Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Cell Commun Signal ; 22(1): 472, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363298

ABSTRACT

In this study, we reported for the first time the dose-dependent dual effects of Alpha-Ketoglutarate (AKG) on cumulus oocyte complexes (COCs) during in vitro maturation (IVM). AKG at appropriate concentration (30 µM) has beneficial effects on IVM. This includes improved cumulus expansion, oocyte quality, and embryo development. These effects are mediated through multiple underlying mechanisms. AKG reduced the excessive accumulation of reactive oxygen species (ROS) in cumulus cells, reduced the consumption of GSH and NADPH. Cumulus GSH and NADPH were transported to oocytes via gap junctions, thereby reducing the oxidative stress, apoptosis and maintaining the redox balance in oocytes. In addition, AKG improved the mitochondrial function by regulating the mitochondrial complex 1 related gene expression in oocytes to maintain mitochondrial membrane potential and ATP production. On the other hand, oocyte generated GDF9 could also be transported to cumulus cells to promote cumulus expansion. Conversely, a high concentration of AKG (750 µM) exerted adverse effects on IVM and suppressed the cumulus expansion as well as reduced the oocyte quality. The suppression of the cumulus expansion caused by high concentration of AKG could be rescued with GDF9 supplementation in COCs, indicating the critical role of GDF9 in IVM. The results provide valuable information on the variable effects of AKG at different concentrations on reproductive physiology.


Subject(s)
Cumulus Cells , In Vitro Oocyte Maturation Techniques , Ketoglutaric Acids , Oocytes , Reactive Oxygen Species , Ketoglutaric Acids/pharmacology , Ketoglutaric Acids/metabolism , Oocytes/drug effects , Oocytes/metabolism , Animals , Cumulus Cells/drug effects , Cumulus Cells/metabolism , Cumulus Cells/cytology , In Vitro Oocyte Maturation Techniques/methods , Female , Reactive Oxygen Species/metabolism , Mice , Dose-Response Relationship, Drug , Mitochondria/metabolism , Mitochondria/drug effects , Growth Differentiation Factor 9/metabolism , Growth Differentiation Factor 9/genetics , Glutathione/metabolism , Oxidative Stress/drug effects , NADP/metabolism , Apoptosis/drug effects , Membrane Potential, Mitochondrial/drug effects
2.
J Am Chem Soc ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365080

ABSTRACT

The pursuit of precision in the engineering of metal nanoparticle assemblies has long fascinated scientists, but achieving atomic-level accuracy continues to pose a significant challenge. This research sheds light on the hierarchical assembly processes of two high-nuclearity Cu(I) nanoclusters (NCs). By employing a multiligand cooperative stabilization strategy, we have isolated a series of thiacalix[4]arene (TC4A)/alkynyl coprotected Cu(I) NCs (Cux, where x = 9, 13, 17, 22). These NCs are intricately coassembled from the fundamental building units of {Cu4(TC4A)} and alkynyl-stabilized Cu5L6 in various ratios. By capturing active anion templates such as O2-, Cl-, or C22- that are generated in situ, we have further explored the secondary structural self-assembly of these clusters. Cu13 serves as a secondary assembly module for constructing Cu38 and Cu43, which exhibit the highest nuclearity reported to date among Cu(I) NCs encased in macrocyclic ligands. Notably, Cu38 demonstrates an impressive Faradaic efficiency of 62.01% for hydrocarbons at -1.57 V vs RHE during CO2 electroreduction, with 34.03% for C2H4 and 27.98% for CH4. This performance establishes it as an exceptionally rare, large, atomically precise metal NC (nuclearity >30) capable of catalyzing the formation of highly electro-reduced hydrocarbon products. Our research has introduced a new approach for constructing high-nuclearity Cu(I) NCs through a hierarchical assembly method and investigating their potential in the electrocatalytic transformation of CO2 into hydrocarbons.

