Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Forensic Sci Int Genet ; 72: 103091, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38955053

ABSTRACT

X-linked microhaplotypes (X-MHs) have the potential to be a valuable supplementary tool in complex kinship identification or the resolution of DNA mixtures, because they bring together the distinctive genetic pattern of X chromosomal markers and the benefits of microhaplotypes (MHs). In this study, we used the 1000 Genome database to screen and select 63 X-MHs; 18 MHs were filtered out though a batch sequencing assessment of the DNA samples collected from 112 unrelated Chinese Han individuals. The resulting 45-plex panel performed well in comprehensive assessments including repeatability, sensitivity, species specificity, resistance to PCR inhibitors or degradation, mutation rate, and accuracy in detecting DNA mixture samples. The minimum amount of DNA template that can be tested with this panel is 0.5 ng. Additionally, the alleles of the minor contributor can be accurately detected when the mixture rate is larger than 1:9 in female-male mixture or 1:19 in male-male mixture. Then, we calculated population parameters on each MH based on the allele frequency data obtained from the sequence results of the aforementioned 112 unrelated samples. Combining these parameters on each MH, it can be calculated that TDPm, TDPf, CPET, CPEDFM, CPEDFF and CNCEP3 of the 45-plex system were 1-8.99×10-13, 1-1.62×10-19, 0.9999999995, 0.9999981, 0.9955, 0.9999971 and 0.99940, respectively, indicating that the panel is capable in personal identification and parentage testing. To reveal the unique advantage of X-MHs in the analyses of complex kinship and male DNA mixture, further assessments were made. For complex kinship identification, 22 types of individual pairs with different second-degree kinship were simulated and different types of likelihood ratios (LR) were calculated for each. The results revealed that the panel can achieve accuracy of approximately 70 %∼80 % when dividing each of the three types of second-degree kinships into three or four groups. Theoretically, such sub-division cannot be done by using independent autosomal markers. For male DNA mixture analysis without suspects, the maximum likelihood ratio strategy was derived and employed in the estimation of the number of male contributors (NOMC). Simulations were conducted to verify the efficacy of the 45-plex panel in the field and to compare it with autosomal markers by assuming the 45 MHs as autosomal ones. The results showed that X-MHs can achieve higher accuracy in the estimation of NOMC than autosomal ones when the mixed males were unrelated. The results highlighted the unique value of X-linked MHs in complex kinship and male mixture analyses.

2.
Materials (Basel) ; 17(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893743

ABSTRACT

This study investigates utilizing spherical polystyrene (PS) beads as artificial flaws to improve ultrahigh-performance concrete (UHPC) tensile performance using a uniaxial tensile test and explains the corresponding mechanisms by analyzing the internal material structure of UHPC specimens with X-ray CT scanning. With a hooked steel fiber volume fraction of 2%, three PS bead dosages were employed to study tensile behavior changes in dog-bone UHPC specimens. A 33.4% increase in ultimate tensile strength and 174.8% increase in ultimate tensile strain were recorded after adding PS beads with a volume fraction of 2%. To explain this improvement, X-ray CT scanning was utilized to investigate the post-test internal material structures of the dog-bone specimens. AVIZO software was used to analyze the CT information. The CT results revealed that PS beads could not only serve as the artificial flaws to increase the cracking behavior of the matrix of UHPC but also significantly optimize the fiber orientation. The PS beads could serve as stirrers during the mixing process to distribute fiber more uniformly. The test results indicate a relationship between fiber orientation and UHPC tensile strength.

