Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.559
1.
Br J Nutr ; : 1-30, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38826087

The epidemiological and burden characteristics of nutritional deficiencies (NDs) have been evolving, and it is crucial to identify geographical disparities and emerging trends. This study aimed to analyze the global, regional, and national trends in the burden of NDs over the past 30 years. Data were obtained from the Global Burden of Disease (GBD) 2019 database for the period 1990-2019. The study examined the incidence rates and disability-adjusted life years (DALYs) of NDs at various levels. Globally, the incidence rate of NDs decreased from 2226.2 per 100,000 in 2019 to 2096.3 per 100,000 in the same year, indicating a decline of 5.8%. The average annual percentage change (AAPC) was -0.21 (-0.31 to -0.11). Similarly, DALYs, prevalence, and mortality rates of NDs exhibited significant declines (AAPC = -3.21 [-3.45 to -2.96], AAPC = -0.53 [-0.55 to -0.51], and AAPC = -4.97 [-5.75 to -4.19], respectively). The incidence rate of NDs varied based on age group, gender, cause, and geographical area. Moreover, a negative association was observed between incidence and the sociodemographic index. At the regional level, the South Asia and Sub-Saharan Africa regions had the highest incidence rates of NDs. In conclusion, the global incidence rate of NDs showed a mixed pattern, while the DALY rate consistently declined. Additionally, prevalence and mortality rates of NDs decreased between 1990 and 2019.

2.
Metab Brain Dis ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38833094

Apoptosis is the crucial pathological mechanism following cerebral ischemic injury. Our previous studies demonstrated that clonidine, one agonist of alpha2-adrenergic receptor (α2-AR), could attenuate cerebral ischemic injury in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). However, it's unclear whether clonidine exerts neuroprotective effects by regulating neuronal apoptosis. In this study, we elucidated whether clonidine can exert anti-apoptotic effects in cerebral ischemic injury, and further explored the possible mechanisms. Neurological deficit score was measured to evaluate the neurological function. TTC staining was used for the measurement of brain infarct size. Hematoxylin-Eosin (HE) staining was applied to examine the cell morphology. TUNEL and DAPI fluorescent staining methods were used to analyze the cell apoptosis in brain tissue. Fluorescence quantitative real-time PCR was performed to assess the gene expression of Caspase-3 and P53. Western blotting assay was applied to detect the protein expression of Caspase-3 and P53. The results showed that clonidine improved neurological function, reduced brain infarct size, alleviated neuronal damage, and reduced the ratio of cell apoptosis in the brain with MCAO/R injury. moreover, clonidine down-regulated the gene and protein expression of Caspase-3 and P53 which were over-expressed after MCAO/R injury. Whereas, yohimbine (one selective α2-AR antagonist) mitigated the anti-apoptosis effects of clonidine, accompanied by reversed gene and protein expression changes. The results indicated that clonidine attenuated cerebral MCAO/R injury via suppressing neuronal apoptosis, which may be mediated, at least in part, by activating α2-AR.

