Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
Food Chem ; 462: 140704, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39226642

ABSTRACT

Clove (Syzygium aromaticum) is one of the most commonly used spices in stewed beef to enrich and improve its aroma during the stewing process. Gas chromatography ion mobility spectroscopy (GC-IMS), Q Exactive GC-Orbitrap-MS-O (QE-GC-MS/O), combined with sensory evaluation were employed to analyze the flavor endowment of aroma-active compounds in cloves to stewed beef. A total of 173 volatiles were identified in the clove powder (CP), stewed beef with clove (SBC), and stewed beef with salt (SBS), of which 21 volatiles were considered as aroma-active compounds. The concept of flavor endowment of aroma-active compounds in cloves was defined innovatively, and the endowment rate values (ERVs) of stewed beef were calculated. Nine aroma-active compounds in cloves were found to have a flavor endowment effect on stewed beef, while the terpenoids exhibited high ERVs. Despite the low ERV of eugenol, it still significantly impacted the aroma profile of SBC due to its high odor activity value (OAV) and flavor dilution (FD) factor. These volatiles offered mainly the clove, herbal, anise, and floral odor to stewed beef, which was also confirmed by sensory evaluation. These findings indicated that the terpenoids, phenolics and ethers in cloves had a significant influence on the overall aroma of stewed beef through the flavor endowment, which contributed to the precise use of cloves and improved the aroma of stewed beef.


Subject(s)
Flavoring Agents , Gas Chromatography-Mass Spectrometry , Odorants , Syzygium , Taste , Volatile Organic Compounds , Syzygium/chemistry , Cattle , Volatile Organic Compounds/chemistry , Odorants/analysis , Humans , Animals , Flavoring Agents/chemistry , Adult , Female , Male , Spices/analysis , Cooking , Young Adult , Red Meat/analysis
2.
Langmuir ; 40(37): 19517-19527, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39231009

ABSTRACT

Colloidal crystal nanomaterials have been proven to be valuable substrates for optical-based biosensing due to their ordered macroporous nanostructure and brilliant optical properties. In this work, silica colloidal crystal (SCC) thin films, as well as polystyrene-SCC composite films and inverse opal (IO) polystyrene films fabricated using SCC as templates, are investigated for their application as substrate materials in optical interferometric biosensors. The SCC films formed by the self-assembly of silica colloidal crystals have the most densely packed nano-3D structure, also known as the opal structure. IO films are fabricated by filling the opal pores of SCC with polystyrene and then removing the template, resulting in an interconnected nano-3D ordered macroporous structure, as indicated by the name inverse opal. The performance of the three materials was compared and discussed based on an ordered porous layer interferometry optical platform, focusing on refractive index response, protein adsorption response, and biomolecular interaction response. These results could potentially offer innovative material support for the advancement of label-free optical biosensors, which can be used for more biological/biochemical/biomolecular reaction monitoring studies.


Subject(s)
Biosensing Techniques , Polystyrenes , Polystyrenes/chemistry , Biosensing Techniques/methods , Silicon Dioxide/chemistry , Nanostructures/chemistry , Porosity , Interferometry/methods , Adsorption , Colloids/chemistry , Surface Properties
3.
J Transl Med ; 22(1): 840, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267037

ABSTRACT

BACKGROUND: The tumor microenvironment (TME) exerts profound effects on tumor progression and therapeutic efficacy. In hepatocellular carcinoma (HCC), the TME is enriched with cancer-associated fibroblasts (CAFs), which secrete a plethora of cytokines, chemokines, and growth factors that facilitate tumor cell proliferation and invasion. However, the intricate architecture of the TME in HCC, as well as the mechanisms driving interactions between tumor cells and CAFs, remains largely enigmatic. METHODS: We analyzed 10 spatial transcriptomics and 12 single-cell transcriptomics samples sourced from public databases, complemented by 20 tumor tissue samples from liver cancer patients obtained in a clinical setting. RESULTS: Our findings reveal that tumor cells exhibiting high levels of SPP1 are preferentially localized adjacent to hepatic stellate cells (HSCs). The SPP1 secreted by these tumor cells interacts with the CD44 receptor on HSCs, thereby activating the PI3K/AKT signaling pathway, which promotes the differentiation of HSCs into CAFs. Notably, blockade of the CD44 receptor effectively abrogates this interaction. Furthermore, in vivo studies demonstrate that silencing SPP1 expression in tumor cells significantly impairs HSC differentiation into CAFs, leading to a reduction in tumor volume and collagen deposition within the tumor stroma. CONCLUSIONS: This study delineates the SPP1-CD44 signaling axis as a pivotal mechanism underpinning the interaction between tumor cells and CAFs. Targeting this pathway holds potential to mitigate liver fibrosis and offers novel therapeutic perspectives for liver cancer management.