3.
Front Cell Infect Microbiol ; 14: 1451440, 2024.
Article in English | MEDLINE | ID: mdl-39258254

ABSTRACT

Background: Although the emerging NGS-based assays, metagenomic next-generation sequencing (mNGS) and targeted next-generation sequencing (tNGS), have been extensively utilized for the identification of pathogens in pulmonary infections, there have been limited studies systematically evaluating differences in the efficacy of mNGS and multiplex PCR-based tNGS in bronchoalveolar lavage fluid (BALF) specimens. Methods: In this study, 85 suspected infectious BALF specimens were collected. Parallel mNGS and tNGS workflows to each sample were performed; then, we comparatively compared their consistency in detecting pathogens. The differential results for clinically key pathogens were confirmed using PCR. Results: The microbial detection rates of BALF specimens by the mNGS and tNGS workflows were 95.18% (79/83) and 92.77% (77/83), respectively, with no significant difference. mNGS identified 55 different microorganisms, whereas tNGS detected 49 pathogens. The comparative analysis of mNGS and tNGS revealed that 86.75% (72/83) of the specimens were complete or partial concordance. Particularly, mNGS and tNGS differed significantly in detection rates for some of the human herpesviruses only, including Human gammaherpesvirus 4 (P<0.001), Human betaherpesvirus 7 (P<0.001), Human betaherpesvirus 5 (P<0.05) and Human betaherpesvirus 6 (P<0.01), in which tNGS always had higher detection rates. Orthogonal testing of clinically critical pathogens showed a total coincidence rate of 50% for mNGS and PCR, as well as for tNGS and PCR. Conclusions: Overall, the performance of mNGS and multiplex PCR-based tNGS assays was similar for bacteria and fungi, and tNGS may be superior to mNGS for the detection of DNA viruses. No significant differences were seen between the two NGS assays compared to PCR.


Subject(s)
Bronchoalveolar Lavage Fluid , High-Throughput Nucleotide Sequencing , Metagenomics , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/virology , Humans , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Female , Male , Middle Aged , Adult , Multiplex Polymerase Chain Reaction/methods , Aged , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/classification , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Respiratory Tract Infections/microbiology , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Molecular Diagnostic Techniques/methods , Young Adult
4.
Fa Yi Xue Za Zhi ; 40(3): 227-236, 2024 Jun 25.
Article in English, Chinese | MEDLINE | ID: mdl-39166303

ABSTRACT

OBJECTIVES: To screen biomarkers for forensic identification of acute myocardial infarction (AMI) by non-targeted metabolomic studies on changes of urine metabolites in rats with AMI. METHODS: The rat models of the sham surgery group, AMI group and hyperlipidemia + acute myocardial infarction (HAMI) group were established. Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the changes of urine metabolic spectrometry in AMI rats. Principal component analysis, partial least squares-discriminant analysis, and orthogonal partial least squares-discriminant analysis were used to screen differential metabolites. The MetaboAnalyst database was used to analyze the metabolic pathway enrichment and access the predictive ability of differential metabolites. RESULTS: A total of 40 and 61 differential metabolites associated with AMI and HAMI were screened, respectively. Among them, 22 metabolites were common in both rat models. These small metabolites were mainly concentrated in the niacin and nicotinamide metabolic pathways. Within the 95% confidence interval, the area under the curve (AUC) values of receiver operator characteristic curve for N8-acetylspermidine, 3-methylhistamine, and thymine were greater than 0.95. CONCLUSIONS: N8-acetylspermidine, 3-methylhistamine, and thymine can be used as potential biomarkers for AMI diagnosis, and abnormal metabolism in niacin and nicotinamide may be the main causes of AMI. This study can provide reference for the mechanism and causes of AMI identification.


Subject(s)
Biomarkers , Disease Models, Animal , Metabolomics , Myocardial Infarction , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/urine , Rats , Metabolomics/methods , Male , Biomarkers/urine , Biomarkers/metabolism , Chromatography, High Pressure Liquid , Rats, Sprague-Dawley , Principal Component Analysis , Discriminant Analysis , Mass Spectrometry/methods , Niacin/metabolism , Niacin/urine , Hyperlipidemias/metabolism , Niacinamide/urine , Niacinamide/metabolism , Niacinamide/analogs & derivatives , Metabolic Networks and Pathways , ROC Curve , Least-Squares Analysis , Forensic Medicine/methods , Metabolome
5.
Nanoscale ; 16(36): 16952-16957, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39207260