3.
Mikrochim Acta ; 191(7): 397, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877314

ABSTRACT

A fluorescence biosensor for determination of aflatoxin B1 (AFB1) based on polydiacetylene (PDA) liposomes and exonuclease III (EXO III)-assisted recycling amplification was developed. The AFB1 aptamer partially hybridizes with complementary DNA (cDNA), which is released upon recognition of AFB1 by the aptamer. Subsequently, the cDNA hybridizes with hairpin H to form double-stranded DNA that undergoes digestion by EXO III, resulting in the cyclic release of cDNA and generation of capture DNA for further reaction. The capture DNA then hybridizes with probe modified on PDA liposomes, leading to aggregation of liposomes and subsequent fluorescence production. This strategy exhibited a limit of detection of 0.18 ng/mL within the linear range 1-100 ng/mL with a determination coefficient > 0.99. The recovery ranged from 92.81 to 106.45%, with relative standard deviations (RSD) between 1.73 and 4.26%, for corn, brown rice, peanut butter, and wheat samples. The stability, accuracy, and specificity of the method demonstrated the applicability for real sample analysis.


Subject(s)
Aflatoxin B1 , Biosensing Techniques , Exodeoxyribonucleases , Limit of Detection , Liposomes , Polyacetylene Polymer , Polyacetylene Polymer/chemistry , Liposomes/chemistry , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Biosensing Techniques/methods , Aflatoxin B1/analysis , Aptamers, Nucleotide/chemistry , Nucleic Acid Amplification Techniques/methods , Polyynes/chemistry , Spectrometry, Fluorescence/methods , Zea mays/chemistry , Triticum/chemistry , Oryza/chemistry , Polymers/chemistry , Food Contamination/analysis
4.
J Biomed Res ; : 1-14, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38828848

ABSTRACT

Although the p21-activated kinase 2 (PAK2) is an essential serine/threonine protein kinase, its role in lung squamous cell carcinoma (LUSC) progression has yet to be fully understood. We analyzed PAK2 mRNA levels and DNA copy numbers as well as protein levels by quantitative real-time PCR and immunohistochemical staining, respectively, in human LUSC tissues and adjacent normal tissues. Then, we used colony formation assays, cell counting kit-8 assays, matrigel invasion assays, wound healing assays and xenograft models in nude mice to investigate the functions of PAK2 in LUSC progression. We demonstrated that the mRNA levels, DNA copy numbers, and protein levels of PAK2 were up-regulated in human LUSC tissues than in adjacent normal tissues. In addition, a higher PAK2 expression was correlated with a poorer prognosis in LUSC patients. In the in vitro study, we found that PAK2 promoted cell growth, migration, invasion, EMT process, and cell morphology regulation in LUSC cells. Furthermore, PAK2 enhanced tumor cell proliferation, migration, and invasion by regulating actin dynamics through the LIMK1/cofilin signaling. Our findings implicated that the PAK2/LIMK1/cofilin signaling pathway is likely a potential clinical marker and therapeutic target for LUSC.

5.
Pharmacol Res ; 205: 107234, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815882

ABSTRACT

After the initial androgen deprivation therapy (ADT), part of the prostate cancer may continuously deteriorate into castration-resistant prostate cancer (CRPC). The majority of patients suffer from the localized illness at primary diagnosis that could rapidly assault other organs. This disease stage is referred as metastatic castration-resistant prostate cancer (mCRPC). Surgery and radiation are still the treatment of CRPC, but have some adverse effects such as urinary symptoms and sexual dysfunction. Hormonal castration therapy interfering androgen receptor (AR) signaling pathway is indispensable for most advanced prostate cancer patients, and the first- and second-generation of novel AR inhibitors could effectively cure hormone sensitive prostate cancer (HSPC). However, the resistance to these chemical agents is inevitable, so many of patients may experience relapses. The resistance to AR inhibitor mainly involves AR mutation, splice variant formation and amplification, which indicates the important role in CRPC. Proteolysis-targeting chimera (PROTAC), a potent technique to degrade targeted protein, has recently undergone extensive development as a biological tool and therapeutic drug. This technique has the potential to become the next generation of antitumor therapeutics as it could overcome the shortcomings of conventional small molecule inhibitors. In this review, we summarize the molecular mechanisms on PROTACs targeting AR signaling for CRPC, hoping to provide insights into drug development and clinical medication.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Proteolysis , Receptors, Androgen , Signal Transduction , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Male , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Animals , Proteolysis/drug effects , Androgen Receptor Antagonists/therapeutic use , Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Proteolysis Targeting Chimera
6.
Heliyon ; 10(9): e30015, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707411

