings supported that electrical stimulation could promote the development of cortical organoids. ES-pretreated organoids were better-transplanted donors for strengthening connectivity between grafts and host. Our work presented a new physical approach to regulating organoids, potentially providing a novel translational strategy for functional recovery after brain injury. In the future, the development of 3D flexible electrodes is anticipated to overcome the drawbacks of 2D planar MEA, promisingly achieving multimodal stimulation and long-term recordings of brain organoids.

15.
J Ethnopharmacol ; 337(Pt 1): 118807, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39245241

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The dried rattan stem of Tinospora sinensis (Lour.) Merr. is valued for its efficacy of clearing heat and removing toxicity, calming and soothing the nerves. It is widely used in Tibetan medicine for the treatment of rheumatic and aging diseases. Studies have confirmed its anti-inflammatory and ameliorating effects on Alzheimer's disease; however, the anti-neuroinflammation efficacy and mechanism remain unclear. AIM: This study aimed to explore the anti-neuroinflammation efficacy, major effective ingredients, and potential mechanism of extract of Tinosporae sinenisis (TIS). METHODS: UPLC-Q-TOF/MS was used to identify the compounds of TIS and the plasma components of rats after gastric administration of TIS. C57BL/6 J mice were continuously intraperitoneally injected with lipopolysaccharide (LPS) (250 µg/kg) for 14 d to establish a neuroinflammation model. The effects of TIS (4.5 g/kg, 9 g/kg) on the learning and memory abilities in mice with neuroinflammation was evaluated using spontaneous activity, novel object recognition, and Morris water maze tests. Pathological changes in the hippocampus were observed using hematoxylin and eosin staining. Gene and protein levels of inflammatory factors in the brain were detected using qRT-PCR and ELISA kits. Iba-1 levels in the brain were detected using immunofluorescence to assess the degree of microglial activation. Network pharmacology, based on the components absorbed into plasma of TIS, was used to predict potential targets and pathways. Proteomics was used to study the differentially expressed proteins and related pathways in the brain tissue of mice with neuroinflammation. Finally, correlation analysis was performed on the results of network pharmacology and proteomics, and proteins related the anti-neuroinflammatory effect of TIS were detected by western blot. RESULTS: A total of 39 compounds were identified in TIS: genipingentiobioside, isocorydin, reticuline, (-)-argemonine, tinosineside A, tinosinenside A, and costunolide were absorbed into the plasma. After continuous intraperitoneal injection of LPS into C57BL/6 J mice, microglia in the brain tissue were activated and the gene and protein levels of IL-1ß, TNF-α, IL-6, and iNOS were increased in the brain tissue, suggesting that the neuroinflammation model was successfully established. TIS reduced Iba-1 levels and gene expression and protein levels of inflammatory factors in the brain of mice with neuroinflammation. Furthermore, TIS improved the pathological changes in the hippocampus and learning and memory abilities caused by neuroinflammation. Network pharmacology has predicted that TNF, IL-1ß, and IκBKB are closely related to neuroinflammation. Proteomics identified key differentially expressed proteins, including TNF, NF-κB2, NF-κBIA, and TLR4. Toll-like receptor (TLR), NF-κB, and NOD-like receptor (NLR) signaling pathways are involved in neuroinflammation-related pathways. Correlation analysis revealed TLR, TNF and NLR signaling pathways were closely related to the anti-neuroinflammatory effects of TIS. We observed that TIS alleviated neuroinflammation by inhibiting the TLR4/NF-κB/NLRP3 pathway. CONCLUSION: Thirty-nine compounds were identified from TIS, among which seven were absorbed into the plasma as prototype components. TIS alleviated LPS-induced neuroinflammation in mice, and its mechanism was related to inhibition of TLR4/NF-κB/NLRP3 signaling pathway.

16.
Colloids Surf B Biointerfaces ; 245: 114205, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39241634

ABSTRACT

Photothermal therapy (PTT), particularly in the near-infrared-II (NIR-II) range, has attracted widespread attention over the past years. However, the accompanied inflammatory responses can result in undesirable side effects and contribute to treatment ineffectiveness. Herein, we introduced a novel biodegradable nanoplatform (CuS/HMON-PEG) capable of PTT and hydrogen sulfide (H2S) generation, aimed at modulating inflammation for improved cancer treatment outcomes. The embedded ultrasmall copper sulphide (CuS) nanodots (1-2 nm) possessed favorable photoacoustic imaging (PAI) and NIR-II photothermal capabilities, rendering CuS/HMON-PEG an ideal phototheranostic agent. Upon internalization by 4T1 cancer cells, the hollow mesoporous organosilica nanoparticle (HMON) component could react with the overproduced glutathione (GSH) to produce H2S. In addition to the anticipated photothermal tumor ablation and H2S-induced mitochondrial dysfunction, the anti-inflammatory regulation was also been demonstrated by the downregulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1beta (IL-1ß). More importantly, the modulation of inflammation also promoted wound healing mediated by PTT. This work not only presents a H2S-based nanomodulator to boost NIR-II PTT but also provides insights into the construction of novel organic/inorganic hybrid nanosystems.