ABSTRACT

We report the synthesis, structure analysis, and electrocatalytic CO2 reduction application of Ag19Cu2(CCArF)12(PPh3)6Cl6 (abbreviated as Ag19Cu2, CCArF: 3,5-bis(trifluoromethyl)phenylacetylene) nanoclusters. Ag19Cu2 has characteristic absorbance features and is a superatomic cluster with 2 free valence electrons. Single-crystal X-ray diffraction (SC-XRD) revealed that the metal core of Ag19Cu2 is composed of an Ag11Cu2 icosahedron connected by two Ag4 tetrahedra at the two terminals of the Cu-Ag-Cu axis. Notably, Ag19Cu2 exhibited excellent catalytic performance in the electrochemical CO2 reduction reaction (eCO2RR), manifested by a high CO faradaic efficiency of 95.26% and a large CO current density of 257.2 mA cm-2 at -1.3 V. In addition. Ag19Cu2 showed robust long-term stability, with no significant drop in current density and FECO after 14 h of continuous operation. Density functional theory (DFT) calculations disclosed that the high selectivity of Ag19Cu2 for CO in the eCO2RR process is due to the shedding of the -CCArF ligand from the Ag atom at the very center of the Ag4 unit, exposing the active site. This study enriches the potpourri of alkynyl-protected bimetallic nanoclusters and also highlights the great advantages of using atomically precise metal nanoclusters to probe the atomic-level structure-performance relationship in the catalytic field.

6.
Antioxidants (Basel) ; 13(7)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39061883

ABSTRACT

The in vitro maturation efficiency of porcine oocytes is relatively low, and this limits the production of in vitro porcine embryos. Since melatonin is involved in mammalian reproductive physiology, in this study, we have explored whether endogenously produced melatonin can help in porcine oocyte in vitro maturation. We have found, for the first time in the literature, that mitochondria are the major sites for melatonin biosynthesis in porcine oocytes. This mitochondrially originated melatonin reduces ROS production and increases the activity of the mitochondrial respiratory electron transport chain, mitochondrial biogenesis, mitochondrial membrane potential, and ATP production. Therefore, melatonin improves the quality of oocytes and their in vitro maturation. In contrast, the reduced melatonin level caused by siRNA to knockdown AANAT (siAANAT) is associated with the abnormal distribution of mitochondria, decreasing the ATP level of porcine oocytes and inhibiting their in vitro maturation. These abnormalities can be rescued by melatonin supplementation. In addition, we found that siAANAT switches the mitochondrial oxidative phosphorylation to glycolysis, a Warburg effect. This metabolic alteration can also be corrected by melatonin supplementation. All these activities of melatonin appear to be mediated by its membrane receptors since the non-selective melatonin receptor antagonist Luzindole can blunt the effects of melatonin. Taken together, the mitochondria of porcine oocytes can synthesize melatonin and improve the quality of oocyte maturation. These results provide an insight from a novel aspect to study oocyte maturation under in vitro conditions.

7.
Pharmacol Res ; 206: 107290, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960012

ABSTRACT

The placenta, as a "transit station" between mother and fetus, has functions delivering nutrients, excreting metabolic wastes and secreting hormones. A healthy placenta is essential for fetal growth and development while the melatonergic system seems to play a critical physiological role in this organ since melatonin, its synthetic enzymes and receptors are present in the placenta. In current study, Mtnr1a and Mtnr1b knockout mice were constructed to explore the potential roles of melatonergic system played on the placental function and intrauterine growth retardation (IUGR). The result showed that Mtnr1a knockout had little effect on placental function while Mtnr1b knockout reduced placental efficiency and increased IUGR. Considering the extremely high incidence of IURG in sows, the pregnant sows were treated with melatonin. This treatment reduced the incidence of IUGR. All the evidence suggests that the intact melatonergic system in placenta is required for its function. Mechanistical studies uncovered that Mtnr1b knockout increased placental oxidative stress and apoptosis but reduced the angiogenesis. The RNA sequencing combined with histochemistry study identified the reduced angiogenesis and placental vascular density in Mtnr1b knockout mice. These alterations were mediated by the disrupted STAT3/VEGFR2/PI3K/AKT pathway, i.e., Mtnr1b knockout reduced the phosphorylation of STAT3 which is the promotor of VEGFR2. The downregulated VEGFR2 and its downstream elements of PI3K and AKT expressions, then, jeopardizes the angiogenesis and placental development.