ABSTRACT

Here, we presented 6 patients who were admitted to our institution and diagnosed as myasthenia gravis (MG) with tongue muscle atrophy. All these 6 patients developed symptoms of bulbar muscle weakness in acetylcholine receptor antibodies positive MG (AChR-MG) (3/6), muscle-specific receptor tyrosine kinase antibodies positive MG (MuSK-MG) (1/6), and sero-negative MG (2/6). Most of patients had "triple-furrowed" tongue except for patient 2 with irregular atrophy of tongue muscle. Tongue muscle atrophy occurs in patients with MuSK-MG, AChR-MG, and sero-negative MG. Atrophied tongue muscles of five patients with MG were reversible after immunotherapy.

7.
Sci Adv ; 10(14): eadn3329, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578999

ABSTRACT

Characterizing the relative onset time, strength, and duration of molecular signals is critical for understanding the operation of signal transduction and genetic regulatory networks. However, detecting multiple such molecules as they are produced and then quickly consumed is challenging. A MER can encode information about transient molecular events as stable DNA sequences and are amenable to downstream sequencing or other analysis. Here, we report the development of a de novo molecular event recorder that processes information using a strand displacement reaction network and encodes the information using the primer exchange reaction, which can be decoded and quantified by DNA sequencing. The event recorder was able to classify the order at which different molecular signals appeared in time with 88% accuracy, the concentrations with 100% accuracy, and the duration with 75% accuracy. This simultaneous and highly programmable multiparameter recording could enable the large-scale deciphering of molecular events such as within dynamic reaction environments, living cells, or tissues.


Subject(s)
Gene Regulatory Networks , Recombination, Genetic , DNA/genetics
8.
J Ethnopharmacol ; 330: 118152, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38614260

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xinyang tablet (XYT) has been used for heart failure (HF) for over twenty years in clinical practice, but the underlying molecular mechanism remains poorly understood. AIMS OF THE STUDY: In the present study, we aimed to explore the protective effects of XYT in HF in vivo and in vitro. MATERIALS AND METHODS: Transverse aortic constriction was performed in vivo to establish a mouse model of cardiac pressure overload. Echocardiography, tissue staining, and real-time quantitative PCR (qPCR) were examined to evaluate the protective effects of XYT on cardiac function and structure. Adenosine 5'-triphosphate production, reactive oxygen species staining, and measurement of malondialdehyde and superoxide dismutase was used to detect mitochondrial damage. Mitochondrial ultrastructure was observed by transmission electron microscope. Immunofluorescence staining, qPCR, and Western blotting were performed to evaluate the effect of XYT on the mitochondrial unfolded protein response and mitophagy, and to identify its potential pharmacological mechanism. In vitro, HL-1 cells and neonatal mouse cardiomyocytes were stimulated with Angiotensin II to establish the cell model. Western blotting, qPCR, immunofluorescence staining, and flow cytometry were utilized to determine the effects of XYT on cardiomyocytes. HL-1 cells overexpressing receptor-interacting serum/three-protein kinase 3 (RIPK3) were generated by transfection of RIPK3-overexpressing lentiviral vectors. Cells were then co-treated with XYT to determine the molecular mechanisms. RESULTS: In the present study, XYT was found to exerta protective effect on cardiac function and structure in the pressure overload mice. And it was also found XYT reduced mitochondrial damage by enhancing mitochondrial unfolded protein response and restoring mitophagy. Further studies showed that XYT achieved its cardioprotective role through regulating the RIPK3/FUN14 domain containing 1 (FUNDC1) signaling. Moreover, the overexpression of RIPK3 successfully reversed the XYT-induced protective effects and significantly attenuated the positive effects on the mitochondrial unfolded protein response and mitophagy. CONCLUSIONS: Our findings indicated that XYT prevented pressure overload-induced HF through regulating the RIPK3/FUNDC1-mediated mitochondrial unfolded protein response and mitophagy. The information gained from this study provides a potential strategy for attenuating mitochondrial damage in the context of pressure overload-induced heart failure using XYT.