Subject(s)
Carcinoma, Hepatocellular , Chemotaxis , Hepatic Stellate Cells , Liver Neoplasms , Transcriptome , Tumor Microenvironment , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Humans , Transcriptome/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Animals , Chemotaxis/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Cell Line, Tumor , Signal Transduction , Hyaluronan Receptors/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Differentiation , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Regulation, Neoplastic
4.
Int J Biol Macromol ; 278(Pt 1): 134649, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39128763

ABSTRACT

Immunoglobulin G (IgG) exhibits potent antiviral, antibacterial, and immunological activities. The digestion process and bioavailability of IgG are often a concern. Dietary hydrocolloids are crucial for regulating healthy digestion and the bioavailability of protein as functional components. Understanding the effects of dietary hydrocolloids on the digestive kinetics of IgG is requisite. Herein, the pepsin and trypsin digestion of IgG was investigated using ordered porous layer interferometry (OPLI). The real-time variation in the interference spectral shift reflected by OPLI can be converted into changes in the optical thickness (OT) to obtain a degradation kinetics curve. The impact of dietary hydrocolloids, including alginic acid sodium salt (ALG), polydextrose (PD), and konjac glucomannan (KG), on IgG degradation was evaluated using OPLI. The results demonstrated that ALG significantly inhibited the degradation of IgG by pepsin under acidic conditions, whereas the addition of PD increased the Michaelis-Menten constant for IgG degradation by trypsin. Notably, this dependence is not based on the hydrocolloid viscosity, but relies more on the electrical properties. The study enhances our understanding of how hydrocolloids affect IgG digestion and could provide valuable insights into preserving IgG activity and facilitating the development of oral drugs or health products related to IgG.


Subject(s)
Colloids , Immunoglobulin G , Pepsin A , Proteolysis , Trypsin , Immunoglobulin G/chemistry , Trypsin/chemistry , Trypsin/metabolism , Colloids/chemistry , Pepsin A/metabolism , Pepsin A/chemistry , Kinetics , Humans , Animals
5.
Anal Chem ; 96(33): 13482-13493, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39094103

ABSTRACT

Fibrinolytic activity assay is particularly important for the detection, diagnosis, and treatment of cardiovascular disease and the development of fibrinolytic drugs. A novel efficacious strategy for real-time and label-free dynamic detection of fibrinolytic activity based on ordered porous layer interferometry (OPLI) was developed. Fibrin or a mixture of fibrin and plasminogen (Plg) was loaded into the highly ordered silica colloidal crystal (SCC) film scaffold to construct a fibrinolytic response interference layer to measure fibrinolytic activity with different mechanisms of action. Fibrinolytic enzyme-triggered fibrinolysis led to the migration of interference fringes in the interferogram, which could be represented by optical thickness changes (ΔOT) tracked in real time by the OPLI system. The morphology and optical property of the fibrinolytic response interference layer were characterized, and the Plg content in the fibrinolytic response interference layer and experimental parameters of the system were optimized. The method showed adequate sensitivity for the fibrinolytic activity of lumbrokinase and streptokinase, with wide linear ranges of 12-6000 and 10-2000 U/mL, respectively. Compared with the traditional fibrin plate method, it has a lower detection limit and higher linearity. The whole kinetic process of fibrinolysis by these two fibrinolytic drug models was recorded in real time, and the Michaelis constant and apparent kinetic parameters were calculated. Importantly, some other blood proteins were less interfering with this system, and it showed reliability in fibrin activity detection in real whole blood samples. This study established a better and more targeted research method of in vitro fibrinolysis and provided dynamic monitoring data for the analysis of fibrinolytic activity of whole blood.