Subject(s)
Fetal Growth Retardation , Melatonin , Mice, Knockout , Neovascularization, Physiologic , Placenta , Receptor, Melatonin, MT2 , Signal Transduction , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , Animals , Female , Pregnancy , Placenta/metabolism , Placenta/blood supply , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Melatonin/pharmacology , Receptor, Melatonin, MT2/genetics , Receptor, Melatonin, MT2/metabolism , Mice , Receptor, Melatonin, MT1/genetics , Receptor, Melatonin, MT1/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Apoptosis , Mice, Inbred C57BL , Oxidative Stress , Swine , Angiogenesis
8.
Physiol Plant ; 176(3): e14373, 2024.
Article in English | MEDLINE | ID: mdl-38894555

ABSTRACT

Chrysanthemum morifolium is cultivated worldwide and has high ornamental, tea, and medicinal value. With the increasing area of chrysanthemum cultivation and years of continuous cropping, Fusarium wilt disease frequently occurs in various production areas, seriously affecting the quality and yield and causing huge economic losses. However, the molecular response mechanism of Fusarium wilt infection remains unclear, which limits the molecular breeding process for disease resistance in chrysanthemums. In the present study, we analyzed the molecular response mechanisms of 'Huangju,' one of the tea chrysanthemum cultivars severely infested with Fusarium wilt in the field at the early, middle, and late phases of F. oxysporum infestation. 'Huangju' responded to the infestation mainly through galactose metabolism, plant-pathogen interaction, auxin, abscisic acid, and ethylene signalling in the early phase; galactose metabolism, plant-pathogen interaction, auxin, salicylic acid signal, and certain transcription factors (e.g., CmWRKY48) in the middle phase; and galactose metabolism in the late phase. Notably, the galactose metabolism was important in the early, middle, and late phases of 'Huangju' response to F. oxysporum. Meanwhile, the phytohormone auxin was involved in the early and middle responses. Furthermore, silencing of CmWRKY48 in 'Huangju' resulted in resistance to F. oxysporum. Our results revealed a new molecular pattern for chrysanthemum in response to Fusarium wilt in the early, middle, and late phases, providing a foundation for the molecular breeding of chrysanthemum for disease resistance.


Subject(s)
Chrysanthemum , Fusarium , Plant Diseases , Plant Growth Regulators , Fusarium/pathogenicity , Fusarium/physiology , Chrysanthemum/microbiology , Chrysanthemum/genetics , Chrysanthemum/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Disease Resistance/genetics , Abscisic Acid/metabolism , Host-Pathogen Interactions , Galactose/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
9.
Biomed Pharmacother ; 175: 116769, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776678

ABSTRACT

Pro-inflammatory macrophages (M1-polarized) play a crucial role in neuroinflammation and neuropathic pain following nerve injury. Redirecting macrophage polarization toward anti-inflammatory (M2-polarized) phenotypes offers a promising therapeutic strategy. Recognized for their anti-inflammatory and immunomodulatory properties, probiotics are becoming a focal point of research. This study investigated the effects of Lactobacillus plantarum on macrophage polarization, nerve protection, and neuropathic pain behavior following chronic constriction injury (CCI) of the median nerve. Rats received daily oral doses of L. plantarum for 28 days before and 14 days after CCI. Subsequently, behavioral and electrophysiological assessments were performed. The M1 marker CD86 levels, M2 marker CD206 levels, and concentrations of pro-inflammatory and anti-inflammatory cytokines in the injured median nerve were assessed. L. plantarum administration effectively reduced neuropathic pain behavior and the Firmicutes to Bacteroidetes ratio after CCI. Moreover, L. plantarum treatment increased serum short-chain fatty acids (SCFAs) levels, preserved myelination of the injured median nerve, and suppressed injury-induced discharges. In CCI rats treated with L. plantarum, there was a reduction in CD86 and pro-inflammatory cytokine levels, accompanied by an increase in CD206 and the release of anti-inflammatory cytokines. Furthermore, receptors for anti-inflammatory cytokines were localized on Schwann cells, and their expression was significantly upregulated in the injured nerves of CCI rats receiving L. plantarum. In conclusion, L. plantarum shifts macrophage phenotypes from M1 to M2 by promoting the production of SCFAs and enhancing the release of anti-inflammatory cytokines. Ultimately, this process preserves nerve fiber integrity and impedes the onset of neuropathic pain.