3.
J Colloid Interface Sci ; 671: 680-691, 2024 May 28.
Article En | MEDLINE | ID: mdl-38823109

Integrating photocatalytic oxidation for pollutant removal with hydrogen production via photocatalysis presents a promising approach for sustainable water purification and renewable energy generation, circumventing the sluggish multi-electron transfer inherent in photocatalytic water oxidation. This study introduces novel zero-/one-dimensional (0D/1D) CuWO4/Mn0.3Cd0.7S step-scheme (S-scheme) heterojunctions that exhibit exceptional bifunctional capabilities in photocatalytic degradation and hydrogen production under full-spectrum illumination. The degradation efficiency for tetracycline (TC) using 5 %-CuWO4/Mn0.3Cd0.7S reaches 94.3 % and 94.5 % within 60 min and 6 h, respectively, under ultraviolet-visible (UV-Vis) and near-infrared (NIR) light. Notably, these 0D/1D CuWO4/Mn0.3Cd0.7S S-scheme heterojunctions demonstrate superior hydrogen production, achieving rates of 12442.03 µL g-1h-1 and 2418.54 µL g-1h-1 under UV-Vis light and NIR light irradiation, respectively-these rates are 2.3 times and 55.2 times higher than that of Mn0.3Cd0.7S alone. This performance enhancement is attributed to the intrinsic dimensional effects, transitions of transition metal d-d orbitals, and S-scheme hole/electron (h+/e-) separation characteristics. Additionally, experimental results and density functional theory (DFT) calculations have clarified the modulation of electronic configurations, band alignment, and interfacial interactions via 0D/1D S-scheme heterojunction engineering. This study sheds light on the electron transfer mechanism within S-scheme heterojunction and enhances the effectiveness, economy, and sustainability of recalcitrant pollutant removal and hydrogen production.

4.
Hum Genomics ; 18(1): 55, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822443

BACKGROUND: Although CDKN2A alteration has been explored as a favorable factor for tumorigenesis in pan-cancers, the association between CDKN2A point mutation (MUT) and intragenic deletion (DEL) and response to immune checkpoint inhibitors (ICIs) is still disputed. This study aims to determine the associations of CDKN2A MUT and DEL with overall survival (OS) and response to immune checkpoint inhibitors treatment (ICIs) among pan-cancers and the clinical features of CDKN2A-altered gastric cancer. METHODS: This study included 45,000 tumor patients that underwent tumor sequencing across 33 cancer types from four cohorts, the MSK-MetTropism, MSK-IMPACT, OrigiMed2020 and TCGA cohorts. Clinical outcomes and genomic factors associated with response to ICIs, including tumor mutational burden, copy number alteration, neoantigen load, microsatellite instability, tumor immune microenvironment and immune-related gene signatures, were collected in pan-cancer. Clinicopathologic features and outcomes were assessed in gastric cancer. Patients were grouped based on the presence of CDKN2A wild type (WT), CDKN2A MUT, CDKN2A DEL and CDKN2A other alteration (ALT). RESULTS: Our research showed that CDKN2A-MUT patients had shorter survival times than CDKN2A-WT patients in the MSK MetTropism and TCGA cohorts, but longer OS in the MSK-IMPACT cohort with ICIs treatment, particularly in patients having metastatic disease. Similar results were observed among pan-cancer patients with CDKN2A DEL and other ALT. Notably, CDKN2A ALT frequency was positively related to tumor-specific objective response rates to ICIs in MSK MetTropism and OrigiMed 2020. Additionally, individuals with esophageal carcinoma or stomach adenocarcinoma who had CDKN2A MUT had poorer OS than patients from the MSK-IMPACT group, but not those with adenocarcinoma. We also found reduced levels of activated NK cells, T cells CD8 and M2 macrophages in tumor tissue from CDKN2A-MUT or DEL pan-cancer patients compared to CDKN2A-WT patients in TCGA cohort. Gastric cancer scRNA-seq data also showed that CDKN2A-ALT cancer contained less CD8 T cells but more exhausted T cells than CDKN2A-WT cancer. A crucial finding of the pathway analysis was the inhibition of three immune-related pathways in the CDKN2A ALT gastric cancer patients, including the interferon alpha response, inflammatory response, and interferon gamma response. CONCLUSIONS: This study illustrates the CDKN2A MUT and DEL were associated with a poor outcome across cancers. CDKN2A ALT, on the other hand, have the potential to be used as a biomarker for choosing patients for ICI treatment, notably in esophageal carcinoma and stomach adenocarcinoma.