Subject(s)
Fibrin , Fibrinolysis , Interferometry , Interferometry/methods , Fibrinolysis/drug effects , Fibrin/metabolism , Fibrin/chemistry , Humans , Plasminogen/metabolism , Plasminogen/analysis , Streptokinase , Silicon Dioxide/chemistry , Porosity , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/chemistry , Kinetics
6.
Anal Chem ; 96(36): 14413-14423, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38989558

ABSTRACT

Heparan sulfate (HS) meshes within the glycocalyx on cell surfaces have protein recognition ability and have been crucial for gaining insights into vital bioprocesses, such as viral infection, cancer development, and inflammation. The protein recognition ability is determined by the mesh property and compositions of HS, although little attention has been paid to the effect of the mesh property on the recognition. An in-depth specificity study of protein-HS-mesh recognition is essential to illustrate related biological functions. Here, ordered porous layer interferometry is applied to study the interaction behavior between mimicked HS meshes and lactoferrin (LF). Our work aimed at mimicking HS meshes with heparin, a widely used substitute of HS, and analyzing the specific LF-heparin-mesh interaction mechanism by inhibiting the nonspecific interaction in a blended sample. We found that the counterion release-based electrostatic interaction is dominant in the specific LF-heparin-mesh recognition. Furthermore, we detail the contributions of nonspecific and specific interactions to the recognition. We illustrate that the concentrated charge distribution of the proteins appears to be primarily related to this robust, specific recognition.


Subject(s)
Heparitin Sulfate , Interferometry , Lactoferrin , Lactoferrin/chemistry , Lactoferrin/metabolism , Heparitin Sulfate/chemistry , Porosity , Heparin/chemistry , Humans , Surface Properties
7.
Curr Eye Res ; : 1-8, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856166

ABSTRACT

PURPOSE: Ischemic retinopathy is the major cause of vision-threatening conditions. Inflammation plays an important role in the pathogenesis of ischemic retinopathy. Formyl peptide receptor 1 (FPR1) has been reported to be implicated in the regulation of inflammatory disorders. However, the role of FPR1 in the progression of ischemic retinal injury has not been fully explained. METHODS: The activation of FPR1 was measured by real-time PCR and western blotting in the retina of OIR. The effect of FPR1 on the expression of inflammatory cytokines and relevant pro-angiogenic factors was assessed between wild-type and FPR1-deficiency OIR mice. The impact of FPR1 on retinal angiogenesis was evaluated through quantifying retinal vaso-obliteration and neovascularization between FPR1+/+ and FPR1-/- OIR mice. At last, the neuronal effect of FPR1 on the ischemic retina was investigated by ERG between wild-type and FPR1-deficient OIR mice. RESULTS: The expression of FPR1 significantly increased in the retina of OIR. Furthermore, FPR1 deficiency downregulated pro-inflammatory and pro-angiogenic factors. Ablation of FPR1 suppressed the retinal pathological neovascularization and promoted reparative revascularization, ultimately improving retinal neural function after ischemic injury. CONCLUSION: In ischemic retinopathy, FPR1 aggravates inflammation and inhibits reparative angiogenesis to exacerbate neuronal dysfunction.

8.
Phys Rev Lett ; 132(15): 155001, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682968

ABSTRACT

We report the femtosecond time-resolved dynamics of relativistic electron pulses in ultraintense laser-foil interactions, by characterizing the terahertz self-radiation with single-shot ultrabroadband interferometry. Experimental measurements together with theoretical modeling reveal that the electron pulses inherit the duration of the driving laser pulse. We also visualize the electron recirculation dynamics, where electrons remain trapped inside the self-generated electrostatic potential well and rebound back and forth around the thin foil for hundreds of femtoseconds. Our results not only demonstrate an in situ, real-time metrology scheme for electron bursts, but also have important implications for understanding and manipulating the time-domain properties of laser-driven particle and radiation sources.