Subject(s)
Disease Models, Animal , Drugs, Chinese Herbal , Mice, Inbred C57BL , Mitophagy , Myocytes, Cardiac , Unfolded Protein Response , Animals , Mitophagy/drug effects , Unfolded Protein Response/drug effects , Mice , Male , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Heart Failure/physiopathology , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Tablets , Cell Line , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
9.
Nat Commun ; 15(1): 3003, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589368

ABSTRACT

Inflammatory depression is a treatment-resistant subtype of depression. A causal role of the gut microbiota as a source of low-grade inflammation remains unclear. Here, as part of an observational trial, we first analyze the gut microbiota composition in the stool, inflammatory factors and short-chain fatty acids (SCFAs) in plasma, and inflammatory and permeability markers in the intestinal mucosa of patients with inflammatory depression (ChiCTR1900025175). Gut microbiota of patients with inflammatory depression exhibits higher Bacteroides and lower Clostridium, with an increase in SCFA-producing species with abnormal butanoate metabolism. We then perform fecal microbiota transplantation (FMT) and probiotic supplementation in animal experiments to determine the causal role of the gut microbiota in inflammatory depression. After FMT, the gut microbiota of the inflammatory depression group shows increased peripheral and central inflammatory factors and intestinal mucosal permeability in recipient mice with depressive and anxiety-like behaviors. Clostridium butyricum administration normalizes the gut microbiota, decreases inflammatory factors, and displays antidepressant-like effects in a mouse model of inflammatory depression. These findings suggest that inflammatory processes derived from the gut microbiota can be involved in neuroinflammation of inflammatory depression.


Subject(s)
Gastrointestinal Microbiome , Animals , Humans , Mice , Depression/therapy , Fatty Acids, Volatile/metabolism , Fecal Microbiota Transplantation , Feces
10.
SAGE Open Med Case Rep ; 12: 2050313X241240097, 2024.
Article in English | MEDLINE | ID: mdl-38559411

ABSTRACT

Idiopathic multicentric Castleman disease is a rare and complex disease characterized by systemic inflammation, lymphadenopathy, and multiorgan involvement. This case report presents a 66-year-old Chinese man with idiopathic multicenter Castleman disease without significant lymphadenopathy and challenging diagnosis. Patients present with fever, fatigue, loss of appetite, weight loss, and acute kidney injury. Initially, a urinary tract infection was suspected, but despite anti-infective treatment, the patient's symptoms persisted. Lymph node biopsy, although there is no significant lymphadenopathy, confirms idiopathic multicenter Castleman disease. Treatment includes thalidomide, cyclophosphamide, and dexamethasone, as well as supportive measures and infection control. After 8 months of follow-up, the patient's clinical symptoms, inflammatory markers and renal function were significantly improved, and there was no symptomatic recurrence. This case underscores the importance of considering idiopathic multicenter Castleman's disease in patients with persistent fever and systemic inflammation, even in the absence of significant lymphadenopathy. Early identification and accurate diagnosis of idiopathic multicenter Castleman's disease can lead to the initiation of targeted therapy strategies that ultimately yield favorable outcomes.

11.
J Phys Chem Lett ; 15(16): 4237-4243, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38602563

ABSTRACT

Reaction dynamics on the ground electronic state might be significantly influenced by conical intersections (CIs) via the geometric phase (GP), as demonstrated for activated reactions (i.e., the H + H2 exchange reaction). However, there have been few investigations of GP effects in complex-forming reactions. Here, we report a full quantum dynamical study of an important reaction in combustion (H + O2 → OH + O), which serves as a proving ground for studying GP effects therein. The results reveal significant differences in reaction probabilities and differential cross sections (DCSs) obtained with and without GP, underscoring its strong impact. However, the GP effects are less pronounced for the reaction integral cross sections, apparently due to the integral of the DCS over the scattering angle. Further analysis indicated that the cross section has roughly the same contributions from the two topologically distinct paths around the CI, namely, the direct and looping paths.