Cyclin-Dependent Kinase Inhibitor p16 , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/immunology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Male , Female , Immune Checkpoint Inhibitors/therapeutic use , Middle Aged , Biomarkers, Tumor/genetics , Aged , Prognosis , DNA Copy Number Variations/genetics , Mutation/genetics , Microsatellite Instability
5.
Biochem Pharmacol ; : 116344, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38852647

Antimicrobial peptides (AMPs) are an important component of innate immunity in both vertebrates and invertebrates, and some of the unique characteristics of AMPs are usually associated with their living environment. The marine fish, mudskipper Boleophthalmus pectinirostris, usually live amphibiously in intertidal environments that are quite different from other fish species, which would be an exceptional source of new AMPs. In the study, an AMP named Bolespleenin334-347 was identified, which was a truncated peptide derived from a new functional gene found in B. pectinirostris, that was up-regulated in response to bacterial challenge. Bolespleenin334-347 had only 14 amino acid residues, including five consecutive arginine residues. It was found that the peptide had broad-spectrum antibacterial activity, good thermal stability and sodium ion tolerance. Bolespleenin334-347 killed Acinetobacter baumannii and Staphylococcus aureus by disrupting the structural integrity of the bacterial membrane, leading to leakage of the cellular contents, and inducing accumulation of bacterial endogenous reactive oxygen species (ROS). In addition, Bolespleenin334-347 effectively inhibited biofilm formation of A. baumannii and S. aureus and long-term treatment did not lead to the development of resistance. Importantly, Bolespleenin334-347 maintained stable activity against clinically multi-drug resistant bacterial strains. In addition, it was noteworthy that Bolespleenin334-347 showed superior efficacy to LL-37 and vancomycin in a constructed mouse model of MRSA-induced superficial skin infections, as evidenced by a significant reduction in bacterial load and more favorable wound healing. This study provides an effective antimicrobial agent for topical skin infections with potential therapeutic efficacy for infections with drug-resistant bacteria, including MRSA.

6.
ACS Appl Mater Interfaces ; 16(23): 29991-30009, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38831531

Photocatalysis has the potential for lignin valorization to generate functionalized aromatic monomers, but its application has been limited by the slow conversion rate and the low selectivity to desirable aromatic products. In this work, we designed the phase junction CdS with coexposed hexagonal (100) and cubic (220) facets to improve the photogenerated charge carriers' transfer efficiency from (100) facet to (220) facet and the hydrogen transfer efficiency for an enhanced conversion rate of lignin to aromatic monomers. Water is found as a sufficient external hydrogen supplier to increase the yields of aromatic monomers. These innovative designs in the reaction system promoted complete conversion of PP-ol to around 94% of aromatic monomers after 1 h of visible light irradiation, which shows the highest reaction rate and selectivity of target products in comparison with previous works. PP-one is a byproduct from the overoxidation of PP-ol and is usually difficult to be further cleaved to acetophenone and phenol as the desirable aromatic monomers. TEA was first identified in this study as a sacrificial electron donor, a hydrogen source, and a mediator to enhance the cleavage of the Cß-O bonds in PP-one. With the assistance of TEA, PP-one can be completely cleaved to desirable aromatic monomer products, and the reaction time is reduced from several hours to 10 min of visible light irradiation.

7.
Curr Opin Chem Biol ; 81: 102476, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38861851

O-GlcNAcylation is an essential protein glycosylation governed by two O-GlcNAc cycling enzymes: O-GlcNAc transferase (OGT) installs a single sugar moiety N-acetylglucosamine (GlcNAc) on protein serine and threonine residues, and O-GlcNAcase (OGA) removes them. Aberrant O-GlcNAcylation has been implicated in various diseases. However, the large repertoire of more than 1000 O-GlcNAcylated proteins and the elusive mechanisms of OGT/OGA in substrate recognition present significant challenges in targeting the dysregulated O-GlcNAcylation for therapeutic development. Recently, emerging evidence suggested that the non-catalytic domains play critical roles in regulating the functional specificity of OGT/OGA via modulating their protein interactions and substrate recognition. Here, we discuss recent studies on the structures, mechanisms, and related tools of the OGT/OGA non-catalytic domains, highlighting new opportunities for function-specific control.