9.
Materials (Basel) ; 17(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38541422

ABSTRACT

Al-based foams have drawn increasing attention from industry due to their integration of structure and functional properties. However, large-sized Al-based foams still cannot be homogeneously strengthened by long-time aging due to their low thermal conductivity. In this study, we proposed an age-hardening approach that was applied in large-sized Al-0.16Sc-0.17Zr (wt.%) foams via micro-alloying with Zr and Ti compared with Al-0.21Sc foams; it not only achieved homogeneous strength by long-term aging but also reduced the cost of the alloy by substituting Zr and Ti for the more expensive Sc content. The results show that the Al3(Sc, Zr, Ti) phase with a core-shell structure as a crucial precipitation strengthening phase by micro-alloying with Zr and Ti was less prone to coarsening after a prolonged aging heat treatment. Therefore, the yielding strength of Al-Sc foam micro-alloying with Zr and Ti remained almost unchanged after a maximum aging time of 1440 h due to less coarsening precipitate, which is consistent with the results of mechanical experiments. These findings provide a new way for the heat treatment strengthening of large-sized Al-based foams, thus promoting their industrial applications.

10.
Poult Sci ; 103(1): 103201, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980727

ABSTRACT

Chinese herbs have been used as feed additives and are commonly utilized in domestic intensive livestock farming. However, their impact on the production performance and intestinal health of broiler breeders has yet to be thoroughly explored. This study aimed to evaluate the effects of a Chinese herbal mixture (CHM) on the production performance of broiler breeders in terms of reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders. A total of 336 thirty-wk-old hens were randomly allotted to 4 groups with 6 replicates of fourteen hens each, which fed a basal diet supplemented with 0 (CON), 500 (CHM500), 1,000 (CHM1000), and 1,500 (CHM1500) mg/kg CHM for 56 days, respectively. Our results showed that dietary supplementation with CHM1000 increased the laying rate and number of SYF and decreased the feed conversion ratio (P < 0.05). All CHM groups increased oviduct and ovarian indexes, serum E2 and T-AOC levels, and decreased serum TG and MDA levels compared with CON (P < 0.05). In comparison to the CON group, the CHM1000 and CHM1500 groups increased serum ALB, IgM, and IL-10 levels, whereas the CHM1000 group also increased serum TP and SOD levels, and the CHM1500 group increased serum P and decreased serum TNF-α (P < 0.05). The addition of CHM increased FSHR expressions in the ovary, Claudin-1 expressions in the jejunum, and SOD1 expressions in the liver and ovary, but decreased the mRNA expressions of INH in the ovary as well as IL-2 and IL-6 expressions in the jejunum (P < 0.05). Moreover, CHM500 and CHM1000 groups increased CAT, GPx, and HO-1 expression in the ovary, and SOD1 and GPx expression in the jejunum, while decreasing IL-17A expression in the jejunum (P < 0.05). In addition, CHM1000 and CHM1500 groups increased villus height, VCR, and the mRNA expressions of Nrf2, HO-1, Occludin, and MUC2 in the jejunum, and IL-10 expression in the ovary, while decreasing IL-2 and IL-17A expression in the ovary, in addition to increasing GPx, Nrf2, HO-1, NQO1, and IL-10 expression in the liver (P < 0.05). Supplementation with CHM1000 increased ESR-α, ESR-ß, GnRH, Nrf2, and NQO1 expression in the ovary, but decreased IFN-γ expression in the ovary as well as crypt depth in the jejunum (P < 0.05). Supplementing CHM1500 increased NQO1 and ZO-1 expression in the jejunum and decreased IL-2 in the liver (P < 0.05). The high-throughput sequencing results showed that dietary CHM1000 supplementation altered the composition of the intestinal microbiota, as evidenced by the regulation of the genera Lactobacillus, Faecalibacterium, and Phascolarctobacterium. PICRUSt analysis revealed that metabolic pathways of bacterial chemotaxis, butanoate metabolism, and synthesis and degradation of ketone bodies were enriched in the CHM1000 group. Spearman's correlation analysis indicated that the differentiated genera were significantly associated with the production performance, serum hormone, and gut barrier-related genes. Taken together, supplementation of CHM, especially at 1,000 mg/kg, could improve production performance by regulating reproductive hormones, antioxidant capacity, immunity, and intestinal health of broiler breeders, and maybe provide insights into its application as a potential feed additive to promote the performance of broiler breeders.