12.
Front Plant Sci ; 15: 1352379, 2024.
Article in English | MEDLINE | ID: mdl-38425800

ABSTRACT

Soybean [Glycine max(L.)Merr.] is a leading oil-bearing crop and cultivated globally over a vast scale. The agricultural landscape in China faces a formidable challenge with drought significantly impacting soybean production. In this study, we treated a natural population of 264 Chinese soybean accessions using 15% PEG-6000 and used GR, GE, GI, RGR, RGE, RGI and ASFV as evaluation index. Using the ASFV, we screened 17 strong drought-tolerant soybean germplasm in the germination stage. Leveraging 2,597,425 high-density SNP markers, we conducted Genome-Wide Association Studies (GWAS) and identified 92 SNPs and 9 candidate genes significantly associated with drought tolerance. Furthermore, we developed two KASP markers for S14_5147797 and S18_53902767, which closely linked to drought tolerance. This research not only enriches the pool of soybean germplasm resources but also establishes a robust foundation for the molecular breeding of drought tolerance soybean varieties.

13.
Small ; 20(27): e2310928, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38308134

ABSTRACT

Aerobically autoxidized self-charging concept has drawn significant attraction due to its promising chemical charge features without external power supply. Particularly, heteroatom-doped carbon materials with abundant oxidizable sites and good conductivity are expected to be ideal cathode materials. However, there is no well-defined aerobically autoxidized self-charging concept based on heteroatom-doped carbon materials, significantly hindering the design of related carbon cathodes. An aerobically autoxidized self-chargeable concept derived from synergistic effect of pyrrolic nitrogen and catechol configuration in carbon cathode using model single pyrrolic nitrogen and oxygen (N-5, O) co-doped carbon and O-enriched carbon is proposed. First, self-charging of N-5, O co-doped carbon cathode can be achieved by aerobic oxidation of pyrrolic nitrogen and catechol to oxidized pyrrolic nitrogen and ortho-quinone configurations, respectively. Second, introducing a single pyrrolic nitrogen configuration enhanced acidic wettability of N-5, O co-doped carbon facilitating air self-charge/galvanic discharge involving proton removal/introduction. Third, synergistic effect of pyrrolic nitrogen and hydroxyl species with the strong electron-donating ability to conjugated carbon-based backbone endows N-5, O co-doped carbon with a higher highest occupied molecular orbital (HOMO) energy level more susceptible to oxidation charging. The assembled Cu/Carbon batteries can drive a timer after every air-charging run. This promising aerobically autoxidized self-charging concept can inspire exploring high-efficiency self-charging devices.

14.
J Clin Pharmacol ; 64(6): 737-743, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38381330

ABSTRACT

Perampanel (PER) is a new type of antiseizure medication used for partial or generalized seizures. However, the plasma concentration shows obvious individual variability in children. The present study aims to ascertain the effect of age, comedications, and cytochrome P450 (CYP) 3A4/5 polymorphisms on PER exposure in Chinese pediatric patients with epilepsy. Clinical data were retrospectively collected in a tertiary children's hospital medical records system from January 2021 to December 2022. The influence factors on the daily dose, plasma concentration, and concentration-to-dose ratio (CDR) of PER were investigated. A total of 135 pediatric patients with 178 blood samples were involved. With a median daily dose of 4.0 mg (interquartile range, 3.0-5.0 mg), the median plasma concentration was 409.4 ng/mL (interquartile range, 251.7-639.4 ng/mL). The CDR in patients aged less than 4 years was significantly decreased by 48.0% and 39.1% compared with those aged 4-11 years and 12 years or older, respectively. Enzyme inducers significantly decreased the CDR of PER by 34.5%, while valproic acid showed an increase of 71.7%. In addition, genotype CYP3A5*3/*3 carriers presented a significant increase of 21.5% compared to the CYP3A5*1/*3 expresser. No correlations were observed between the CDR and CYP3A4∗1G polymorphism. PER showed high variations in individual plasma concentrations. Age younger than 4 years, comedication with enzyme inducers or valproic acid, and possession of the CYP3A5*3 genotype potentially predicted PER exposure in pediatric patients with epilepsy.