8.
Int J Biol Macromol ; : 132993, 2024 Jun 09.
Article En | MEDLINE | ID: mdl-38862049

Low ionic conductivity and poor interface stability of poly(ethylene oxide) (PEO) restrict the practical application as polymeric electrolyte films to prepare solid-state lithium (Li) metal batteries. In this work, biomass-based carboxymethyl chitosan (CMCS) is designed and developed as organic fillers into PEO matrix to form composite electrolytes (PEO@CMCS). Carboxymethyl groups of CMCS fillers can promote the decomposition of Lithium bis(trifluoromethane sulfonimide) (LiTFSI) to generate more lithium fluoride (LiF) at CMCS/PEO interface, which not only forms ionic conductive network to promote the rapid transfer of Li+ but also effectively enhances the interface stability between polymeric electrolyte and Li metal. The enrichment of carboxyl, hydroxyl, and amidogen functional groups within CMCS fillers can form hydrogen bonds with ethylene oxide (EO) chains to improve the tensile properties of PEO-based electrolyte. In addition, the high hardness of CMCS additives can also strengthen mechanical properties of PEO-based electrolyte to resist penetration of Li dendrites. LiLi symmetric batteries can achieve stable cycle for 2500 h and lithium iron phosphate full batteries can maintain 135.5 mAh g-1 after 400 cycles. This work provides a strategy for the enhancement of ion conductivity and interface stability of PEO-based electrolyte, as well as realizes the resource utilization of biomass-based CMCS.

9.
Commun Biol ; 7(1): 699, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849594

Caspase-4 (CASP4) is a member of the inflammatory caspase subfamily and promotes inflammation. Here, we report that CASP4 in lung adenocarcinoma cells contributes to both tumor progression via angiogenesis and tumor hyperkinesis and tumor cell killing in response to high interferon (IFN)-γ levels. We observe that elevated CASP4 expression in the primary tumor is associated with cancer progression in patients with lung adenocarcinoma. Further, CASP4 knockout attenuates tumor angiogenesis and metastasis in subcutaneous tumor mouse models. CASP4 enhances the expression of genes associated with angiogenesis and cell migration in lung adenocarcinoma cell lines through nuclear factor kappa-light chain-enhancer of activated B cell signaling without stimulation by lipopolysaccharide or tumor necrosis factor. CASP4 is induced by endoplasmic reticulum stress or IFN-γ via signal transducer and activator of transcription 1. Most notably, lung adenocarcinoma cells with high CASP4 expression are more prone to IFN-γ-induced pyroptosis than those with low CASP4 expression. Our findings indicate that the CASP4 level in primary lung adenocarcinoma can predict metastasis and responsiveness to high-dose IFN-γ therapy due to cancer cell pyroptosis.


Adenocarcinoma of Lung , Caspases, Initiator , Interferon-gamma , Lung Neoplasms , Pyroptosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Animals , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice , Caspases, Initiator/metabolism , Caspases, Initiator/genetics , Cell Line, Tumor , Neoplasm Metastasis , Gene Expression Regulation, Neoplastic
10.
ACS Biomater Sci Eng ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830819

Nanofiber scaffolds have gained significant attention in the field of bone tissue engineering. Electrospinning, a straightforward and efficient technique for producing nanofibers, has been extensively researched. When used in bone tissue engineering scaffolds, electrospun nanofibers with suitable surface properties promote new bone tissue growth and enhance cell adhesion. Recent advancements in electrospinning technology have provided innovative approaches for scaffold fabrication in bone tissue engineering. This review comprehensively examines the utilization of electrospun nanofibers in bone tissue engineering scaffolds and evaluates the relevant literature. The review begins by presenting the fundamental principles and methodologies of electrospinning. It then discusses various materials used in the production of electrospun nanofiber scaffolds for bone tissue engineering, including natural and synthetic polymers, as well as certain inorganic materials. The challenges associated with these materials are also described. The review focuses on novel electrospinning techniques for scaffold construction in bone tissue engineering, such as multilayer nanofibers, multifluid electrospinning, and the integration of electrospinning with other methods. Recent advancements in electrospinning technology have enabled the fabrication of precisely aligned nanofiber scaffolds with nanoscale architectures. These innovative methods also facilitate the fabrication of biomimetic structures, wherein bioactive substances can be incorporated and released in a controlled manner for drug delivery purposes. Moreover, they address issues encountered with traditional electrospun nanofibers, such as mechanical characteristics and biocompatibility. Consequently, the development and implementation of novel electrospinning technologies have revolutionized scaffold fabrication for bone tissue engineering.

