Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 576
Filter
1.
Life Sci ; 352: 122905, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38992573

ABSTRACT

AIMS: Colon cancer poses a major threat to human health and a heavy burden on the national economy. As a member of the SOX transcription factor family, SRY-box transcription factor 21 (SOX21) is associated with various cancers, but its mechanism of action in colon cancer remains unclear. This study focused on the molecular mechanisms of transcription factor SOX21 in proliferation and metastasis of colon cancer cells. MAIN METHODS: We analyzed SOX21 expression level and its impact on survival in colon cancer patients by bioinformatics analysis. We used public databases for gene correlation, GSEA enrichment analysis. Cell function experiments (colony formation assay, wound healing assay, Transwell migration and invasion assay) were utilized to determine the impact of SOX21 silencing and over-expression on cell proliferation and metastasis. The luciferase reporter assay, CUT&RUN-qPCR assay and Methylation Specific PCR were used to explore SOX21-POU class 4 homeobox 2 (POU4F2) molecular interactions. The molecular mechanisms were verified by Quantitative real-time PCR and Western blot analysis. KEY FINDINGS: SOX21 is highly expressed and affects the overall survival of colon cancer patients. SOX21 can attenuates POU4F2 methylation state by binding with it. In addition, this interaction facilitate its transcriptional activation of Hedgehog pathway, mediates epithelial-mesenchymal transition (EMT), consequently promoting the proliferation and metastasis of colon cancer cells. SIGNIFICANCE: Our study reveals that SOX21 is an oncogenic molecule and suggests its regulatory role in colon carcinogenesis and progression, providing new insights into the treatment of this disease.


Subject(s)
Cell Proliferation , Colonic Neoplasms , Epithelial-Mesenchymal Transition , Hedgehog Proteins , Signal Transduction , Humans , Epithelial-Mesenchymal Transition/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Neoplasm Metastasis , Cell Movement , SOXB2 Transcription Factors/metabolism , SOXB2 Transcription Factors/genetics , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics
2.
Arch Toxicol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955863

ABSTRACT

5F-EDMB-PICA is a newly emerged synthetic cannabinoid which has been characterized in relevant literature in recent years. Although phase-I metabolites of 5F-EDMB-PICA have been partly reported, the phase-II metabolism of this synthetic cannabinoid has not been studied yet. In this study, we established a phase-I and phase-II metabolism model in vitro by using pooled human liver microsomes, NADPH regeneration system, and UGT incubation system, with 1 mg/ml 5F-EDMB-PICA added and incubated at 37 °C for 60 min. The metabolites were analyzed by Q Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer, via which we discovered and identified 14 phase-I metabolites and 4 phase-II metabolites of 5F-EDMB-PICA, involving pathways such as ester hydrolysis, dehydrogenation, hydrolytic defluorination, hydroxylation, dihydroxylation, glucuronidation, and combinations of the pathways mentioned above. We recommend considering the monohydroxylation metabolites (M9, M10) with higher content and intact ester and 5-fluoropentyl structures as potential biomarkers of 5F-EDMB-PICA.