Subject(s)
Disease Models, Animal , Lactobacillus plantarum , Macrophages , Neuralgia , Animals , Neuralgia/therapy , Neuralgia/metabolism , Macrophages/metabolism , Male , Rats , Probiotics/pharmacology , Probiotics/administration & dosage , Cytokines/metabolism , Behavior, Animal , Peripheral Nervous System Diseases/therapy , Rats, Wistar , Cell Polarity
10.
Sensors (Basel) ; 24(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793907

ABSTRACT

(1) Background: This study evaluates the effectiveness of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) in improving gait in post-stroke hemiplegic patients, using wearable sensor technology for objective gait analysis. (2) Methods: A total of 72 stroke patients were randomized into control, sham stimulation, and LF-rTMS groups, with all receiving standard medical treatment. The LF-rTMS group underwent stimulation on the unaffected hemisphere for 6 weeks. Key metrics including the Fugl-Meyer Assessment Lower Extremity (FMA-LE), Berg Balance Scale (BBS), Modified Barthel Index (MBI), and gait parameters were measured before and after treatment. (3) Results: The LF-rTMS group showed significant improvements in the FMA-LE, BBS, MBI, and various gait parameters compared to the control and sham groups (p < 0.05). Specifically, the FMA-LE scores improved by an average of 5 points (from 15 ± 3 to 20 ± 2), the BBS scores increased by 8 points (from 35 ± 5 to 43 ± 4), the MBI scores rose by 10 points (from 50 ± 8 to 60 ± 7), and notable enhancements in gait parameters were observed: the gait cycle time was reduced from 2.05 ± 0.51 s to 1.02 ± 0.11 s, the stride length increased from 0.56 ± 0.04 m to 0.97 ± 0.08 m, and the walking speed improved from 35.95 ± 7.14 cm/s to 75.03 ± 11.36 cm/s (all p < 0.001). No adverse events were reported. The control and sham groups exhibited improvements but were not as significant. (4) Conclusions: LF-rTMS on the unaffected hemisphere significantly enhances lower-limb function, balance, and daily living activities in subacute stroke patients, with the gait parameters showing a notable improvement. Wearable sensor technology proves effective in providing detailed, objective gait analysis, offering valuable insights for clinical applications in stroke rehabilitation.


Subject(s)
Gait , Stroke Rehabilitation , Stroke , Transcranial Magnetic Stimulation , Wearable Electronic Devices , Humans , Male , Female , Transcranial Magnetic Stimulation/methods , Transcranial Magnetic Stimulation/instrumentation , Middle Aged , Stroke/physiopathology , Stroke/therapy , Gait/physiology , Aged , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods , Gait Analysis/methods
11.
J Exp Bot ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745476

ABSTRACT

Trichomes, specialized hair-like structures in the epidermal cells of the aboveground parts of plants, protect plants from pests and pathogens and produce valuable metabolites. Chrysanthemum morifolium, used in tea products, has ornamental and medicinal value. However, it is susceptible to Alternaria alternata fungal infection, posing a threat to its production and use, resulting in substantial economic losses. Increasing the density of glandular trichomes enhances disease resistance and improves the production of medicinal metabolites in chrysanthemums. Jasmonate (JA), promotes the formation of glandular trichomes in various plants. However, it remains unclear whether glandular trichome in chrysanthemums are regulated by JA. Grafting, a technique to improve plant resistance to biotic stresses, has been insufficiently explored in its impact on glandular trichomes, terpenoids, and disease resistance. In this study, we demonstrated that grafting with Artemisia vulgaris rootstocks improves the resistance of chrysanthemum scions to A. alternata. Heterografted chrysanthemums exhibited higher trichome density and terpenoid content compared to self-grafted counterparts. Transcriptome analysis highlighted the significant role of CmJAZ1-like in disease resistance in heterografted chrysanthemums. Overexpressing CmJAZ1-like lines exhibited sensitivity to A. alternate, characterized by reduced glandular trichome density and limited terpenoids. Conversely, silencing lines exhibited resistance to A. alternata showcasing increased glandular trichome density and abundant terpenoids. Higher JA content was confirmed in heterografted chrysanthemum scions compared to self-grafted ones. Furthermore, we established that JA promotes the development of glandular trichomes and the synthesis of terpenoids while inducing the degradation of CmJAZ1-like proteins in chrysanthemums. These findings suggest that higher JA increases trichome density and terpenoid content, enhancing resistance to A. alternata by regulating CmJAZ1-like in heterografted chrysanthemums.