11.
J Sports Sci Med ; 23(2): 410-417, 2024 Jun.
Article En | MEDLINE | ID: mdl-38841645

The aim of this study was to compare the effects of jumping interval training (JIT) and running high-intensity interval training (HIIT) on the aerobic, anaerobic and jumping performances of youth female aerobic gymnasts. A randomized controlled study was conducted over an 8-week period, involving 73 youth female athletes (16.2 ± 1.3 years old) of aerobic gymnastics. The study comprised two experimental groups (JIT and HIIT) and a control group. Participants in the experimental groups engaged in two additional training sessions per week alongside their regular training regimen, while the control group followed their usual training routine. Before and after the intervention period, gymnasts were assessed for their performance in the countermovement jump test (CMJ), the specific aerobic gymnastics anaerobic test (SAGAT) and the 20-m multistage fitness test. Significant interactions time × group were found in SAGAT (p < 0.001; = 0.495), CMJ (p < 0.001; = 0.338) and 20-m multistage fitness test (p < 0.001; = 0.500). The time × group analysis post-intervention revealed significantly lower scores in SAGAT for the control group compared to the JIT (p = 0.003) and HIIT (p = 0.034). Additionally, significantly higher scores were observed for the JIT group in the CMJ test compared to the HIIT (p = 0.020) and control (p = 0.028) groups following the intervention. Finally, the 20 m multistage fitness test post-intervention revealed significantly lower scores for the control group compared to JIT (p < 0.001) and HIIT (p < 0.001). Both JIT and HIIT are recommended training strategies to adopt in aerobic gymnastics for significantly improving the aerobic and anaerobic performances of athletes. However, JIT may be particularly relevant to use as it offers additional benefits in improving vertical jumping performances.


Athletic Performance , Gymnastics , High-Intensity Interval Training , Humans , Female , Gymnastics/physiology , High-Intensity Interval Training/methods , Athletic Performance/physiology , Adolescent , Exercise Test , Plyometric Exercise/methods , Running/physiology
12.
Nat Protoc ; 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38867073

Catalytic mechanism-based, light-activated traps have recently been developed to identify the substrates of cysteine or serine hydrolases. These traps are hydrolase mutants whose catalytic cysteine or serine are replaced with genetically encoded 2,3-diaminopropionic acid (DAP). DAP-containing hydrolases specifically capture the transient thioester- or ester-linked acyl-enzyme intermediates resulting from the first step of the proteolytic reaction as their stable amide analogs. The trapped substrate fragments allow the downstream identification of hydrolase substrates by mass spectrometry and immunoblotting. In this protocol, we provide a detailed step-by-step guide for substrate capture and identification of the peptidase domain of the large tegument protein deneddylase (UL36USP) from human herpesvirus 1, both in mammalian cell lysate and live mammalian cells. Four procedures are included: Procedure 1, DAP-mediated substrate trapping in mammalian cell lysate (~8 d); Procedure 2, DAP-mediated substrate trapping in adherent mammalian cells (~6 d); Procedure 3, DAP-mediated substrate trapping in suspension mammalian cells (~5 d); and Procedure 4, substrate identification and validation (~12-13 d). Basic skills to perform protein expression in bacteria or mammalian cells, affinity enrichment and proteomic analysis are required to implement the protocol. This protocol will be a practical guide for identifying substrates of serine or cysteine hydrolases either in a complex mixture, where genetic manipulation is challenging, or in live cells such as bacteria, yeasts and mammalian cells.