3.
Colloids Surf B Biointerfaces ; 242: 114081, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39003850

ABSTRACT

Hyaluronic acid (HA)-based tumor microenvironment-responsive nanocontainers are attractive candidates for anticancer drug delivery due to HA's excellent biocompatibility, biodegradability, and CD44-targeting properties. Nevertheless, the consecutive synthesis of stabilized, stealthy, responsive HA-based multicomponent nanomedicines generally requires multi-step preparation and purification procedures, leading to batch-to-batch variation and scale-up difficulties. To develop a facile yet robust strategy for promoted translations, a silica monomer containing a cross-linkable diethoxysilyl unit was prepared to enable in situ crosslinking without any additives. Further combined with the host-guest inclusion complexation between ß-cyclodextrin-grafted HA (HA-CD) and ferrocene-functionalized polymers, ferrocene-terminated poly(oligo(ethylene glycol) methyl ether methacrylate (Fc-POEGMA) and Fc-terminated poly(ε-caprolactone)-b-poly(3-(diethoxymethylsilyl)propyl(2-(methacryloyloxy)ethyl) carbamate) (Fc-PCL-b-PDESPMA), a reactive oxygen species (ROS)-sensitive supramolecular polymer construct, Fc-POEGMA/Fc-PCL-b-PDESPMA@HA-CD was readily fabricated to integrate stealthy POEGMA, tumor active targeting HA, and an in situ cross-linkable PDESPMA sequence. Supramolecular amphiphilic copolymers with two different POEGMA contents of 25 wt% (P1) and 20 wt% (P2) were prepared via a simple physical mixing process, affording two core-crosslinked (CCL) micelles via an in situ sol-gel process of ethoxysilyl groups. The P1-based CCL micelles show not only desired colloidal stability against high dilution, but also an intracellular ROS-mimicking environment-induced particulate aggregation that is beneficial for promoted intracellular release of the loaded cargoes. Most importantly, P1-based nanomedicines exhibited greater cytotoxicity in CD44 receptor-positive HeLa cells than that in CD44 receptor-negative MCF-7 cells. Overall, this work developed HA-based nanomedicines with sufficient extracellular colloidal stability and efficient intracellular destabilization properties for enhanced anticancer drug delivery via smart integration of in situ crosslinking and supramolecular complexation.

4.
Chem Commun (Camb) ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007923

ABSTRACT

O-GlcNAcase (OGA) is implicated in several important biological and disease-relevant processes. Here, we synthesized fluorogenic probes for OGA by grafting GlcNAc directly or using a self-immolative linker to the hydroxyl position of 4-hydroxylisoindoline (BHID), a typical excited-state intramolecular proton transfer (ESIPT) probe. The probe was used for a fluorogenic assay to determine the half maximal inhibitory concentration of a known OGA inhibitor and differentiate between OGA and hexosaminidase when GlcNAc is replaced by GlcNPr, where a propionyl group is used instead of an acetyl group.

5.
Talanta ; 278: 126506, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968659

ABSTRACT

Diabetes, as a metabolic disorder, has been implicated in organ dysfunction, often correlated with aberrant changes in viscosity. Lysosomal viscosity serves as an indicator of the lysosome's condition and activity, as it always varies synchronously with the change of lysosome's positioning, structure, and internal constituents. Diabetes, a condition within the metabolic disease category, has the potential to disrupt organ function due to irregular changes in viscosity. Therefore, early and precise diagnosis of diabetes is crucial for the prevention and management of diabetic conditions. Understanding the correlation between viscosity variations and lysosomal changes in vivo is vitally important for researching associated diseases. In this study, we developed Lyso-V, a near-infrared (NIR) fluorescent probe targeting lysosomes, with ultrasensitivity to viscosity changes. This probe, designed with a donor-π-bridge-acceptor (D-π-A) structure, exhibits a significant increase in NIR fluorescence intensity (approximately 690 times) when responding to viscosity, due to a twisted intramolecular charge transfer (TICT) mechanism. Furthermore, the probe designed specifically for lysosomes, enables the detection of changes in lysosomal viscosity as well as autophagy processes. Notably, through the application of this probe, we have detected an increased viscosity within the pathological model of the diabetic mouse. Moreover, Lyso-V was employed to measure the viscosity in diabetic mice. Owing to the multifaceted nature of the Lyso-V probe, it is anticipated to act as a practical and potent resource for deepening our understanding of the pathophysiological aspects of diabetes and aiding in its early detection.

6.
Plants (Basel) ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38999707

ABSTRACT

Kunitz trypsin inhibitor genes play important roles in stress resistance. In this study, we investigated RpKTI2 cloned from Robinia pseudoacacia and its effect on tobacco. RpKTI2 was introduced into the tobacco cultivar NC89 using Agrobacterium-mediated transformation. Six RpKTI2-overexpressing lines were obtained. Transgenic and wild-type tobacco plants were then compared for photosynthetic characteristics and endogenous hormone levels. Transgenic tobacco showed minor changes in chlorophyll content, fluorescence, and photosynthetic functions. However, the maximum photochemical efficiency (Fv/Fm) increased significantly while intercellular CO2 concentration (Ci) decreased significantly. Stomatal size and hormone content (indole-3-acetic acid, zeatin riboside, gibberellin, and indole-3-propionic acid) were reduced, while brassinosteroid content increased. Random forest regression revealed that RpKTI2 overexpression had the biggest impact on carotenoid content, initial fluorescence, Ci, stomatal area, and indole-3-acetic acid. Overall, RpKTI2 overexpression minimally affected chlorophyll synthesis and photosynthetic system characteristics but influenced stomatal development and likely enhanced the antioxidant capacity of tobacco. These findings provide a basis for future in-depth research on RpKTI2.