Subject(s)
Anticonvulsants , Cytochrome P-450 CYP3A , Epilepsy , Nitriles , Pyridones , Humans , Cytochrome P-450 CYP3A/genetics , Child , Child, Preschool , Female , Male , Epilepsy/drug therapy , Epilepsy/genetics , Anticonvulsants/pharmacokinetics , Anticonvulsants/therapeutic use , Anticonvulsants/blood , Anticonvulsants/administration & dosage , Pyridones/pharmacokinetics , Pyridones/blood , Pyridones/therapeutic use , Nitriles/therapeutic use , Retrospective Studies , Age Factors , Adolescent , Asian People/genetics , Drug Interactions , China , Polymorphism, Genetic , Valproic Acid/therapeutic use , Valproic Acid/pharmacokinetics , Valproic Acid/blood , Drug Therapy, Combination , Polymorphism, Single Nucleotide , Infant , East Asian People
15.
Front Plant Sci ; 15: 1352465, 2024.
Article in English | MEDLINE | ID: mdl-38384759

ABSTRACT

Salt stress poses a significant challenge to crop productivity, and understanding the genetic basis of salt tolerance is paramount for breeding resilient soybean varieties. In this study, a soybean natural population was evaluated for salt tolerance during the germination stage, focusing on key germination traits, including germination rate (GR), germination energy (GE), and germination index (GI). It was seen that under salt stress, obvious inhibitions were found on these traits, with GR, GE, and GI diminishing by 32% to 54% when compared to normal conditions. These traits displayed a coefficient of variation (31.81% to 50.6%) and a substantial generalized heritability (63.87% to 86.48%). Through GWAS, a total of 1841 significant single-nucleotide polymorphisms (SNPs) were identified to be associated with these traits, distributed across chromosome 2, 5, 6, and 20. Leveraging these significant association loci, 12 candidate genes were identified to be associated with essential functions in coordinating cellular responses, regulating osmotic stress, mitigating oxidative stress, clearing reactive oxygen species (ROS), and facilitating heavy metal ion transport - all of which are pivotal for plant development and stress tolerance. To validate the candidate genes, quantitative real-time polymerase chain reaction (qRT-PCR) analysis was conducted, revealing three highly expressed genes (Glyma.02G067700, Glyma.02G068900, and Glyma.02G070000) that play pivotal roles in plant growth, development, and osmoregulation. In addition, based on these SNPs related with salt tolerance, KASP (Kompetitive Allele-Specific PCR)markers were successfully designed to genotype soybean accessions. These findings provide insight into the genetic base of soybean salt tolerance and candidate genes for enhancing soybean breeding programs in this study.

16.
J Clin Nurs ; 33(5): 1626-1646, 2024 May.
Article in English | MEDLINE | ID: mdl-38323676

ABSTRACT

BACKGROUND: Caregivers of children with chronic diseases suffer from great parenting pressure, which directly affects the treatment and rehabilitation of children, reduces the quality of life of caregivers and damages family functioning. Existing reviews have not systematically summarized and evaluated interventions for parenting stress in caregivers of children with chronic diseases. DATA SOURCES: Embase, PubMed, Web of Science, OVID, CNKI, CBM, Wan Fang and Cochrane Library were searched for eligible reviews in November 2021 and October 2022. METHODS: Two reviewers independently screened titles and abstracts, reviewed full texts of articles for eligibility, and appraised the quality of reviews using JBI. The quality of the evidence was assessed using GRADE. Findings are reported in accordance with PRISMA checklist. Narrative summaries grouped findings by intervention types. RESULTS: Out of 2632 records, we included 21 systematic reviews for a synthesis. Interventions for parenting stress in children with chronic diseases were divided into seven categories. Cognitive behavioural interventions, psychosocial interventions, child behavioural and/or developmental parent interventions and synthesized interventions have shown high-level evidence in reducing parenting stress for caregivers of children with chronic diseases. Furthermore, outcome measures and intervention protocols were highly heterogeneous across interventions. CONCLUSIONS: This umbrella review suggest that reducing the parenting stress of caregivers of children with chronic diseases can directly target caregivers' parenting stress through cognitive behavioural interventions/psychosocial interventions and/or provide guidance to parents on the behavioural and developmental problems of children with chronic diseases. A more standardized approach to outcome measures is essential to assess efficacy and compare interventions across studies. RELEVANCE TO CLINICAL PRACTICE: The findings provide information and evidence for reducing parenting stress among caregivers of children with chronic diseases to guide the development of comprehensive intervention strategies. PATIENT OR PUBLIC CONTRIBUTION: Patient or public contribution does not apply to this study.