12.
Immun Inflamm Dis ; 12(4): e1245, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629759

ABSTRACT

BACKGROUND: Drug hypersensitivity is a major global public health issue with a significant increase in prevalence in populations. Here, we provide a deep insight into the frontier hotspot and future direction in the field of drug hypersensitivity. METHODS: A knowledge map is portrayed based on publications related to drug hypersensitivity from Web of Science Core Collection using CiteSpace. Co-occurrence relationships of countries, institutes, authors, journals, references, and keywords are constructed. According to the co-occurrence relationships, hotspots and future trends are overviewed. RESULTS: The United States ranked first in the world and China with the second highest publications was the only developing country. Torres, Mayorga, and Blanca were highly productive authors. Harvard University was the institution with the most research publications. Keywords co-occurrence analysis suggested applications in emerging causes, potential mechanisms, and clinical diagnosis as the research hotspots and development frontiers. CONCLUSION: Research on drug hypersensitivity is in a rapid development stage and an emerging trend in reports of anaphylaxis to polyethylene glycols is identified. Developing algorithms for understanding the standardization process of culprit drugs, clinical manifestations, and diagnostic methods will be the focus of future direction. In addition, a better understanding of the mechanisms to culprit drugs with immunological precise phenotypic definitions and high-throughput platforms is needed.


Subject(s)
Anaphylaxis , Drug Hypersensitivity , Humans , Drug Hypersensitivity/epidemiology , Polyethylene Glycols , Bibliometrics , Algorithms
13.
Br J Anaesth ; 132(6): 1293-1303, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614917

ABSTRACT

BACKGROUND: This meta-analysis aimed to evaluate the impact of ketamine/esketamine on postoperative subjective quality of recovery (QoR). METHODS: MEDLINE, Embase, Cochrane library, and Google Scholar were searched for randomised controlled trials (RCTs) that examined the impacts of perioperative ketamine/esketamine use and postoperative QoR. The primary outcome was subjective QoR (QoR-9, QoR-15, QoR-40) on postoperative day (POD) 1-3, whereas the secondary outcomes included pain severity, anxiety scores, depression scores, risk of adverse events (i.e. nausea, vomiting, dizziness, drowsiness), and length of stay. RESULTS: The analysis included 18 RCTs (1554 participants; ketamine: seven trials, esketamine: 11 trials), of which 15 were conducted in China. Ketamine/esketamine improved the QoR scores on PODs 1 and 2 compared with the control (standardised mean difference [SMD]: 0.63, P<0.0001 for POD 1; SMD: 0.56, P=0.04 for POD 2), without beneficial effect on POD 3. Subgroup analyses revealed significant differences in QoR scores on POD 1 by regimen (SMD: esketamine 1.14, ketamine 0.01) and country (SMD: China 0.82, other countries -0.21). The emotional domain of QoR was improved from PODs 1 to 3, whereas the other domains were only improved on POD 1. Lower postoperative anxiety (SMD: -0.48, P=0.003) and depression (SMD: -0.72, P=0.001) scores were also observed with ketamine/esketamine use. Furthermore, pain severity was reduced on PODs 1 and 2, with no difference in the risk of adverse events or length of stay. CONCLUSIONS: This meta-analysis demonstrated that ketamine/esketamine use in the perioperative period is associated with improved early subjective QoR, pain severity, and psychological symptoms without an increase in the likelihood of adverse events. SYSTEMATIC REVIEW PROTOCOL: PROSPERO (CRD42023477580).


Subject(s)
Ketamine , Randomized Controlled Trials as Topic , Humans , Analgesics/therapeutic use , Ketamine/therapeutic use , Ketamine/administration & dosage , Pain, Postoperative/drug therapy , Perioperative Care/methods
14.
Int J Biol Macromol ; 269(Pt 2): 131803, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670205

ABSTRACT

Melatonin plays an important role in mammalian reproductive activities, to further understand the effects of endogenous melatonin on functions of ovary, the transgenic sheep with overexpression of melatonin synthetic enzyme gene ASMT in ovary were generated. The results showed that total melatonin content in follicular fluid of transgenic sheep was significantly greater than that in the wild type. Accordingly, the follicle numbers of transgenic sheep were also significantly greater than those in the WT. The results of follicular fluid metabolites sequencing showed that compared with WT, the differential metabolites of the transgenic sheep were significantly enriched in several signaling pathways, the largest number of metabolites was lipid metabolism pathway and the main differential metabolites were lipids and lipoid molecules. SMART-seq2 were used to analyze the oocytes and granulosa cells of transgenic sheep and WT sheep. The main differential enrichment pathway was metabolic pathway, in which lipid metabolism genes accounted for the majority. In conclusion, this is the first report to show that ovary overexpression of ASMT increased local melatonin production and follicle numbers. These results may imply that ASMT plays an important role in follicle development and formation, and melatonin intervention may be a potential method to promote this process.