7.
J Med Chem ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028938

ABSTRACT

USP7 is an attractive therapeutic target for cancers, especially for acute lymphoblastic leukemia (ALL) with wild-type p53. Herein, we report the discovery of XM-U-14 as a highly potent, selective and efficacious USP7 proteolysis-targeting chimera degrader. XM-U-14 achieves DC50 values of 0.74 nM and Dmax of 93% in inducing USP7 degradation in RS4;11 cell lines, and also significantly inhibits ALL cell growth. XM-U-14 even at 5 mg/kg dosed daily effectively inhibits RS4;11 tumor growth with 64.7% tumor regressions and causes no signs of toxicity in mice. XM-U-14 is a promising USP7 degrader for further optimization for ALL treatment.

8.
Appl Microbiol Biotechnol ; 108(1): 380, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888634

ABSTRACT

Obstructive sleep apnea (OSA) can lead to intestinal injury, endotoxemia, and disturbance of intestinal flora. Additionally, as a crucial component of the endocannabinoid system, some studies have demonstrated that cannabinoid 1 (CB1) receptors are closely linked to the multiple organ dysfunction triggered by OSA. However, the role of the CB1 receptor in alleviating OSA-induced colon injury remains unclear. Here, through the construction of the OSA classic model, we found that the colon tissue of chronic intermittent hypoxia (CIH)-induced mice exhibited an overexpression of the CB1 receptor. The results of hematoxylin-eosin staining and transmission electron microscopy revealed that inhibition of the CB1 receptor could decrease the gap between the mucosa and muscularis mucosae, alleviate mitochondrial swelling, reduce microvilli shedding, and promote the recovery of tight junctions of CIH-induced mice. Furthermore, CB1 receptor inhibition reduced the levels of metabolic endotoxemia and inflammatory responses, exhibiting significant protective effects on the colon injury caused by CIH. At the molecular level, through western blotting and real-time polymerase chain reaction techniques, we found that inhibiting the CB1 receptor can significantly increase the expression of ZO-1 and Occludin proteins, which are closely related to the maintenance of intestinal mucosal barrier function. Through 16S rRNA high-throughput sequencing and short-chain fatty acid (SCFA) determination, we found that inhibition of the CB1 receptor increased the diversity of the microbial flora and controlled the makeup of intestinal flora. Moreover, butyric acid concentration and the amount of SCFA-producing bacteria, such as Ruminococcaceae and Lachnospiraceae, were both markedly elevated by CB1 receptor inhibition. The results of the spearman correlation study indicated that Lachnospiraceae showed a positive association with both ZO-1 and Occludin but was negatively correlated with the colon CB1 receptor, IL-1ß, and TNF-α. According to this study, we found that inhibiting CB1 receptor can improve CIH-induced colon injury by regulating gut microbiota, reducing mucosal damage and promoting tight junction recovery. KEY POINTS: •CIH leads to overexpression of CB1 receptor in colon tissue. •CIH causes intestinal flora disorder, intestinal mucosal damage, and disruption of tight junctions. •Inhibition of CB1 receptor can alleviate the colon injury caused by CIH through regulating the gut microbiota, reducing mucosal injury, and promoting tight junction recovery.


Subject(s)
Colon , Disease Models, Animal , Intestinal Mucosa , Receptor, Cannabinoid, CB1 , Animals , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Mice , Colon/pathology , Colon/microbiology , Colon/metabolism , Male , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Hypoxia/metabolism , Mice, Inbred C57BL , Zonula Occludens-1 Protein/metabolism , Occludin/metabolism , Occludin/genetics , Gastrointestinal Microbiome , Tight Junctions/metabolism
9.
Comput Biol Med ; : 108712, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38906761

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconveniencethis may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