Subject(s)
Caregivers , Parenting , Child , Humans , Parenting/psychology , Quality of Life , Parents/psychology , Chronic Disease
17.
J Colloid Interface Sci ; 662: 883-892, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38382372

ABSTRACT

Nitrogen-doped carbons with promising electrochemical performance exhibit a strong dependence on nitrogen configuration. Therefore, accurate control of nitrogen configurations is crucial to clarify their influence. Unfortunately, there is still no well-defined conversion route to finely control nitrogen configuration. Herein, we proposed the concept of 100% conversion from pyridinic to pyrrolic nitrogen in carbon materials through low-temperature pyrolysis and alkali activation of hydroxypyridine-3-halophenol-formaldehyde resins. Their dehalogenation pyrolysis promotes formation of carbon intermediates and conversion of tautomeric pyridone and hydroxypyridine into pyrrolic and pyridinic nitrogen through eliminating carbonyl and hydroxyl functionalities, respectively. Continuous thermal alkali activation introduces hydroxyl groups into carbon materials, converting pyridinic species to intermediate hydroxypyridine and pyridone; subsequently, these configurations transform to pyridinic and pyrrolic nitrogen, respectively, and finally, an excessive alkali ensures 100% conversion from pyridinic to pyrrolic nitrogen. NaOH activation for pyrrolic and pyridinic nitrogen co-doped carbon and KOH activation for model nitrogen-containing compounds including acridine, phenanthridine, and acridone further confirm that alkali activation plays an indispensable role in 100% conversion from pyridinic to pyrrolic units through the tautomeric hydroxypyridine and pyridone intermediates. Low-temperature alkali-induced controllable conversion of nitrogen configuration in carbon materials is suitable modulating nitrogen configurations for almost all nitrogen-doped carbon materials in electrochemical applications.

18.
Nucleic Acids Res ; 52(5): 2698-2710, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38266156

ABSTRACT

An expansion of AAGGG pentanucleotide repeats in the replication factor C subunit 1 (RFC1) gene is the genetic cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS), and it also links to several other neurodegenerative diseases including the Parkinson's disease. However, the pathogenic mechanism of RFC1 AAGGG repeat expansion remains enigmatic. Here, we report that the pathogenic RFC1 AAGGG repeats form DNA and RNA parallel G-quadruplex (G4) structures that play a role in impairing biological processes. We determine the first high-resolution nuclear magnetic resonance (NMR) structure of a bimolecular parallel G4 formed by d(AAGGG)2AA and reveal how AAGGG repeats fold into a higher-order structure composed of three G-tetrad layers, and further demonstrate the formation of intramolecular G4s in longer DNA and RNA repeats. The pathogenic AAGGG repeats, but not the nonpathogenic AAAAG repeats, form G4 structures to stall DNA replication and reduce gene expression via impairing the translation process in a repeat-length-dependent manner. Our results provide an unprecedented structural basis for understanding the pathogenic mechanism of AAGGG repeat expansion associated with CANVAS. In addition, the high-resolution structures resolved in this study will facilitate rational design of small-molecule ligands and helicases targeting G4s formed by AAGGG repeats for therapeutic interventions.