Subject(s)
Antioxidants , Interleukin-10 , Animals , Female , Antioxidants/metabolism , Interleukin-17 , Chickens/physiology , NF-E2-Related Factor 2/metabolism , Interleukin-2 , Superoxide Dismutase-1/metabolism , Dietary Supplements/analysis , Diet/veterinary , Hormones/metabolism , RNA, Messenger/metabolism , Animal Feed/analysis
11.
Animals (Basel) ; 13(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003204

ABSTRACT

The aim of this study was to investigate the effects of adding perilla seed meal (PSM) to the diet on reproductive performance, egg quality, yolk fatty acids, antioxidant capacity and liver lipid metabolism in breeding hens. A total of 192 31-week-old yellow-feathered hens were randomly divided into 4 treatments with 6 replicates of 8 birds for 8 weeks. The chickens were fed a typical corn-soybean meal diet containing 0% (control), 0.3%, 0.6%, and 1% PSM. The results showed that PSM can change the productivity of laying hens. Adding 0.6% PSM to the feed reduced the mortality rate of chickens. Adding 1% PSM improved the fertilization rate and hatching rate of chickens. Regarding egg quality, the albumen height and Haugh unit were improved in the 0.6% PSM group. The content of MUFAs and PUFAs in the egg yolk was increased in all the PSM groups, while SFAs were only increased in the 0.6% PSM group. Among the indicators related to lipid metabolism, serum GLU decreased in all the PSM groups. The 0.6% PSM group had a reduction in serum and liver TG, as well as reductions in serum LDL-C and ALT. The same results were observed for the abdominal fat percentage in the 0.6% PSM group. Liver lipid metabolism-associated gene expression of FAS and LXRα was decreased in all the PSM groups, and the mRNA expression of ACC and SREBP-1c was significantly reduced in the 0.6% PSM group. HE staining showed that the vacuoles in the liver tissue gradually decreased with increasing PSM doses, especially the 1% PSM dose. Lipid droplets with a similar trend were observed using Oil Red O staining. In the results of the antioxidant capacity test, the serum T-AOC was increased in the 0.6% and 1% PSM groups, and the SOD in both the serum and liver was significantly increased in all the PSM groups. The expression of antioxidant-related genes such as Nrf2, NQO-1, HO-1, CAT and GSH-Px was significantly upregulated in the 1% PSM group. In conclusion, the PSM diet improved the lipid metabolism and antioxidant capacity of breeding hens. PSM reduces mortality and improves fertilization and hatchability in the late laying period of chickens, resulting in greater benefits. We recommend adding 0.6% PSM to layer feed, which improves the physical condition of the hens and brings higher economic benefits.

12.
J Agric Food Chem ; 71(46): 17860-17873, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37883668

ABSTRACT

To investigate the effects of conformational changes and thermal degradation of myofibrillar protein (MP), sarcoplasmic protein (SP), and collagen (CO) on the binding ability for aroma compounds during heating. Using SDS-PAGE, HPLC, and LC-MS/MS, a consistent rise in the total concentration of peptides and free amino acids formed by the thermal degradation of proteins was observed. The surface hydrophobicity, total sulfhydryl content, particle size, and secondary structure content of proteins changed significantly over time. Furthermore, the aroma binding ability of proteins was determined by gas chromatography-mass spectrometry. The results revealed an increase in binding ability during 5 or 10 min of heating due to protein unfolding and the accumulation of degradation products. However, the binding ability decreased due to protein aggregation with prolonged heating. Notably, all proteins exhibited strong affinity toward (E)-2-octenal, (E,E)-2,4-decadienal, 2-methyl-3-furanthiol, and dimethyl trisulfide. The binding ability of MP and SP was similar but differed significantly from that of CO, which had lower binding ability for hexanal, (E)-2-octenal, (E,E)-2,4-decadienal, and dimethyl trisulfide compared to MP and SP.


Subject(s)
Odorants , Tandem Mass Spectrometry , Odorants/analysis , Chromatography, Liquid , Collagen
13.
Memory ; 31(9): 1185-1196, 2023 10.
Article in English | MEDLINE | ID: mdl-37608681

ABSTRACT

Forgetting is an important phenomenon in working memory. Understanding forgetting could offer a window into the very core of cognition. According to the removal hypothesis, forgetting occurs because distractors interfere with memory traces, and this interference can be actively removed. In the decay refresh hypothesis, forgetting occurs because the memory trace decays with time and can be recovered by refreshment. In the present study, a multidistractor complex span task was designed to directly test the cause of forgetting. The free time after a particular distractor and the total free time were manipulated, with the priming effect of the repeated distractor as a detector. The results showed that a longer free time after the first distractor weakened the priming effect, but a longer total free time had no influence. These results supported the removal hypothesis. The forgetting of distractors was not due to decay but due to removal. The trace of a distractor would be removed when it stops being processed. The removal of a distractor occurs when individuals have free time directly after it, whereas the free time after another distractor is not beneficial.


Subject(s)
Cognition , Memory, Short-Term , Humans , Povidone
14.
Oxid Med Cell Longev ; 2023: 6409385, 2023.
Article in English | MEDLINE | ID: mdl-37151603

ABSTRACT

Phytosterols (PS) have been shown to regulate cholesterol metabolism and alleviate hyperlipidemia (HLP), but the mechanism is still unclear. In this study, we investigated the mechanism by which PS regulates cholesterol metabolism in high-fat diet (HFD) mice. The results showed that PS treatment reduced the accumulation of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) in the serum of HFD mice, while increasing the serum levels of high-density lipoprotein cholesterol (HDL-C). Compared with HFD mice, PS not only increased the antioxidant activity of the liver but also regulated the mRNA expression levels of enzymes and receptors related to cholesterol metabolism. The hypolipidemic effect of PS was abolished by antibiotic (Abx) intervention and reproduced by fecal transplantation (FMT) intervention. The results of 16S rRNA sequencing analysis showed that PS modulated the gut microbiota of mice. PS reduced the relative abundance of Lactobacillus and other bile salt hydrolase- (BSH-) producing gut microbiota in HFD mice, which are potentially related to cholesterol metabolism. These findings partially explain the mechanisms by which PS regulates cholesterol metabolism. This implies that regulation of the gut microbiota would be a potential target for the treatment of HLP.


Subject(s)
Gastrointestinal Microbiome , Hyperlipidemias , Phytosterols , Mice , Animals , Phytosterols/pharmacology , Hyperlipidemias/drug therapy , Hyperlipidemias/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Lipid Metabolism , Cholesterol, LDL , Liver/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
15.
Quant Imaging Med Surg ; 13(3): 1814-1824, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36915333

ABSTRACT

Background: Traditional reconstruction techniques have certain limitations in balancing image quality and reducing radiation dose. The deep learning image reconstruction (DLIR) algorithm opens the door to a new era of medical image reconstruction. The purpose of the study was to evaluate the DLIR images at 1.25 mm thickness in balancing image noise and spatial resolution in low-dose abdominal computed tomography (CT) in comparison with the conventional adaptive statistical iterative reconstruction-V at 40% strength (ASIR-V40%) at 5 and 1.25 mm. Methods: This retrospective study included 89 patients who underwent low-dose abdominal CT. Five sets of images were generated using ASIR-V40% at a 5 mm slice thickness and 1.25 mm (high-resolution) with DLIR at 1.25 mm using 3 strengths: low (DLIR-L), medium (DLIR-M), and high (DLIR-H). Qualitative evaluation was performed for image noise, artifacts, and visualization of small structures, while quantitative evaluation was performed for standard deviation (SD), signal-to-noise ratio (SNR), and spatial resolution (defined as the edge rising slope). Results: At 1.25 mm, DLIR-M and DLIR-H images had significantly lower noise (SD in fat: 14.29±3.37 and 9.65±3.44 HU, respectively), higher SNR for liver (3.70±0.78 and 5.64±1.20, respectively), and higher overall image quality (4.30±0.44 and 4.67±0.40, respectively) than did the respective values in ASIR-V40% images (20.60±4.04 HU, 2.60±0.63, and 3.77±0.43; all P values <0.05). Compared with the 5 mm ASIR-V40% images, the 1.25 mm DLIR-H images had lower noise (SD: 9.65±3.44 vs. 13.63±10.03 HU), higher SNR (5.64±1.20 vs. 4.69±1.28), and higher overall image quality scores (4.67±0.40 vs. 3.94±0.46) (all P values <0.001). In addition, DLIR-L, DLIR-M, and DLIR-H images had a significantly higher spatial resolution in terms of edge rising slope (59.66±21.46, 58.52±17.48, and 59.26±13.33, respectively, vs. 33.79±9.23) and significantly higher image quality scores in the visualization of fine structures (4.43±0.50, 4.41±0.49, and 4.38±0.49, respectively vs. 2.62±0.49) than did the 5 mm ASIR-V40 images. Conclusions: The 1.25 mm DLIR-M and DLIR-H images had significantly reduced image noise and improved SNR and overall image quality compared to the 1.25 mm ASIR-V40% images, and they had significantly improved the spatial resolution and visualization of fine structures compared to the 5 mm ASIR-V40% images. DLIR-H images had further reduced image noise compared with the 5 mm ASIR-V40% images, and DLIR-H was the most effective technique at balancing the image noise and spatial resolution in low-dose abdominal CT.

16.
Front Vet Sci ; 10: 1103023, 2023.
Article in English | MEDLINE | ID: mdl-36908522

ABSTRACT

The current study focused on the effects of Shenling Baizhu San (SLBZS) fermented by Lactobacillus plantarum (L. plantarum) on gut microbiota, antioxidant capacity, and intestinal barrier function of yellow-plumed broilers. Our results showed that the content of ginsenoside Rb1 was the highest when SLBZS were inoculated with 3% L. plantarum and fermented at 28°C for 24 h. One-day-old male broilers were divided into five treatment groups. Treatment consisted of a basal diet as a control (Con), 0.1% unfermented SLBZS (U-SLBZS), 0.05% fermented SLBZS (F-SLBZS-L), 0.1% fermented SLBZS (F-SLBZS-M), and 0.2% fermented SLBZS (F-SLBZS-H). On days 14, 28, and 42, six chickens from each group were randomly selected for blood collection and tissue sampling. The results showed that the addition of 0.1% fermented SLBZS could significantly increase average daily feed intake (ADFI) and average daily gain (ADG), and decrease feed conversion ratio (FCR) of broilers. The addition of 0.1 and 0.2% fermented SLBZS significantly increased the lymphoid organ index of broilers on day 28 and 42. The addition of 0.1 and 0.2% fermented SLBZS could improve the antioxidant capacity of broilers. Moreover, the addition of 0.1 and 0.2% fermented SLBZS could significantly increase the villus height/crypt depth of the ileum, and significantly increase the expression of tight junction. In addition, fermentation of SLBZS increase the abundance of Coprococcus, Bifidobacterium and Bilophila in the gut of broilers. These results indicate that the supplementation of fermented SLBZS in the diet could improve the growth performance, lymphoid organ index, antioxidant capacity, and positively affect the intestinal health of broilers.

17.
Life (Basel) ; 13(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36836707

ABSTRACT

Ratio sensing is a fundamental biological function observed in signal transduction and decision making. In the synthetic biology context, ratio sensing presents one of the elementary functions for cellular multi-signal computation. To investigate the mechanism of the ratio-sensing behavior, we explored the topological characteristics of biological ratio-sensing networks. With exhaustive enumeration of three-node enzymatic and transcriptional regulatory networks, we found that robust ratio sensing was highly dependent on network structure rather than network complexity. Specifically, a set of seven minimal core topological structures and four motifs were deduced to be capable of robust ratio sensing. Further investigations on the evolutionary space of robust ratio-sensing networks revealed highly clustered domains surrounding the core motifs which suggested their evolutionary plausibility. Our study revealed the network topological design principles of ratio-sensing behavior and provided a design scheme for constructing regulatory circuits with ratio-sensing behavior in synthetic biology.

18.
Rev Sci Instrum ; 93(12): 123003, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36586913

ABSTRACT

Conventional terahertz (THz) waveform or spectral diagnostics mainly employ the electro-optic-based techniques or the multi-shot Michelson interferometer. Simultaneously, single-shot, ultrabroadband THz spectral measurements remain challenging. In this paper, a novel probe-free scheme based on the non-collinear autocorrelation technique is proposed to characterize the ultrabroadband THz spectrum at a single-shot mode. The non-collinear autocorrelator is a modified beam-division interferometer, in which the two beams are recombined non-collinearly onto a camera. The temporal or spectral resolution and range depend on the noncollinear configuration and camera parameters. This simple approach has been applied experimentally to characterize the ultrashort THz pulse generated from ultraintense laser-solid interactions, demonstrating the capability of single-shot ultrabroadband measurements without an auxiliary ultrafast laser probe. The proposed non-collinear autocorrelator here would be much useful for characterization and applications of low-repetition-rate intense THz sources and could also be extended to other frequency bands.

19.
Front Biosci (Landmark Ed) ; 27(9): 272, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36224016

ABSTRACT

BACKGROUND: Autophagy plays a pivotal role in the progression and management of colorectal cancer (CRC). Recently, numerous articles focusing on the role of autophagy in CRC have emerged. The present study was conducted to provide a comprehensive analysis of the current state and changing trends in the relationship of autophagy and CRC over the past 20 years. METHODS: The Web of Science Core Collection (WOSCC) was utilized to extracted all publications with respect to autophagy and CRC during 2002-2021. The contributions of various countries/regions, institutions and journals in this field were analyzed, moreover, research hotspots and promising future trends predicted through keywords were identified by the online platform of bibliometrics, CiteSpace and VOSviewer. RESULTS: A total of 2418 related publications from 2002 to 2021 were identified and collected. China occupied first place with respect to the number of publications, followed by the USA and South Korea. Shanghai Jiao Tong University published the most papers in this field. Most publications were published in Oncotarget. Additionally, analysis of the keywords identified 4 clusters with various research focuses: "mechanism-related research", "clinical-related research", "tumorigenesis research" and "chemotherapy-related research". The three latest hot keywords in this field were epithelial-mesenchymal transition (EMT), promote and invasion. CONCLUSIONS: The number of publications and research interest on autophagy and CRC are increasing annually, and the USA had prominent academic positions in the field. Shanghai Jiao Tong University represents a high level of research and the latest progress in this field can be tracked at Oncotarget. Throughout the research history of autophagy and CRC in the past 20 years, previous studies have mainly concentrated on apoptosis and drug resistance in tumor cells, while EMT in regulating tumorigenesis and development of clinical drugs that inhibit tumor invasion through autophagy may be novel hotspots in the future.


Subject(s)
Bibliometrics , Colorectal Neoplasms , Autophagy , Carcinogenesis , China , Humans
20.
iScience ; 25(5): 104336, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35602940

ABSTRACT

The terahertz radiation from ultraintense laser-produced plasmas has aroused increasing attention recently as a promising approach toward strong terahertz sources. Here, we present the highly efficient production of millijoule-level terahertz pulses, from the rear side of a metal foil irradiated by a 10-TW femtosecond laser pulse. By characterizing the terahertz and electron emission in combination with particle-in-cell simulations, the physical reasons behind the efficient terahertz generation are discussed. The resulting focused terahertz electric field strength reaches over 2 GV/m, which is justified by experiments on terahertz strong-field-driven nonlinearity in semiconductors.

SELECTION OF CITATIONS
SEARCH DETAIL