17.
IEEE Trans Cybern ; PP2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264787

ABSTRACT

Ant colony optimization (ACO) algorithm is widely used in the instant delivery order scheduling because of its distributed computing capability. However, the order delivery efficiency decreases when different logistics statuses are faced. In order to improve the performance of ACO, an adaptive ACO algorithm based on real-time logistics features (AACO-RTLFs) is proposed. First, features are extracted from the event dimension, spatial dimension, and time dimension of the instant delivery to describe the real-time logistics status. Five key factors are further selected from the above three features to assist in problem modeling and ACO designing. Second, an adaptive instant delivery model is built considering the customer's acceptable delivery time. The acceptable time is calculated by emergency order mark and weather conditions in the event dimension feature. Third, an adaptive ACO algorithm is proposed to obtain the instant delivery order schedules. The parameters of the probability equation in ACO are adjusted according to the extracted key factors. Finally, the Gurobi solver in Python is used to perform numerical experiments on the classical datasets to verify the effectiveness of the instant delivery model. The proposed AACO-RTLF algorithm shows its advantages in instant delivery order scheduling when compared to the other state-of-the-art algorithms.

18.
BMC Pediatr ; 24(1): 616, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342170

ABSTRACT

BACKGROUND: With the release of the coronavirus disease 2019 (COVID-19) pandemic in late 2022 in China, the number of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) roared, including neonatal cases. However, there were few studies on neonatal COVID-19, especially multi-center case reports. This study aimed to explore clinical characteristics and short-term outcomes of neonatal COVID-19 in China. METHODS: We reviewed 187 cases of neonatal COVID-19 between December 11, 2022, and January 12, 2023. The diagnosis was assessed by symptoms, laboratory tests, X-ray manifestations, and diagnosis code. Clinical characteristics and outcomes were evaluated. RESULTS: In 187 neonatal cases with COVID-19, 84 (44.9%) had severe SARS-CoV-2 infection. Most patients had confirmed exposure to SARS-CoV-2. Fever and respiratory symptoms were common (75.4% and 71.7%, respectively). Severe patients were more likely to have high alanine transaminase (ALT) (> 40U/L) (11.9% vs. 3.9%) and high N-terminal pro-brain natriuretic peptide (NT-proBNP) (> 2000pg/mL) (38.0% vs. 19.6%), compared with nonsevere ones (P < 0.05). None of the patients received COVID-19-specific medical interventions. A few severe patients received corticosteroids (1.1%), and immunoglobulin (0.5%), respectively. All patients were discharged home after the medical care with a median length of stay (LOS) of four days and none of them met the criteria of multisystem inflammatory syndrome in neonates (MIS-N). CONCLUSIONS: After the release of the epidemic situation of COVID-19 in late 2022 in China, more neonatal cases with severe COVID-19 had high ALT and NT-proBNP level. Few specific medical interventions were given, and the outcome was satisfying.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/diagnosis , Infant, Newborn , Female , Male , China/epidemiology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
19.
J Phys Act Health ; : 1-7, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39348880

ABSTRACT

BACKGROUND: This prospective observation study explored the association between 24-hour movement behaviors and fundamental movement skills (FMS) in Chinese preschoolers during the COVID-19 pandemic. METHODS: Four hundred and eighteen preschoolers (226 males; 4.0 [0.6] y old) from Zhuhai, China, completed the device-based physical activity (PA) and sedentary behavior measures, and sleep duration was reported by parents at baseline (October 2021 to December 2021). FMS was assessed using the Test of Gross Motor Development: Third Edition at 1-year follow-up (October 2022 to December 2022). The compositional analysis and isotemporal substitution were used. RESULTS: Moderate to vigorous PA (MVPA) was positively associated with locomotor skills and ball skills (P < .05), and light physical activity was negatively associated with locomotor skills (P < .05) during the COVID-19 pandemic. FMS improvements were linked to the addition of MVPA at the expense of light physical activity, sedentary behavior, and sleep. The estimated detriments to FMS were larger in magnitude than the estimated benefits of time reallocation from MVPA to light physical activity, sedentary behavior, and sleep. CONCLUSIONS: This study provides evidence about 24-hour movement behaviors and FMS during the COVID-19 pandemic and highlights the importance of participating in MVPA to improve preschoolers' FMS development during the COVID-19 era.

20.
Plants (Basel) ; 13(18)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39339626

ABSTRACT

Tomato fruit ripening is an elaborate genetic trait correlating with significant changes at physiological and biochemical levels. Sugar metabolism plays an important role in this highly orchestrated process and ultimately determines the quality and nutritional value of fruit. However, the mode of molecular regulation is not well understood. Galactinoal-sucrose galactosyltransferase (GSGT), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), can transfer the galactose unit from 1-α-D-galactosyl-myo-inositol to sucrose and yield raffinose, or catalyze the reverse reaction. In the present study, the expression of SlGSGT2 was decreased by Potato Virus X (PVX)-mediated gene silencing, which led to an unripe phenotype in tomato fruit. The physiological and biochemical changes induced by SlGSGT2 silencing suggested that the process of fruit ripening was delayed as well. SlGSGT2 silencing also led to significant changes in gene expression levels associated with ethylene production, pigment accumulation, and ripening-associated transcription factors (TFs). In addition, the interaction between SlGSGT2 and SlSPL-CNR indicated a possible regulatory mechanism via ripening-related TFs. These findings would contribute to illustrating the biological functions of GSGT2 in tomato fruit ripening and quality forming.

SELECTION OF CITATIONS
SEARCH DETAIL