Subject(s)
Cerebellar Ataxia , DNA , Microsatellite Repeats , Peripheral Nervous System Diseases , Vestibular Diseases , Replication Protein C/genetics , DNA/genetics , DNA/chemistry , RNA , Gene Expression
19.
Phytother Res ; 38(3): 1345-1357, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38198804

ABSTRACT

Cardiorenal syndrome type 4 (CRS4), a progressive deterioration of cardiac function secondary to chronic kidney disease (CKD), is a leading cause of death in patients with CKD. In this study, we aimed to investigate the cardioprotective effect of emodin on CRS4. C57BL/6 mice with 5/6 nephrectomy and HL-1 cells stimulated with 5% CKD mouse serum were used for in vivo and in vitro experiments. To assess the cardioprotective potential of emodin, we employed a comprehensive array of methodologies, including echocardiography, tissue staining, immunofluorescence staining, biochemical detection, flow cytometry, real-time quantitative PCR, and western blot analysis. Our results showed that emodin exerted protective effects on the function and structure of the residual kidney. Emodin also reduced pathologic changes in the cardiac morphology and function of these mice. These effects may have been related to emodin-mediated suppression of reactive oxygen species production, reduction of mitochondrial oxidative damage, and increase of oxidative metabolism via restoration of PGC1α expression and that of its target genes. In contrast, inhibition of PGC1α expression significantly reversed emodin-mediated cardioprotection in vivo. In conclusion, emodin protects the heart from 5/6 nephrectomy-induced mitochondrial damage via activation of the PGC1α signaling. The findings obtained in our study can be used to develop effective therapeutic strategies for patients with CRS4.


Subject(s)
Cardio-Renal Syndrome , Emodin , Renal Insufficiency, Chronic , Humans , Mice , Animals , Emodin/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Apoptosis , Mice, Inbred C57BL
20.
Neurochem Res ; 49(1): 129-141, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37642893

ABSTRACT

Periventricular leukomalacia (PVL), a predominant form of brain injury in preterm survivors, is characterized by hypomyelination and microgliosis and is also the major cause of long-term neurobehavioral abnormalities in premature infants. Receptor-interacting protein kinase 1 (RIPK1) plays a pivotal role in mediating cell death and inflammatory signaling cascade. However, very little is known about the potential effect of RIPK1 in PVL and the underlying mechanism. Herein, we found that the expression level of RIPK1 was drastically increased in the brain of PVL neonatal mice models, and treatment of PVL neonatal mice with Necrostatin-1s (Nec-1s), an inhibitor of RIPK1, greatly ameliorated cerebral ischemic injury, exhibiting an increase of body weights, reduction of cerebral infarct size, neuronal loss, and occurrence of necrosis-like cells, and significantly improved the long-term abnormal neurobehaviors of PVL. In addition, Nec-1s significantly suppressed hypomyelination and promoted the differentiation of oligodendrocyte precursor cells (OPCs), as demonstrated by the increased expression levels of MBP and Olig2, the decreased expression level of GPR17, a significant increase in the number of CC-1-positive cells, and suppression of myelin ultrastructure impairment. Moreover, the mechanism of neuroprotective effects of Nec-1s against PVL is closely associated with its suppression of the RIPK1-mediated necrosis signaling molecules, RIPK1, PIPK3, and MLKL. More importantly, inhibition of RIPK1 could reduce microglial inflammatory injury by triggering the M1 to M2 microglial phenotype, appreciably decreasing the levels of M1 marker CD86 and increasing the levels of M2 markers Arg1 or CD206 in PVL mice. Taken together, inhibition of RIPK1 markedly ameliorates the brain injury and long-term neurobehavioral abnormalities of PVL mice through the reduction of neural cell necroptosis and reversing neuroinflammation.


Subject(s)
Brain Injuries , Leukomalacia, Periventricular , Humans , Infant, Newborn , Infant , Mice , Animals , Leukomalacia, Periventricular/drug therapy , Leukomalacia, Periventricular/metabolism , Animals, Newborn , Necroptosis , Necrosis , Inflammation/drug therapy , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, G-Protein-Coupled/metabolism , Nerve Tissue Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...