13.
Trials ; 25(1): 377, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38863026

BACKGROUND: Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening neurosurgical emergency with a high mortality rate. Delayed cerebral ischemia (DCI) and cerebral vasospasm (CVS) are delayed products of early brain injury (EBI), which may constitute the principal determinant of an unfavorable patient prognosis. Consequently, the mitigation of DCI and CVS assumes paramount significance in the pursuit of enhanced patient outcomes. However, except for oral nimodipine, there is no effective therapy available in the current guideline. Hence, the exigency arises to proffer novel treatment paradigms. The diversity of hydrogen therapeutic targets has been largely reported in basic research, unveiling its latent capacity to ameliorate EBI in aSAH patients. METHODS: Early Hydrogen-Oxygen Gas Mixture Inhalation in Patients with Aneurysmal Subarachnoid Hemorrhage (HOMA), a single-center, prospective, open-labeled, randomized controlled clinical trial, endeavors to evaluate the efficacy and safety of hydrogen-oxygen gas mixture inhalation therapy in aSAH patients. A cohort of 206 patients will be randomized to either hydrogen-oxygen gas mixture inhalation group (8 h per day, 3 L/min, hydrogen concentration of 67%, oxygen concentration of 33%) or oxygen inhalation group (8 h per day, 3 L/min, oxygen concentration of 33%) within 72 h after aSAH and treated for 7 days in the ICU ward. The primary outcomes are the incidence of DCI and CVS during hospitalization. DISCUSSION: The HOMA aims to evaluate the effectiveness of hydrogen-oxygen gas mixture inhalation therapy in preventing DCI or CVS and improving outcomes in aSAH patients. Notably, this is the first large-scale trial of hydrogen therapy in aSAH patients. Given that the Chinese population represents a significant portion of the global population and the increasing incidence of stroke due to aging, optimizing patient care is vital. Given the current challenges in aSAH patient outcomes, initiating more prospective clinical trials is essential. Recent research has shown hydrogen's therapeutic potential, aligning with EBI in aSAH, driving our exploration of hydrogen therapy's mechanisms in post-aneurysm rupture damage. ETHICS AND DISSEMINATION: The protocol for the HOMA study was approved by the Ethics Committee of Beijing Tiantan Hospital, Capital Medical University (KY 2022-020-02). All results of the present study will be published in peer-reviewed journals and presented at relevant conferences. TRIAL REGISTRATION: ClinicalTrials.gov NCT05282836. Registered on March 16, 2022.


Hydrogen , Oxygen Inhalation Therapy , Oxygen , Randomized Controlled Trials as Topic , Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/drug therapy , Prospective Studies , Hydrogen/administration & dosage , Oxygen Inhalation Therapy/adverse effects , Oxygen/administration & dosage , Treatment Outcome , Time Factors , Adult , Vasospasm, Intracranial/prevention & control , Vasospasm, Intracranial/etiology , Vasospasm, Intracranial/drug therapy , Middle Aged , Female , Male , Aged , Administration, Inhalation , Brain Ischemia/prevention & control , Brain Ischemia/drug therapy , Young Adult
14.
Nat Commun ; 15(1): 4918, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38858357

The ability to realize high-fidelity quantum communication is one of the many facets required to build generic quantum computing devices. In addition to quantum processing, sensing, and storage, transferring the resulting quantum states demands a careful design that finds no parallel in classical communication. Existing experimental demonstrations of quantum information transfer in solid-state quantum systems are largely confined to small chains with few qubits, often relying upon non-generic schemes. Here, by using a superconducting quantum circuit featuring thirty-six tunable qubits, accompanied by general optimization procedures deeply rooted in overcoming quantum chaotic behavior, we demonstrate a scalable protocol for transferring few-particle quantum states in a two-dimensional quantum network. These include single-qubit excitation, two-qubit entangled states, and two excitations for which many-body effects are present. Our approach, combined with the quantum circuit's versatility, paves the way to short-distance quantum communication for connecting distributed quantum processors or registers, even if hampered by inherent imperfections in actual quantum devices.