10.
Int J Biol Macromol ; 274(Pt 2): 133504, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944069

ABSTRACT

We study the effect of electrolytes on the stability in aqueous media of spherical lignin particles (LP) and its relevance to Pickering emulsion stabilization. Factors considered included the role of ionic strength on morphology development, LP size distribution, surface charge, interfacial adsorption, colloidal and wetting behaviors. Stable emulsions are formed at salt concentrations as low as 50 mM, with the highest stability observed at a critical concentration (400 mM). We show salt-induced destabilization of LP aqueous dispersions at an ionic strength >400 mM. At this critical concentration LP flocculation takes place and particulate networks are formed. This has a profound consequence on the stability of LP-stabilized Pickering emulsions, affecting rheology and long-term stability. The results along with quartz microgravimetry and confocal microscopy observations suggest a possible mechanism for stabilization that considers the interfacial adsorption of LP at oil/water interfaces. The often-unwanted colloidal LP destabilization in water ensues remarkably stable Pickering emulsions by the effect of network formation.

11.
Mikrochim Acta ; 191(7): 406, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898359

ABSTRACT

Microneedles, the miniaturized needles, which can pierce the skin with minimal invasiveness open up new possibilities for constructing personalized Point-of-Care (POC) diagnostic platforms. Recent advances in microneedle-based POC diagnostic systems, especially their successful implementation with wearable technologies, enable biochemical detection and physiological recordings in a user-friendly manner. This review presents an overview of the current advances in microneedle-based sensor devices, with emphasis on the biological basis of transdermal sensing, fabrication, and application of different types of microneedles, and a summary of microneedle devices based on various sensing strategies. It concludes with the challenges and future prospects of this swiftly growing field. The aim is to present a critical and thorough analysis of the state-of-the-art development of transdermal diagnostics and sensing devices based on microneedles, and to bridge the gap between microneedle technology and pragmatic applications.


Subject(s)
Microinjections , Needles , Humans , Microinjections/instrumentation , Skin , Point-of-Care Systems , Animals , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Wearable Electronic Devices
12.
J Ethnopharmacol ; 333: 118416, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38848975

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia rupestris L. (AR) is a traditional medicinal herb commonly used in the Uyghurs and Kazakhs; it was first documented in the Supplement to Compendium of Materia Medica written by Zhao Xuemin in the Qing Dynasty of China and is used clinically to treat colds, hepatitis, and allergic diseases. AIM OF THE STUDY: The material basis and mechanisms of AR in acute liver injury (ALI) remain unclear. The purpose of this study was to reveal the possible active components involved in liver protection in AR and to preliminarily explore their pharmacological mechanisms. MATERIALS AND METHODS: The chemical composition of the ethanolic extract (ARA) was identified by UPLC-Q-Exactive-MS/MS and confirmed by 32 reference standards. The pharmacodynamic results were utilized to screen the active part within the ARA that contribute to the amelioration of CCl4/ConA-induced ALI. The main active components and core targets were predicted by network pharmacology and verified by molecular docking combined with qPCR and Western blotting. RESULTS: A total of 131 chemical components were identified in the ARA. The extraction parts of ARA had different therapeutic effects on ALI, among which the dichloromethane extract (ARA-D), which might constitute the main effective fraction of ARA, had significant anti-ALI effects. The network pharmacology results showed that targets including PIK3R1, AKT1, and EGFR, as well as 7 compounds, such as artemetin, vitexicarpin and rupestonic acid may play pivotal roles in treating CCl4/ConA-induced ALI. GO and KEGG pathway enrichment analyses revealed that the PI3K-AKT signaling pathway was the main pathway involved. In each model, ARA-D dose-dependently reduced the increase in ALT levels. High-dose ARA-D markedly decreased ALT activity from 196.79 ± 24.82 to 66.37 ± 16.19 U/L in the CCl4 model group and from 178.00 ± 28.39 to 50.67 ± 7.39 U/L in the ConA model group. Further studies revealed that ARA-D significantly inhibited TNF-α, IL-1ß, and IL-6 expression and inhibited the protein expression of PI3K, p-PI3K, and p-AKT in CCl4/ConA-induced ALI. CONCLUSION: ARA-D exhibits protective effects against ALI induced by CCl4/ConA, potentially through inhibition of the PI3K-AKT signaling pathway. These findings may help to determine the material basis and mechanisms of action of ARA-D for liver protection and provide ideas for future comprehensive studies.


