Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Phys Chem Lett ; : 8861-8866, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169277

ABSTRACT

Iron oxide nanoparticles (IONPs) have garnered significant interest as magnetic resonance imaging (MRI) contrast agents due to their exceptional magnetic properties and biocompatibility. Toward more precise diagnosis of diseases, the relaxometric properties of IONPs have become a key research focus. Despite extensive studies on structural factors such as size, morphology, surface modification, crystalline phase, and aggregation state, the correlation between the intrinsic structure and relaxometric behavior remains unclear, particularly for ultrasmall IONPs. To address this issue, we carefully compared IONPs with identical size, shape, and surface modification and found out strong correlations among the content of Fe2+ ions, oxygen vacancies, and the relaxometric properties. By optimizing the reaction system, ultrasmall IONPs showing outstanding relaxometric performance, with longitudinal relaxivity up to 9.0 mM-1 s-1 and transverse relaxivity up to 28.5 mM-1 s-1, were successfully obtained. These results underscore the pivotal role of Fe2+ in the relaxometric properties of IONP-based MRI contrast agents.

2.
Front Bioeng Biotechnol ; 11: 1279446, 2023.
Article in English | MEDLINE | ID: mdl-37811376

ABSTRACT

Plaque rupture is a critical concern due to its potential for severe outcomes such as cerebral infarction and myocardial infarction, underscoring the urgency of noninvasive early diagnosis. Magnetic resonance imaging (MRI) has gained prominence in plaque imaging, leveraging its noninvasiveness, high spatial resolution, and lack of ionizing radiation. Ultrasmall iron oxides, when modified with polyethylene glycol, exhibit prolonged blood circulation and passive targeting toward plaque sites, rendering them conducive for MRI. In this study, we synthesized ultrasmall iron oxide nanoparticles of approximately 3 nm via high-temperature thermal decomposition. Subsequent surface modification facilitated the creation of a dual-modality magnetic resonance/fluorescence probe. Upon intravenous administration of the probes, MRI assessment of atherosclerotic plaques and diagnostic evaluation were conducted. The application of Flash-3D sequence imaging revealed vascular constriction at lesion sites, accompanied by a gradual signal amplification postprobe injection. T1-weighted imaging of the carotid artery unveiled a progressive signal ratio increase between plaques and controls within 72 h post-administration. Fluorescence imaging of isolated carotid arteries exhibited incremental lesion-to-control signal ratios. Additionally, T1 imaging of the aorta demonstrated an evolving signal enhancement over 48 h. Therefore, the ultrasmall iron oxide nanoparticles hold immense promise for early and noninvasive diagnosis of plaques, providing an avenue for dynamic evaluation over an extended time frame.

3.
Nanoscale ; 15(8): 3991-3999, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36723217

ABSTRACT

Magnetic resonance imaging (MRI)/nuclear medicine imaging (NMI) dual-modality imaging based on radiolabeled nanoparticles has been increasingly exploited for accurate diagnosis of tumor and cardiovascular diseases by virtue of high spatial resolution and high sensitivity. However, significant challenges exist in pursuing truly clinical applications, including massive preparation and rapid radiolabeling of nanoparticles. Herein, we report a clinically translatable kit for the convenient construction of MRI/NMI nanoprobes relying on the flow-synthesis and anchoring group-mediated radiolabeling (LAGMERAL) of iron oxide nanoparticles. First, homogeneous iron oxide nanoparticles with excellent performance were successfully obtained on a large scale by flow synthesis, followed by the surface anchoring of diphosphonate-polyethylene glycol (DP-PEG) to simultaneously render the underlying nanoparticles biocompatible and competent in robust labeling of radioactive metal ions. Moreover, to enable convenient and safe usage in clinics, the DP-PEG modified nanoparticle solution was freeze-dried and sterilized to make a radiolabeling kit followed by careful evaluations of its in vitro and in vivo performance and applicability. The results showed that 99mTc labeled nanoprobes are effectively obtained with a labeling yield of over 95% in 30 minutes after simply injecting Na[99mTcO4] solution into the kit. In addition, the Fe3O4 nanoparticles sealed in the kit can well stand long-term storage even for 300 days without deteriorating the colloidal stability and radiolabeling yield. Upon intravenous injection of the as-prepared radiolabeled nanoprobes, high-resolution vascular images of mice were obtained by vascular SPECT imaging and magnetic resonance angiography, demonstrating the promising clinical translational value of our radiolabeling kit.


Subject(s)
Nanoparticles , Nuclear Medicine , Mice , Animals , Radionuclide Imaging , Tomography, Emission-Computed, Single-Photon/methods , Magnetic Resonance Imaging/methods , Polyethylene Glycols
SELECTION OF CITATIONS
SEARCH DETAIL