15.
Pharmacol Res ; 205: 107236, 2024 May 24.
Article En | MEDLINE | ID: mdl-38797358

The rapid antidepressant effects of ketamine depend on the N-methyl-D-aspartate (NMDA) receptor containing 2B subunit (NR2B), whose function is influenced by its phosphorylated regulation and distribution within and outside synapses. It remains unclear if ketamine's rapid onset of antidepressant effects relies on the dynamic phosphorylated regulation of NR2B within and outside synapses. Here, we show that ketamine rapidlyalleviated depression-like behaviors and normalized abnormal expression of pTyr1472NR2B and striatal-enriched protein tyrosine phosphatase (STEP) 61 within and outside synapses in the medial prefrontal cortex (mPFC) induced by chronic unpredictable stress (CUS) and conditional knockdown of STEP 61, a key phosphatase of NR2B, within 1 hour after administration Together, our results delineate the rapid initiation of ketamine's antidepressant effects results from the restoration of NR2B phosphorylation homeostasis within and outside synapses. The dynamic regulation of phosphorylation of NR2B provides a new perspective for developing new antidepressant strategies.

16.
Front Surg ; 11: 1364340, 2024.
Article En | MEDLINE | ID: mdl-38807926

Introduction: This study aims to investigate the clinical efficacy of V-Y advanced flap pedicled with freestyle perforator flap for repairing small range defects in the anterior knee region. Methods: 8 patients with skin and soft tissue defect/necrosis in the anterior knee area admitted to the Changshu No.1 People's Hospital from January 2021 to January 2022 were selected, with a defect range of 4 cm × 3 cm-9 cm × 6 cm, designed a V-Y advanced flap pedicled with freestyle perforator flap to repair the wound in the anterior knee area. Adjust the size and position of the flap according to the number and position of perforating branches found during the surgery, with a cutting area of 6 cm × 5 cm-14 cm × 10 cm and the supply area was directly pulled and sutured. Results: 4 patients were repaired by flaps pedicled with 2 perforating branches, 2 patients were repaired by flaps pedicled with 1 perforating branch and 2 patients were repaired by flaps pedicled with 3 perforating branches. 4 patients were repaired by flaps pedicled with 2 perforating branches, 2 patients were repaired by flaps pedicled with 1 perforating branch and 2 patients were repaired by flaps pedicled with 3 perforating branches. All flaps survived and following up for 6-15 months, the blood supply, appearance, and color of the flap were satisfactory, and the functions of knee joint flexion and extension were well preserved. Discussion: The V-Y advancement flap pedicled with freestyle perforator flap has the advantages of reliable blood supply, simple surgical operation, texture and thickness similar to the skin of the anterior knee area, and direct suture of the donor area. It is a perforator flap with good repair effect for small scale defects in the anterior knee area.

17.
J Res Med Sci ; 29: 15, 2024.
Article En | MEDLINE | ID: mdl-38808215

Background: This study aims to estimate the risk factors of gastrointestinal (GI) bleeding in patients with acute coronary syndrome (ACS) and to evaluate the optimal duration of dual antiplatelet therapy (DAPT). Materials and Methods: We enrolled 1266 patients with ACS in a telephone follow-up program to determine whether any of the patients were hospitalized for GI bleeding. We collected baseline data, laboratory tests, electrocardiograms, and echocardiography covering all ACS patients. Multivariable regression was performed to adjust for confounders and predictors of GI bleeding. At the same time, the optimal duration of DAPT for ACS patients was evaluated. Results: A total of 1061 ACS patients were included in the study. After 13-68 months, 48 patients (4.5%) were hospitalized for GI bleeding. The risk of GI bleeding was significantly increased in patients treated with DAPT for more than 18 months (hazard ratio 12.792, 5.607-29.185, P < 0.01). Receiver Operating Characteristic curve showed that the duration of DAPT using a cutoff of 14.5 months resulted in a sensitivity of 66.7% and a specificity of 77%. Conclusion: In patients with ACS, DAPT time are the main risk factors of GI bleeding. The optimal duration of DAPT is 14.5 months.