Subject(s)
Artemisia , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Phosphatidylinositol 3-Kinases , Plant Extracts , Proto-Oncogene Proteins c-akt , Signal Transduction , Artemisia/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Male , Methylene Chloride/chemistry , Mice , Molecular Docking Simulation , Liver/drug effects , Liver/metabolism
13.
Article in English | MEDLINE | ID: mdl-38862431

ABSTRACT

Ribonuclease P (RNase P) was first described in the 1970's as an endoribonuclease acting in the maturation of precursor transfer RNAs (tRNAs). More recent studies, however, have uncovered non-canonical roles for RNase P and its components. Here, we review the recent progress of its involvement in chromatin assembly, DNA damage response, and maintenance of genome stability with implications in tumorigenesis. The possibility of RNase P as a therapeutic target in cancer is also discussed.


Subject(s)
Neoplasms , RNA Precursors , RNA, Transfer , Ribonuclease P , Ribonuclease P/metabolism , Ribonuclease P/genetics , Humans , RNA, Transfer/metabolism , RNA, Transfer/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/enzymology , RNA Precursors/metabolism , RNA Precursors/genetics , Genomic Instability , Animals , DNA Damage , RNA Processing, Post-Transcriptional , Chromatin Assembly and Disassembly/genetics
14.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38741271

ABSTRACT

This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.


Subject(s)
Brain Stem Infarctions , Cerebellum , Magnetic Resonance Imaging , Neural Pathways , Pons , Humans , Male , Female , Middle Aged , Cerebellum/physiopathology , Cerebellum/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Pons/diagnostic imaging , Pons/physiopathology , Brain Stem Infarctions/physiopathology , Brain Stem Infarctions/diagnostic imaging , Aged , Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging
15.
Heliyon ; 10(10): e30307, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38774331

ABSTRACT

The common strain black carp (Cyprinus carpio var. baisenensis) is a culturally important carp strain that is raised and cultured in Guangxi Province, China. Its color reflects the interactions between the Burau people and their surrounding environment. The population of the common carp black strain was isolated and cultured in a rice-fish integration system. To explore the genetic diversity and protection of germplasm resources, we analyzed mitochondrial DNA (mtDNA) sequences, specifically the displacement loop (D-loop) and cytochrome b (Cytb), using single-nucleotide polymorphisms (SNP). We compared these sequences with those from four other local common carp populations. The study included a total of 136 adult common carps from five strain populations: the common black carp strain (HJ = 31), Jian (F = 30), Heilongjiang (H = 10), Songpu (S = 31), and Saijiang (SJ = 34). The results of the Cytb and D-loop analyses showed that the Heilongjiang carp (H) and Saijiang (SJ) populations had the highest levels of haplotype diversity (0.867 ± 0.034785) and nucleotide diversity (π = 0.0063 ± 0.000137 and 0.0093 ± 0.000411), respectively. On the other hand, the Common carp black strain population (HJ) exhibited the lowest haplotype diversity in both Cytb and D-loop, with haplotype 2 being the most commonly observed among the populations. Private haplotypes dominated the five common carp populations, which were significantly different at P<0.001. Furthermore, analyzing the coefficient of genetic differentiation (Fst), the highest genetic difference was observed between Saijiang (SJ) and Heilongjiang (H) (Fst = 0.963), whereas the lowest was observed between Songpu (S) and the Common carp black strain population (HJ) (Fst = 0.019) for the Cytb gene sequences. For the D-loop, the Common carp black strain population (HJ) and Songpu (S) (Fst = 0.7) had the highest values, and Heilongjiang (H) and Common black carp strain (HJ) had an Fst of 0.125. Additionally, the AMOVA analysis revealed a higher level of variance for the Cytb and D-loop genes, indicating lower genetic diversity within the local carp community. On the other hand, the phylogenetic tree analysis showed that the five carp populations were closely related and formed a distinct cluster. The distinct cluster of populations suggests a common ancestor or recent gene flow, possibly due to geographic proximity or migration history, and unique genetic characteristics, possibly due to adaptations or selective pressures. The results of this study provide valuable insights into the genetic diversity of the common strain black carp, which can have implications for conservation, breeding programs, evolutionary studies, and fisheries management.

16.
Pediatr Res ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710942

ABSTRACT

BACKGROUND: This study aims to investigate the role of endoplasmic reticulum stress (ER stress) in human dermal lymphatic endothelial cells (HDLECs) and lymphatic malformations (LMs) and its relationship with aerobic glycolysis and inflammation. METHODS: The proliferation and apoptosis of HDLECs were examined with lipopolysaccharide (LPS) treatment. ER stress-associated proteins and glycolysis-related markers were detected by western blot. Glycolysis indexes were detected by seahorse analysis and lactic acid production assay kits. Immunohistochemistry was used to reveal the ER stress state of lymphatic endothelial cells (LECs) in LMs. RESULTS: LPS induced ER stress in HDLECs but did not trigger detectable apoptosis. Intriguingly, LPS-treated HDLECs also showed increased glycolysis flux. Knockdown of Hexokinase 2, a key enzyme for aerobic glycolysis, significantly inhibited the ability of HDLECs to resist ER stress-induced apoptosis. Moreover, compared to normal skin, glucose-regulated protein 78 (GRP78/BIP), and phosphorylation protein kinase R-like kinase (p-PERK), two key ER stress-associated markers, were upregulated in LECs of LMs, which was correlated with the inflected state. In addition, excessively activated ER stress inhibited the progression of LMs in rat models. CONCLUSIONS: These data indicate that glycolysis could rescue activated ER stress in HDLECs, which is required for the accelerated development of LMs. IMPACT: Inflammation enhances both ER stress and glycolysis in LECs while glycolysis is required to attenuate the pro-apoptotic effect of ER stress. Endoplasmic reticulum (ER) stress is activated in lymphatic endothelial cells (LECs) of LMs, especially in inflammatory condition. The expression of ER stress-related proteins is increased in LMs and correlated with Hexokinase 2 expression. Pharmacological activation of ER stress suppresses the formation of LM lesions in the rat model. ER stress may be a promising and effective therapeutic target for the treatment of LMs.

17.
Cell Death Differ ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719928

ABSTRACT

Neuronal ferroptosis plays a key role in neurologic deficits post intracerebral hemorrhage (ICH). However, the endogenous regulation of rescuing ferroptotic neurons is largely unexplored. Here, we analyzed the integrated alteration of metabolomic landscape after ICH using LC-MS and MALDI-TOF/TOF MS, and demonstrated that aconitate decarboxylase 1 (Irg1) and its product itaconate, a derivative of the tricarboxylic acid cycle, were protectively upregulated. Deficiency of Irg1 or depletion of neuronal Irg1 in striatal neurons was shown to exaggerate neuronal loss and behavioral dysfunction in an ICH mouse model using transgenic mice. Administration of 4-Octyl itaconate (4-OI), a cell-permeable itaconate derivative, and neuronal Irg1 overexpression protected neurons in vivo. In addition, itaconate inhibited ferroptosis in cortical neurons derived from mouse and human induced pluripotent stem cells in vitro. Mechanistically, we demonstrated that itaconate alkylated glutathione peroxidase 4 (GPx4) on its cysteine 66 and the modification allosterically enhanced GPx4's enzymatic activity by using a bioorthogonal probe, itaconate-alkyne (ITalk), and a GPx4 activity assay using phosphatidylcholine hydroperoxide. Altogether, our research suggested that Irg1/itaconate-GPx4 axis may be a future therapeutic strategy for protecting neurons from ferroptosis post ICH.

18.
Eur J Med Chem ; 272: 116468, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38718626

ABSTRACT

High expression of ubiquitin-specific protease 10 (USP10) promote the proliferation of hepatocellular carcinoma (HCC), thus the development of USP10 inhibitors holds promise as a novel therapeutic approach for HCC treatment. However, the development of selective USP10 inhibitor is still limited. In this study, we developed a novel USP10 inhibitor for investigating the feasibility of targeting USP10 for the treatment of HCC. Due to high USP10 inhibition potency and prominent selectivity, compound D1 bearing quinolin-4(1H)-one scaffold was identified as a lead compound. Subsequent research revealed that D1 significantly inhibits cell proliferation and clone formation in HCC cells. Mechanistic insights indicated that D1 targets the ubiquitin pathway, facilitating the degradation of YAP (Yes-associated protein), thereby triggering the downregulation of p53 and its downstream protein p21. Ultimately, this cascade leads to S-phase arrest in HCC cells, followed by cell apoptosis. Collectively, our findings highlight D1 as a promising starting point for USP10-positive HCC treatment, underscoring its potential as a vital tool for unraveling the functional intricacies of USP10.


Subject(s)
Adaptor Proteins, Signal Transducing , Antineoplastic Agents , Carcinoma, Hepatocellular , Cell Proliferation , Drug Discovery , Liver Neoplasms , Transcription Factors , Ubiquitin Thiolesterase , YAP-Signaling Proteins , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Structure-Activity Relationship , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , YAP-Signaling Proteins/metabolism , Molecular Structure , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Apoptosis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Cell Line, Tumor
19.
Int J Biol Macromol ; 270(Pt 1): 132155, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729462

ABSTRACT

This study focuses on enhancing the strength and water stability of paper straws through a novel approach involving a binary emulsion of lignin-based polyurethane and chitosan. Kraft lignin serves as the raw material for synthesizing a blocked waterborne polyurethane, subsequently combined with carboxylated chitosan to form a stable binary emulsion. The resulting emulsion, exhibiting remarkable stability over at least 6 months, is applied to the base paper. Following emulsion application, the paper undergoes torrefaction at 155 °C. This process deblocks isocyanate groups, enabling their reaction with hydroxyl groups on chitosan and fibers, ultimately forming ester bonds. This reaction significantly improves the mechanical strength and hydrophobicity of paper straws. The composite paper straws demonstrate exceptional mechanical properties, including a tensile strength of 47.21 MPa, Young's modulus of 4.33 GPa, and flexural strength of 32.38 MPa. Notably, its water stability is greatly enhanced, with a wet tensile strength of 40.66 MPa, surpassing commercial paper straws by 8 folds. Furthermore, the composite straw achieves complete biodegradability within 120 days, outperforming conventional paper straws in terms of environmental impact. This innovative solution presents a promising and sustainable alternative to plastic straws, addressing the urgent need for eco-friendly products.


Subject(s)
Chitosan , Emulsions , Lignin , Paper , Polyurethanes , Tensile Strength , Polyurethanes/chemistry , Chitosan/chemistry , Lignin/chemistry , Emulsions/chemistry , Water/chemistry , Biodegradation, Environmental , Mechanical Phenomena , Hydrophobic and Hydrophilic Interactions , Elastic Modulus
20.
Opt Express ; 32(6): 9634-9643, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571193

ABSTRACT

Cylindrical vector beams (CVBs) exhibit great potential for multiplexing communication, owing to their mode orthogonality and compatibility with conventional wavelength multiplexing techniques. However, the practical application of CVB multiplexing communication faces challenges due to the lack of effective spatial polarization manipulation technologies for (de)multiplexing multi-dimensional physical dimensions of CVBs. Herein, we introduce a wavelength- and polarization-sensitive cascaded phase modulation strategy that utilizes multiple coaxial metasurfaces for multi-dimensional modulation of CVBs. By leveraging the spin-dependent phase modulation mechanism, these metasurfaces enable the independent transformation of the two orthogonal polarization components of CVB modes. Combined with the wavelength sensitivity of Fresnel diffraction in progressive phase modulation, this approach establishes a high-dimensional mapping relationship among CVB modes, wavelengths, spatial positions, and Gaussian fundamental modes, thereby facilitating multi-dimensional (de)multiplexing involving CVB modes and wavelengths. As a proof of concept, we theoretically demonstrate a 9-channel multi-dimensional multiplexing system, successfully achieving joint (de)multiplexing of 3 CVB modes (1, 2, and 3) and 3 wavelengths (1550 nm, 1560 nm, and 1570 nm) with a diffraction efficiency exceeding 80%. Additionally, we show the transmission of 16-QAM signals across 9 channels with the bit-error-rates below 10-5. By combining the integrability of metasurfaces with the high-dimensional wavefront manipulation capabilities of multilevel modulation, our strategy can effectively address the diverse demands of different wavelengths and CVB modes in optical communication.

SELECTION OF CITATIONS
SEARCH DETAIL