Subject(s)
Animals, Genetically Modified , Lipid Metabolism , Melatonin , Ovarian Follicle , Animals , Female , Lipid Metabolism/genetics , Sheep , Ovarian Follicle/metabolism , Melatonin/metabolism , Ovary/metabolism , Follicular Fluid/metabolism , Arylalkylamine N-Acetyltransferase/genetics , Arylalkylamine N-Acetyltransferase/metabolism , Oocytes/metabolism , Granulosa Cells/metabolism
15.
Plant Physiol ; 195(4): 3119-3135, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38668629

ABSTRACT

Excessive soil salinity not only hampers plant growth and development but can also lead to plant death. Previously, we found that heat-shock factor A4 (CmHSFA4) enhances the tolerance of chrysanthemum (Chrysanthemum morifolium) to salt. However, the underlying molecular mechanism remains unclear. In this study, we identified a candidate MYB transcription factor, CmMYB121, which responded to salt stress. We observed that the CmMYB121 transcription is suppressed by CmHSFA4. Moreover, overexpression of CmMYB121 exacerbated chrysanthemum sensitivity to salt stress. CmHSFA4 directly bound to the promoter of CmMYB121 at the heat-shock element. Protein-protein interaction assays identified an interaction between CmHSFA4 and CmMYBS3, a transcriptional repressor, and recruited the corepressor TOPLESS (CmTPL) to inhibit CmMYB121 transcription by impairing the H3 and H4 histone acetylation levels of CmMYB121. Our study demonstrated that a CmHSFA4-CmMYBS3-CmTPL complex modulates CmMYB121 expression, consequently regulating the tolerance of chrysanthemum to salt. The findings shed light on the responses of plants to salt stress.


Subject(s)
Chrysanthemum , Gene Expression Regulation, Plant , Plant Proteins , Salt Tolerance , Transcription Factors , Chrysanthemum/genetics , Chrysanthemum/physiology , Chrysanthemum/drug effects , Chrysanthemum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Salt Tolerance/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Salt Stress/genetics
17.
Biomater Sci ; 12(9): 2341-2355, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38497292

ABSTRACT

Recently, gas therapy has emerged as a promising alternative treatment for deep-seated tumors. However, some challenges regarding insufficient or uncontrolled gas generation as well as unclear therapeutic mechanisms restrict its further clinical application. Herein, a well-designed nanoreactor based on intracellular glutathione (GSH)-triggered generation of sulfur dioxide (SO2) gas to augment oxidative stress has been developed for synergistic chemodynamic therapy (CDT)/sonodynamic therapy (SDT)/SO2 gas therapy. The nanoreactor (designed as CCM@FH-DNs) is constructed by employing iron-doped hollow mesoporous silica nanoparticles as carriers, the surface of which was modified with the SO2 prodrug 2,4-dinitrobenzenesulfonyl (DNs) and further coated with cancer cell membranes for homologous targeting. The CCM@FH-DNs can not only serve as a Fenton-like agent for CDT, but also as a sonosensitizer for SDT. Importantly, CCM@FH-DNs can release SO2 for SO2-mediated gas therapy. Both in vitro and in vivo evaluations demonstrate that the CCM@FH-DNs nanoreactor performs well in augmenting oxidative stress for SO2 gas therapy-enhanced CDT/SDT via GSH depletion and glutathione peroxidase-4 enzyme deactivation as well as superoxide dismutase inhibition. Moreover, the doped iron ions ensure that the CCM@FH-DNs nanoreactors enable magnetic resonance imaging-guided therapy. Such a GSH-triggered SO2 gas therapy-enhanced CDT/SDT strategy provides an intelligent paradigm for developing efficient tumor microenvironment-responsive treatments.


Subject(s)
Glutathione , Oxidative Stress , Sulfur Dioxide , Oxidative Stress/drug effects , Glutathione/metabolism , Glutathione/chemistry , Sulfur Dioxide/chemistry , Sulfur Dioxide/pharmacology , Humans , Animals , Mice , Nanoparticles/chemistry , Ultrasonic Therapy , Mice, Inbred BALB C , Silicon Dioxide/chemistry , Cell Line, Tumor , Female
18.
Fa Yi Xue Za Zhi ; 40(1): 1-14, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500455