18.
Poult Sci ; 103(7): 103833, 2024 May 07.
Article En | MEDLINE | ID: mdl-38810563

The family of cell cycle-dependent kinases (CDKs) serves as catalytic subunits within protein kinase complexes, playing a crucial role in cell cycle progression. While the function of CDK proteins in regulating mammalian innate immune responses and virus replication is well-documented, their role in chickens remains unclear. To address this, we cloned several chicken CDKs, specifically CDK6 through CDK10. We observed that CDK6 is widely expressed across various chicken tissues, with localization in the cytoplasm, nucleus, or both in DF-1 cells. In addition, we also found that multiple chicken CDKs negatively regulate IFN-ß signaling induced by chicken MAVS or chicken STING by targeting different steps. Moreover, during infection with infectious bursal disease virus (IBDV), various chicken CDKs, except CDK10, were recruited and co-localized with viral protein VP1. Interestingly, overexpression of CDK6 in chickens significantly enhanced IBDV replication. Conversely, knocking down CDK6 led to a marked increase in IFN-ß production, triggered by chMDA5. Furthermore, targeting endogenous CDK6 with RNA interference substantially reduced IBDV replication. These findings collectively suggest that chicken CDKs, particularly CDK6, act as suppressors of IFN-ß production and play a facilitative role in IBDV replication.

19.
J Ment Health ; : 1-10, 2024 May 28.
Article En | MEDLINE | ID: mdl-38804258

BACKGROUND: Trauma and posttraumatic stress disorder (PTSD) are common among individuals with serious mental illness (SMI; e.g., schizophrenia, schizoaffective disorder, bipolar disorder, treatment refractory major depressive disorder), with resultant functional impairment. Previous studies have not evaluated the factor structure of the PTSD Checklist (PCL) among persons with SMI. AIMS: This study evaluated the factor structure of the PCL in two large SMI samples from public mental health treatment sectors screened for PTSD using the PCL. METHODS: Four different models of PTSD were tested using confirmatory factor analyses. RESULTS: Results indicated that the DSM-5 4-factor model (intrusion, avoidance, numbing, and hyperarousal) had the best fit. Further, the DSM-5 4-factor model demonstrated measurement invariance. CONCLUSIONS: Results supported the suitability of the DSM-5 4-factor model of PTSD among people with SMI.

20.
Nat Commun ; 15(1): 4016, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740890

Two-dimensional (2D) materials have garnered significant attention in recent years due to their atomically thin structure and unique electronic and optoelectronic properties. To harness their full potential for applications in next-generation electronics and photonics, precise control over the dielectric environment surrounding the 2D material is critical. The lack of nucleation sites on 2D surfaces to form thin, uniform dielectric layers often leads to interfacial defects that degrade the device performance, posing a major roadblock in the realization of 2D-based devices. Here, we demonstrate a wafer-scale, low-temperature process (<250 °C) using atomic layer deposition (ALD) for the synthesis of uniform, conformal amorphous boron nitride (aBN) thin films. ALD deposition temperatures between 125 and 250 °C result in stoichiometric films with high oxidative stability, yielding a dielectric strength of 8.2 MV/cm. Utilizing a seed-free ALD approach, we form uniform aBN dielectric layers on 2D surfaces and fabricate multiple quantum well structures of aBN/MoS2 and aBN-encapsulated double-gated monolayer (ML) MoS2 field-effect transistors to evaluate the impact of aBN dielectric environment on MoS2 optoelectronic and electronic properties. Our work in scalable aBN dielectric integration paves a way towards realizing the theoretical performance of 2D materials for next-generation electronics.

...