ABSTRACT

OBJECTIVES: To analyze the literature on artificial intelligence in forensic research from 2012 to 2022 in the Web of Science Core Collection Database, to explore research hotspots and developmental trends. METHODS: A total of 736 articles on artificial intelligence in forensic medicine in the Web of Science Core Collection Database from 2012 to 2022 were visualized and analyzed through the literature measuring tool CiteSpace. The authors, institution, country (region), title, journal, keywords, cited references and other information of relevant literatures were analyzed. RESULTS: A total of 736 articles published in 220 journals by 355 authors from 289 institutions in 69 countries (regions) were identified, with the number of articles published showing an increasing trend year by year. Among them, the United States had the highest number of publications and China ranked the second. Academy of Forensic Science had the highest number of publications among the institutions. Forensic Science International, Journal of Forensic Sciences, International Journal of Legal Medicine ranked high in publication and citation frequency. Through the analysis of keywords, it was found that the research hotspots of artificial intelligence in the forensic field mainly focused on the use of artificial intelligence technology for sex and age estimation, cause of death analysis, postmortem interval estimation, individual identification and so on. CONCLUSIONS: It is necessary to pay attention to international and institutional cooperation and to strengthen the cross-disciplinary research. Exploring the combination of advanced artificial intelligence technologies with forensic research will be a hotspot and direction for future research.


Subject(s)
Artificial Intelligence , Forensic Medicine , Autopsy , China , Forensic Sciences
19.
Small ; 20(28): e2310277, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38431942

ABSTRACT

The development of highly effective catalysts for hydrogen evolution reaction (HER) in a wide pH range is crucial for the sustainable utilization of green energy utilization, while the slow kinetic reaction rate severely hinders the progress of HER. Herein, the reaction kinetic issue is solved by adjusting the electronic structure of the Ru/PdxCuy catalysts. The champion catalyst displays a remarkable performance for HER with the ultralow overpotential (27, 28, and 97 mV) in 1.0 m KOH, 0.5 m H2SO4, and 1.0 m PBS at 10 mA cm-2 and high the mass activity (3036 A g-1), respectively, superior to those of commercial Pt/C benchmarks and most of reported electrocatalysts, mainly due to its low reaction activation energy. Density functional theory (DFT) calculations indicate that Ru doping contributes an electron-deficient 3d band, which promotes water adsorption. Additionally, this also leads to an upward shift of the d-band center of Pd and a downward shift of the d-band center of Cu, further optimizing the adsorption/dissociation of H2O and H*. Results from this work may provide an insight into the design and synthesis of high-performance pH-universal HER electrocatalysts.

20.
BMC Plant Biol ; 24(1): 76, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38281936

ABSTRACT

BACKGROUND: The growth and ornamental value of chrysanthemums are frequently hindered by aphid attacks. The ethylene-responsive factor (ERF) gene family is pivotal in responding to biotic stress, including insect stress. However, to date, little is known regarding the involvement of ERF transcription factors (TFs) in the response of chrysanthemum to aphids. RESULTS: In the present study, CmHRE2-like from chrysanthemum (Chrysanthemum morifolium), a transcription activator that localizes mainly to the nucleus, was cloned. Expression is induced by aphid infestation. Overexpression of CmHRE2-like in chrysanthemum mediated its susceptibility to aphids, whereas CmHRE2-like-SRDX dominant repressor transgenic plants enhanced the resistance of chrysanthemum to aphids, suggesting that CmHRE2-like contributes to the susceptibility of chrysanthemum to aphids. The flavonoids in CmHRE2-like-overexpression plants were decreased by 29% and 28% in two different lines, whereas they were increased by 42% and 29% in CmHRE2-like-SRDX dominant repressor transgenic plants. The expression of Chrysanthemum-chalcone-synthase gene(CmCHS), chalcone isomerase gene (CmCHI), and flavonoid 3'-hydroxylase gene(CmF3'H) was downregulated in CmHRE2-like overexpression plants and upregulated in CmHRE2-like-SRDX dominant repressor transgenic plants, suggesting that CmHRE2-like regulates the resistance of chrysanthemum to aphids partially through the regulation of flavonoid biosynthesis. CONCLUSION: CmHRE2-like was a key gene regulating the vulnerability of chrysanthemum to aphids. This study offers fresh perspectives on the molecular mechanisms of chrysanthemum-aphid interactions and may bear practical significance for developing new strategies to manage aphid infestation in chrysanthemums.


Subject(s)
Aphids , Chrysanthemum , Animals , Chrysanthemum/genetics , Chrysanthemum/metabolism , Aphids/physiology , Flavonoids/metabolism , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL