Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Phys Chem B ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981089

ABSTRACT

Magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experiments and molecular dynamics (MD) simulations were employed to investigate Na2O-B2O3-SiO2 and MgO-Na2O-B2O3-SiO2 glass structures up to ≈0.3 nm. This encompassed the {Na[p]}, {Mg[p]}, and {B[3], B[4]} speciations and the {Si, B[p], M[p]}-BO and {Si, B[p], M[p]}-NBO interatomic distances to the bridging oxygen (BO) and nonbridging oxygen (NBO) species, where the superscript indicates the coordination number. The MD simulations revealed the dominance of Mg[5] coordinations, as mirrored in average Mg2+ coordination numbers in the 5.2-5.5 range, which are slightly lower than those of the larger Na+ cation but with a narrower coordination distribution stemming from the higher cation field strength (CFS) of the smaller divalent Mg2+ ion. We particularly aimed to elucidate such Na+/Mg2+ CFS effects, which primarily govern the short-range structure but also the borosilicate (BS) glass network order, where both MD simulations and heteronuclear double-resonance 11B/29Si NMR experiments revealed a reduction of B[4]-O-Si linkages relative to B[3]-O-Si upon Mg2+-for-Na+ substitution. These effects were quantified and discussed in relation to previous literature on BS glasses, encompassing the implications for simplified structural models and descriptions thereof.

2.
Biomater Res ; 28: 0015, 2024.
Article in English | MEDLINE | ID: mdl-38840653

ABSTRACT

Cancer has become one of the most important factors threatening human health, and the global cancer burden has been increasing rapidly. Immunotherapy has become another clinical research hotspot after surgery, chemotherapy, and radiotherapy because of its high efficiency and tumor metastasis prevention. However, problems such as lower immune response rate and immune-related adverse reaction in the clinical application of immunotherapy need to be urgently solved. With the development of nanodrug delivery systems, various nanocarrier materials have been used in the research of antitumor immunotherapy with encouraging therapeutic results. In this review, we mainly summarized the combination of nanodrug delivery systems and immunotherapy from the following 4 aspects: (a) nanodrug delivery systems combined with cytokine therapy to improve cytokines delivery in vivo; (b) nanodrug delivery systems provided a suitable platform for the combination of immune checkpoint blockade therapy with other tumor treatments; (c) nanodrug delivery systems helped deliver antigens and adjuvants for tumor vaccines to enhance immune effects; and (d) nanodrug delivery systems improved tumor treatment efficiency and reduced toxicity for adoptive cell therapy. Nanomaterials chosen by researchers to construct nanodrug delivery systems and their function were also introduced in detail. Finally, we discussed the current challenges and future prospects in combining nanodrug delivery systems with immunotherapy.

3.
Phytomedicine ; 125: 155246, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262142

ABSTRACT

BACKGROUND: "Gansui Banxia decoction" (GBD) is a classical traditional Chinese medicine formula for treating abnormal accumulation of fluid, such as malignant ascites (MA). Although GBD has shown definite water-expelling effects, its exact underlying mechanism has not been elucidated. PURPOSE: This study aimed to investigate the drug effects of GBD on MA rats and its underlying mechanisms. METHODS: The main chemical composition was determined by ultra-high performance liquid chromatography. The drug effects of GBD was evaluated in the established cancer cell-induced MA rat model. The symptoms were analyzed, and biological samples were collected for detecting immune and inflammation-related indicators by enzyme-linked immunosorbent assays, western blot, and flow cytometry. RESULTS: GBD increased urine discharge, decreased ascites production, and alleviated cachexia. After GBD treatment, the expression of TLR4, MyD88, and NF-кB and the release of pro-inflammatory cytokines such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α were reduced. In addition, GBD increased G1 phase arrest and inhibit excessive proliferation of cells in bone marrow while alleviating G1 phase arrest and increasing proliferation of cells in the thymus. Correspondingly, the development and maturation of T cells also changed. GBD increased the proportion of mature T-cells (CD4+CD8- and CD4-CD8+ single-positive (SP) T-cells), and decrease the proportion of immature cells (CD4+CD8+ double-positive (DP) T-cells and CD4-CD8- double-negative (DN) T-cells) in the blood or tumor microenvironment (TME, the ascites microenvironment). Finally, we further analysis of immune cell subsets, GBD decreased the proportion of immunosuppressive T-cells in the blood (CD4+CD25+Foxp3+T-cells) and TME (CD8+CD25+Foxp3+T-cells), and increased the proportion of anti-tumor immune cells (CD8+CD28+T-cells and NK cells) in the TME. CONCLUSION: These findings indicated that the drug effects of GBD were attributed to regulating the immune-inflammatory homeostasis, thereby mitigating the destruction of cancer cells and reducing the generation of ascites, which provided theoretical support for the clinical rational application and extended the scientific connotation of "water-expelling" of GBD.


Subject(s)
Ascites , T-Lymphocytes , Rats , Animals , Ascites/drug therapy , Cytokines , Tumor Necrosis Factor-alpha , Forkhead Transcription Factors , Water
4.
Int J Biol Sci ; 19(14): 4493-4510, 2023.
Article in English | MEDLINE | ID: mdl-37781031

ABSTRACT

Atherosclerosis as the leading cause of the cardiovascular disease is closely related to cholesterol deposition within subendothelial areas of the arteries. Significantly, early atherosclerosis intervention is the critical phase for its reversal. As atherosclerosis progresses, early foam cells formation may evolve into fibrous plaques and atheromatous plaque, ulteriorly rupture of atheromatous plaque increases risks of myocardial infarction and ischemic stroke, resulting in high morbidity and mortality worldwide. Notably, amphiphilic apolipoproteins (Apos) can concomitantly combine with lipids to form soluble lipoproteins that have been demonstrated to associate with atherosclerosis. Apos act as crucial communicators of lipoproteins, which not only can mediate lipids metabolism, but also can involve in pro-atherogenic and anti-atherogenic processes of atherosclerosis via affecting subendothelial retention and aggregation of low-density lipoprotein (LDL), oxidative modification of LDL, foam cells formation and reverse cholesterol transport (RCT) in macrophage cells. Correspondingly, Apos can be used as endogenous and/or exogenous targeting agents to effectively attenuate the development of atherosclerosis. The article reviews the classification, structure, and relationship between Apos and lipids, how Apos serve as communicators of lipoproteins to participate in the pathogenesis progression of early atherosclerosis, as well as how Apos as the meaningful targeting mass is used in early atherosclerosis treatment.


Subject(s)
Apolipoproteins , Atherosclerosis , Plaque, Atherosclerotic , Humans , Apolipoproteins/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cholesterol/metabolism , Lipoproteins/metabolism , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/metabolism , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/metabolism
5.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4884-4892, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802830

ABSTRACT

Allergic rhinitis(AR) is a common chronic inflammatory disease of the upper respiratory tract. Due to its high prevalence, high recurrence rate, and lack of a definitive cure, it is considered a global health issue by the World Health Organization. The pathogenesis of AR is complex and mainly involves B cells, helper T cells, eosinophils, basophils, macrophages, as well as the cytokines and inflammatory mediators they secrete. Clinical treatment primarily focuses on inhibiting inflammatory mediators such as histamine and leukotrienes. In recent years, active ingredients of animal-derived traditional Chinese medicine(TCM) have shown unique advantages and potential in AR treatment thanks to their high safety, specificity, selectivity, and biopotency. This study systematically reviewed the therapeutic effects and mechanisms of active ingredients and mixed extracts from animal-derived TCM, such as bovine spleen, honeycomb, bee venom, maggot, and human placenta, which have been shown by modern pharmacological research to regulate the immune function in AR, providing a reference for further exploration and clinical development of active ingredients from animal-derived TCM. Studies have found that the active ingredients from animal-derived TCM can produce definite therapeutic effects in AR by modulating multiple immune balances in the body, with great clinical prospects. However, their mechanisms of action still require further investigation, and the quality control techniques for effective ingredients need to be improved. Currently, the research on active ingredients from animal-derived TCM in China has adopted an interactive system consisting of "traditional medical experience-based research, bioinformatics and artificial intelligence predictions, and validation and development through new experimental techniques". Based on this system, animal-derived TCM can combine modern scientific and technological means to maximize the therapeutic effects of active ingredients and serve the clinical application of AR in a more efficient and innovative manner.


Subject(s)
Drugs, Chinese Herbal , Porifera , Rhinitis, Allergic , Animals , Cattle , Humans , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Artificial Intelligence , Rhinitis, Allergic/drug therapy , Inflammation Mediators
6.
Diabetes Metab Syndr Obes ; 16: 2409-2418, 2023.
Article in English | MEDLINE | ID: mdl-37602207

ABSTRACT

Purpose: With the increase in prevalence and decrease in age of the obese population, safer weight loss methods have attracted growing attention. While abdominal massage (AM) has been clinically proven for weight loss, the mechanism thereof has yet to be elucidated. We aimed to investigate the effect of AM on abdominal fat in obese mice fed a high-fat diet and explore the possible mechanisms involved. Materials and Methods: Male C57BL/6J mice were fed a high-fat diet for 16 weeks and then treated with AM for 5 weeks; mice fed a standard diet were used as normal controls. Blood and adipose tissue, including inguinal white adipose tissue (WAT) and epididymal WAT, were collected from the mice after the intervention. We explored the mechanism of weight reduction through inguinal WAT transcriptome sequencing, quantitative real-time polymerase chain reaction (PCR) validation, and Western blot. Results: The results revealed that AM decreased fat mass, weight, glucose, and serum lipid levels. Meanwhile, AM enhanced the expression of the peroxisome proliferator-activated receptor gamma (PPARγ) and other downstream genes (Fabp4, Acox3, Pck1, and Aqp7) in inguinal WAT. In addition, AM increased the expression of PPARγ protein. Conclusion: AM may promote fatty acid oxidation, lipid metabolism, and glucose homeostasis by activating the PPARγ signaling pathway in inguinal WAT, thereby exhibiting therapeutic efficacy against obesity, even in the presence of a persistent high-fat diet.

7.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445803

ABSTRACT

High levels of M2 macrophage infiltration invariably contribute to poor cancer prognosis and can be manipulated by metabolic reprogramming in the tumor microenvironment. However, the metabolism-related genes (MRGs) affecting M2 macrophage infiltration and their clinical implications are not fully understood. In this study, we identified 173 MRGs associated with M2 macrophage infiltration in cases of gastric cancer (GC) using the TCGA and GEO databases. Twelve MRGs were eventually adopted as the prognostic signature to develop a risk model. In the high-risk group, the patients showed poorer survival outcomes than patients in the low-risk group. Additionally, the patients in the high-risk group were less sensitive to certain drugs, such as 5-Fluorouracil, Oxaliplatin, and Cisplatin. Risk scores were positively correlated with the infiltration of multiple immune cells, including CD8+ T cells and M2 macrophages. Furthermore, a difference was observed in the expression and distribution between the 12 signature genes in the tumor microenvironment through single-cell sequencing analysis. In vitro experiments proved that the M2 polarization of macrophages was suppressed by Sorcin-knockdown GC cells, thereby hindering the proliferation and migration of GC cells. These findings provide a valuable prognostic signature for evaluating clinical outcomes and corresponding treatment options and identifying potential targets for GC treatment.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Prognosis , Cisplatin , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Macrophages , Tumor Microenvironment/genetics
8.
J Ethnopharmacol ; 317: 116781, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37315643

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shaoyao Gancao Decoction (SGD) is well known as an effective prescription for analgesia composed of two herbs, and is noted as traditional Chinese medicine morphine. It is widely used in various conditions causing pain, including migraine. However, there is currently no research exploring the mechanism of action in the treatment of migraines. AIM OF THE STUDY: The current research was devised to determine the underlying regulatory mechanism of SGD, by verifying its role in the NGF/TRPV1/COX-2 signal pathway. MATERIALS AND METHODS: The active components in SGD were identified by UHPLC-MS. A migraine model was prepared by subcutaneous (s.c.) injection of nitroglycerin (NTG) into the neck to detect migraine-like behavior, orbital hyperalgesia threshold changes, and the therapeutic effect of SGD. The mechanism of SGD in remedying migraine was studied through transcriptome sequencing (RNA-seq), which was further validated utilizing Elisa, Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB) experiments. RESULTS: In the SGD chemical composition analysis, 45 components were identified including gallic acid, paeoniflorin and albiforin. In the behavioral experiments, SGD treatment significantly decreased the score of migraine-like head scratching in the NTG-induced migraine model (Mod) rats, while the hyperalgesia threshold increased outstandingly on days 10, 12, and 14 (P < 0.01, P < 0.001 or P < 0.0001). In migraine biomarkers experiment, compared with the Mod group, the 5-hydroxytryptamine (5-HT) contents were outstandingly enhanced by SGD treatment, while nitric oxide (NO) contents were markedly declined (P < 0.01). In the RNA-seq test, the down-regulated genes of SGD inhibiting hyperalgesia migraine included the neurotrophic factor (NGF) and transient receptor potential vanillic acid subfamily protein 1 receptor (TRPV1). The down-regulation pathway is the inflammatory mediator regulation of TRP channels. In gene set enrichment analysis (GSEA), SGD decreased the over-expression of protooncogene tyrosine-protein kinase Src (SRC) and TRPV1 in this pathway, and the two genes clustered at its lower end, with similar functions. PPI network results show that NGF interacts with TRPV1. Further verification shows that when compared with Mod group, the plasma cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) protein expression levels and the dura mater calcitonin gene-related peptide (CGRP), extracellular signal-regulated kinase (ERK), p-ERK, SRC and NGF protein expression levels in the SGD group were remarkably decreased (P < 0.01, P < 0.001 or P < 0.0001), and the expression level of TRPV1 protein showed a downward trend (P = 0.06). The expression levels of COX-2, NO, CGRP, TRPV1, SRC and NGF mRNA in the dura mater was overtly down-regulated (P < 0.05, P < 0.01 or P < 0.001). CONCLUSIONS: SGD has a significant inhibitory effect on the NGF/TRPV1/COX-2 signaling pathway that mediates central hyperalgesia migraine, thus suggesting the molecular mechanism of SGD in improving the symptoms of migraine may be related to the central hyperalgesia neurotransmitter that regulates the pathogenesis of migraine.


Subject(s)
Hyperalgesia , Migraine Disorders , Rats , Animals , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Nitroglycerin , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Calcitonin Gene-Related Peptide/metabolism , Signal Transduction , Extracellular Signal-Regulated MAP Kinases/metabolism , Pain , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy , Migraine Disorders/metabolism
9.
Eur Arch Otorhinolaryngol ; 280(7): 3237-3247, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36662267

ABSTRACT

BACKGROUND: Ionocytes are rare cells in airway epithelium characterized by a high expression of CFTR. OBJECTIVES: To investigate the morphology and distribution of ionocytes and the function of CFTR in the nasal mucosal epithelium of children. METHODS: The exfoliated cells of nasal mucosa from 101 children were detected using flow cytometry to analyze the number of ionocytes and CFTR and the difference of CFTR function. Nasal mucosa and polyps were collected from 10 children with CRSwNP. The RNAscope of FOXI1 and CFTR was detected in pathological paraffin sections. The expression and distribution of ionocytes and CFTR in nasal mucosa and polyp epithelium were observed. RESULTS: In CRS patients, the number of ionocytes in the nasal epithelium was lower and the number of ionocytes that did not express CFTR was higher, and the function of CFTR was also decreased. The expression of CFTR in the nasal mucosa of CRS showed the characteristics of local dense distribution and increased as the inflammation expanded. The ionocytes were "tadpole-shaped" in the epithelium and gathered in the area of high CFTR expression, the intracellular CFTR was expanded in clusters. Ionocytes that did not express CFTR was more common in the nasal polyps. CONCLUSIONS: The number of ionocytes and the function of CFTR in nasal mucosa of CRS patients decreased. With the expansion of inflammation, CFTR and ionocytes showed more obvious dense distribution. Some ionocytes lost the expression of CFTR and did not show the "tadpole" shape, which may be related to the occurrence of polyps.


Subject(s)
Nasal Polyps , Rhinitis , Sinusitis , Humans , Child , Rhinitis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Sinusitis/pathology , Nasal Mucosa/pathology , Nasal Polyps/pathology , Inflammation/pathology , Chronic Disease , Forkhead Transcription Factors
10.
Int J Radiat Biol ; 99(3): 406-418, 2023.
Article in English | MEDLINE | ID: mdl-35759247

ABSTRACT

PURPOSE: The aim of the present study was to investigate the injuries of spleen and intestinal immune system induced by 2 Gy 60Co γ ray in mice. MATERIALS AND METHODS: A total of 120 Balb/c mice were randomly divided into two groups: blank control (Ctrl) and model (IR). The IR mice were exposed to a single dose of total body irradiation (2 Gy, dose rate: 1 Gy/min) and sacrificed on 1st, 3rd, 7th, 14th and 21st day after irradiation. The indicators including general observations and body weight, the changes in peripheral hemogram, spleen index, histopathology examination and lymphocyte subsets of spleen. As well as the count and subsets of lymphocyte in gut-associated lymphoid tissue. RESULTS: Compared with the Ctrl group, the body weight, spleen index, peripheral blood cell and splenocyte amounts, intraepithelial lymphocytes number decreased significantly after exposure, accompanied by a notable decreased count of lymphocytes in Peyer's patch and mesenteric lymph nodes. Moreover, ionizing radiation also broke the balance of CD4+/CD8+ and increased the Treg proportion in spleen, which then triggered immune imbalance and immunosuppression. In general, the spleen injuries occurred on 1st day after exposure, worse on 3rd day, and were relieved on 7th day. The intestinal immune injuries were observed on 1st day, and attenuated on 3rd day. On 21st day after exposure, the spleen volume and index have returned to normal, except for the distribution of lymphocyte subpopulations. Furthermore, all indicators of gut-associated lymphoid tissue, except for mesenteric lymph nodes lymphocyte count, had returned to normal levels on 21st day. CONCLUSION: In conclusion, our data showed the injuries of spleen and intestinal immune system induced by 2 Gy 60Co γ ray whole-body irradiation. These findings may provide the bases for further radiation protection in the immunity.


Subject(s)
Spleen , Whole-Body Irradiation , Mice , Animals , Spleen/radiation effects , Whole-Body Irradiation/adverse effects , Gamma Rays/adverse effects , Immune System/radiation effects , Body Weight
11.
Front Pharmacol ; 13: 976644, 2022.
Article in English | MEDLINE | ID: mdl-36408271

ABSTRACT

Aims: The study aimed to evaluate the correlation of different microparticle (MP) phenotypes with plaque burden and their diagnostic value and preliminarily explore the role of MPs in atherosclerosis (AS). Methods: Carotid intima-media thickness (CIMT) and maximal plaque area in 23 patients with carotid atherosclerosis (CAS) and 22 healthy subjects were measured by ultrasound. Transmission electron microscopy, nanoparticle tracking analysis and western blot were used to identify MPs. Flow cytometry assay measured absolute number of MPs, and receiver operating characteristic (ROC) analysis was used to assess the relationship between plaque burden and MPs. To study the preliminary mechanism of MPs in AS, MPs were administered to 32 male Kunming mice, which were randomly divided into control, CAS, healthy, and tetrahydrobiopterin (BH4) groups. Hematoxylin-eosin staining, immunohistochemistry staining, and Western blot were adopted to detect relevant indexes 24 h after the injection. Results: The plasma levels of CD45+ leukocyte-derived microparticle (LMP), CD11a+ LMP, CD11a+/CD45+ LMP, and CD31+/CD42b+ platelet-derived microparticle (PMP) in CAS patients were significantly higher than those in healthy subjects, and were positively correlated with the maximal plaque area. Moreover, the levels of CD11a+ LMP, CD11a+/CD45+ LMP were also positively correlated with CIMT. The area under the ROC curve of the four MPs was 0.689, 0.747, 0.741, and 0.701, respectively. Compared with healthy subjects, MPs from CAS patients resulted in a significantly lower expression of endothelial nitric oxide synthase (eNOS) dimer/monomer, and BH4 could improve eNOS uncoupling. Moreover, the level of VCAM-1 in intima in the CAS group was significantly higher than in the other three groups. Conclusion: CD11a+ LMP and CD11a+/CD45+ LMP might be potential biomarkers for CAS prediction. BH4-related eNOS uncoupling occurs in CAS patients, and circulating MPs from them lead to endothelial dysfunction through eNOS uncoupling.

12.
Front Immunol ; 13: 937832, 2022.
Article in English | MEDLINE | ID: mdl-35967302

ABSTRACT

Background: Although studies have shown that cell pyroptosis is involved in the progression of asthma, a systematic analysis of the clinical significance of pyroptosis-related genes (PRGs) cooperating with immune cells in asthma patients is still lacking. Methods: Transcriptome sequencing datasets from patients with different disease courses were used to screen pyroptosis-related differentially expressed genes and perform biological function analysis. Clustering based on K-means unsupervised clustering method is performed to identify pyroptosis-related subtypes in asthma and explore biological functional characteristics of poorly controlled subtypes. Diagnostic markers between subtypes were screened and validated using an asthma mouse model. The infiltration of immune cells in airway epithelium was evaluated based on CIBERSORT, and the correlation between diagnostic markers and immune cells was analyzed. Finally, a risk prediction model was established and experimentally verified using differentially expressed genes between pyroptosis subtypes in combination with asthma control. The cMAP database and molecular docking were utilized to predict potential therapeutic drugs. Results: Nineteen differentially expressed PRGs and two subtypes were identified between patients with mild-to-moderate and severe asthma conditions. Significant differences were observed in asthma control and FEV1 reversibility between the two subtypes. Poor control subtypes were closely related to glucocorticoid resistance and airway remodeling. BNIP3 was identified as a diagnostic marker and associated with immune cell infiltration such as, M2 macrophages. The risk prediction model containing four genes has accurate classification efficiency and prediction value. Small molecules obtained from the cMAP database that may have therapeutic effects on asthma are mainly DPP4 inhibitors. Conclusion: Pyroptosis and its mediated immune phenotype are crucial in the occurrence, development, and prognosis of asthma. The predictive models and drugs developed on the basis of PRGs may provide new solutions for the management of asthma.


Subject(s)
Asthma , Pyroptosis , Airway Remodeling , Animals , Asthma/diagnosis , Asthma/drug therapy , Asthma/genetics , Mice , Molecular Docking Simulation , Prognosis , Pyroptosis/genetics
13.
BMC Pulm Med ; 22(1): 320, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35987624

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is one of the major health issues worldwide. Pathophysiological changes in COPD are mainly reflected in the deterioration of lung function with aging. METHODS: Considering that telomere length is a hallmark of biological aging, we first performed a meta-analysis to summarize the current knowledge about the relationship between telomere length and COPD and then employed individual-level data from the continuous National Health and Nutrition Examination Survey (NHANES) to investigate whether telomere length could reflect accelerated aging in COPD and serve as an independent predictor. A mediation study was further performed to examine whether the association between telomeres and COPD could be mediated by inflammation, as one of the most important etiologies and characteristics of COPD. RESULTS: The four studies included in our meta-analysis were with high heterogeneity (I2 = 95.7%, Phet < 0.001), and the pooled relative risk for COPD comparing the shortest tertile versus the longest tertile was 4.06 (95% CI = 1.38 to 11.96). Of the 6,378 subjects in the individual-level data analyses using NHANES, 455 were diagnosed with COPD, and multivariable-adjusted logistic regression also indicated that short telomere length was associated with COPD. Consistently, cubic regression spline analyses showed that long telomeres exhibited a significant association with a decreased risk of COPD. In the subsequent mediation analyses, C-reactive protein concentration, white blood cells count and blood neutrophil count, as inflammatory biomarkers, showed a significant indirect effect on the relationship between telomere length and COPD. CONCLUSION: Accelerated aging in COPD could be characterized by excessive telomere shortening, and inflammatory response might be involved in the underlying mechanisms of COPD pathogenesis promoted by short telomere length. Telomere length measurement may facilitate clinical translational research and targeted therapy of COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Smoking , Aging , Humans , Inflammation/genetics , Leukocytes , Nutrition Surveys , Telomere
14.
Front Pharmacol ; 13: 819747, 2022.
Article in English | MEDLINE | ID: mdl-35662725

ABSTRACT

The pathogenesis of allergic asthma is complex, it is usually caused by immune system imbalance. Th1, Th2, regulatory T cells (Treg) and T helper 17 (Th17) cells have an important role in the pathogenesis of eosinophilic asthma. Yet, the exact role of Th1, Th2, Treg and Th17 cells in eosinophilic asthmatic disease is not fully understood. This study used an untargeted plasma metabolomics combine 16S rDNA technology to identify new biomarkers of plasma metabolites and gut microbiota in ovalbumin-induced eosinophilic allergic asthma in BALB/c mice to further explore the biomarkers in regulating the immune balance or the immune response. We discovered that malate, l-dihydroorotate were associated with Th1/Th2 and Treg/Th17 cells balance, imidazoleacetic acid was associated with Th1/Th2 cell balance, 1,5-anhydro-d-sorbitol was associated with Treg/Th17 cell balance. The results also found that genus Candidatus Arthromitus of gut microbiota were associated with Th1/2, Treg/Th17 balance, genus Ruminiclostridium 6, they were all associated with Th1/2 and Treg/Th17 cell balance, while the gut microbiota were not associated with penh value which reflect airway hyperresponsiveness (AHR) in the eosinophilic asthma mice model. Interestingly, the plasma metabolite biomarkers of malate, l-dihydroorotate are associated with genus Ruminiclostridium 6, they were all associated with Th1/2 and Treg/Th17 cell balance, while imidazoleacetic acid is associated with genus Ruminiclostridium 6 which is associated with Th1/2 balance. Among the differential plasma metabolites, 1,5-anhydro-d-sorbitol is associated with genus Ruminiclostridium 6 and genus Candidatus Arthromitus. Among them, malate participate in the T cell activation, T cell differentiation and activation may be a new research direction in eosinophilic allergic asthma. We firstly study the gut microbiota and plasma metabolites markers of immune balance in eosinophilic asthma in mice model, laying a foundation for drug treatment in eosinophilic allergic asthma.

15.
Brain Sci ; 12(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35624959

ABSTRACT

Middle cerebral artery occlusion (MCAO), with the characteristics of high morbidity, high recurrence rate, high mortality, and disability rate, is a typical manifestation of ischemic stroke and has become a hot research topic in the clinical field. The protective effects of nuciferine on brain injury MCAO rats were investigated and its mechanisms of actions were revealed. The MCAO rats were established by the suture method. The pathological staining of the rat brain was processed and observed, the pharmacodynamics assay of nuciferine were studied, and the gene expression regulation by nuciferine was detected by transcriptome technology. The results showed that nuciferine significantly alleviated brain damage in MCAO rats, and the transcriptomic results suggested that nuciferine could exert therapeutic effects through the regulation of lipid metabolism, including arachidonic acid metabolism, sphingolipid metabolism, the PPAR signaling pathway and other related pathways. This finding provided new perspectives on the treatment of MCAO with nuciferine and facilitates the development of novel drugs for this disease.

16.
J Inflamm Res ; 15: 1273-1291, 2022.
Article in English | MEDLINE | ID: mdl-35237061

ABSTRACT

OBJECTIVE: Ulcerative colitis (UC) as one of the intractable diseases in gastroenterology seriously threatens human health. Respiratory pathology is a representative extraintestinal manifestation of UC affecting the quality of life of patients. Gegen Qinlian Decoction (GQD) is a classical traditional Chinese medicine prescription for UC or acute lung injury. This study was aimed to reveal the therapeutic effect of GQD on UC and its pulmonary complications and uncover its molecular mechanism mediated by myeloid cells and microbiota. METHODS: Mice with DSS-induced colitis were orally administrated with GQD. Overall vital signs were assessed by body weight loss and disease activity index (DAI). Pulmonary general signs were evaluated by pulmonary pathology and lung function. The mechanism of GQD relieving UC was characterized by detecting myeloid cells (neutrophils, macrophages, inflammatory monocytes, and resident monocytes) in colonic and lung tissues, related inflammatory cytokines, as well as the microbiota in bronchoalveolar lavage fluid (BALF) and feces. RESULTS: GQD significantly reduced weight loss, DAI scores, and lung injury but improved the lung function of colitis mice. The DSS-induced colonic and concurrent pulmonary inflammation were also alleviated by GQD, as indicated by the down-regulated expressions of inflammatory cytokines (TNF-α, IL-1ß, IL-6, CCR2, and CCL2) and the suppressed recruitment of neutrophils and inflammatory monocytes. Meanwhile, GQD greatly improved intestinal microbiota imbalance by enriching Ruminococcaceae UCG-013 while decreasing Parabacteroides, [Eubacterium]_fissicatena_group, and Akkermansia in the feces of colitis mice. Expectantly, GQD also restored lung microbiota imbalance by clearing excessive Coprococcus 2 and Ochrobactrum in the BALF of colitis mice. Finally, significant correlations appeared between GQD-mediated specific bacteria and inflammatory cytokines or immune cells. CONCLUSION: GQD could alleviate UC by decreasing excessive inflammatory myeloid cells and cytokines, and reshaping the microbiota between the colon and lung, which contributes to clarifying the mechanism by which GQD ameliorates colitis-associated pulmonary inflammation.

17.
Orthop Surg ; 14(4): 644-651, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35293669

ABSTRACT

As skeletal muscle is one of the largest organs in the body, its damage can directly reflect a decline in somatic function, thus, further affecting daily life and health. Inflammation is a prerequisite for the repair of injured skeletal muscles. Chronic inflammation induced by inadequate repair in skeletal muscle aggravates tissue injury. Exosomes regulate inflammatory responses to facilitate the repair of skeletal muscle injury. Moreover, exosomal miR-223 with high specificity is the most abundant miRNA in peripheral blood and regarded as biomarkers for inflammation post skeletal muscle injury, which warrants further investigation. Available studies have demonstrated that exosomal miR-223 negatively correlates with TNF-α levels in serum and regulates the canonical inflammatory NF-κB signaling pathway. miR-223 is a negative feedback regulator with great potential for adjusting inflammatory imbalance and promoting skeletal muscle repair. The research on the regulation of negative feedback factors in the inflammatory signaling pathway is essential in biology and medicine. Therefore, this review mainly elaborates the formation, heterogeneity and markers of exosomes and points out exosomal miR-223 as a beneficial role in chronic skeletal muscle inflammation and can be expected to be a potential therapeutic target for skeletal muscle damage.


Subject(s)
Exosomes , MicroRNAs , Animals , Exosomes/metabolism , Humans , Inflammation/metabolism , MicroRNAs/metabolism , Muscle, Skeletal , NF-kappa B/metabolism
18.
Front Pharmacol ; 13: 819728, 2022.
Article in English | MEDLINE | ID: mdl-35211018

ABSTRACT

Tuo-Min-Ding-Chuan decoction (TMDCT) is a Traditional Chinese Medicine (TCM) formula consisting of twelve herbs that can relieve the symptoms and treat allergic asthma. Yet, the underlying mechanism of action is still unclear. In this study, we investigated the effect of TMDCT in regulating Treg/Th17 cells immune balance and explored potential metabolic and gut biomarkers associated with Treg and Th17 cells in eosinophilic asthma mice treated by TMDCT. We found that TMDCT increases Treg cells percentage and decreases Th17 cells percentage in the ovalbumin (OVA) -induced eosinophilic asthma mice model. Furthermore, Imidazoleacetic acid, dL-glutamine, L-pyroglutamic acid, 2-deoxy-d-glucose were preliminary identified as biomarkers in plasma metabolites treated by TMDCT, meanwhile genus Desulfovibrio, genus Butyricimonas and genus Prevotella 9 were preliminary identified as gut microbiota biomarkers after TMDCT treatment. These results provide an experimental foundation for the treatment of allergic asthma with Chinese herbal compounds.

19.
Biochem Biophys Res Commun ; 595: 7-13, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35091109

ABSTRACT

The intestinal tract is an essential component of the body's immune system, and is extremely sensitive to exposure of ionizing radiation. While ionizing radiation can effectively induce multiple forms of cell death, whether it can also promote ferroptosis in intestinal cells and the possible interrelationship between ferroptosis and intestinal immune function has not been reported so far. Here, we found that radiation-induced major ultrastructural changes in mitochondria of small intestinal epithelial cells and the changes induced in iron content and MDA levels in the small intestine were consistent with that observed during cellular ferroptosis, thus suggesting occurrence of ferroptosis in radiation-induced intestinal damage. Moreover, radiation caused a substantial increase in the expression of ferroptosis-related factors such as LPCAT3 and ALOX15 mRNA, augmented the levels of immune-related factors INF-γ and TGF-ß mRNA, and decreased the levels of IL-17 mRNA thereby indicating that ionizing radiation induced ferroptosis and impairment of intestinal immune function. Liproxstatin-1 is a ferroptosis inhibitor that was found to ameliorate radiation-induced ferroptosis and promote the recovery from immune imbalances. These findings supported the role of ferroptosis in radiation-induced intestinal immune injury and provide novel strategies for protection against radiation injury through regulation of the ferroptosis pathway.


Subject(s)
Ferroptosis/physiology , Intestines/pathology , Quinoxalines/pharmacology , Radiation Injuries, Experimental/prevention & control , Radiation, Ionizing , Spiro Compounds/pharmacology , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Animals , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Ferroptosis/drug effects , Ferroptosis/radiation effects , Gene Expression/drug effects , Gene Expression/radiation effects , Glutathione/metabolism , Intestine, Small/drug effects , Intestine, Small/metabolism , Intestine, Small/radiation effects , Intestines/drug effects , Intestines/radiation effects , Male , Malondialdehyde/metabolism , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Mitochondria/drug effects , Mitochondria/radiation effects , Mitochondria/ultrastructure , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/physiopathology , Reverse Transcriptase Polymerase Chain Reaction , Superoxide Dismutase/metabolism
20.
J Ethnopharmacol ; 286: 114925, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34933086

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Irradiation-induced immunosuppression often occurs during radiotherapy in patients, which would increase the risk of opportunistic infections. Many Chinese herbal prescriptions or natural extracts have recently attracted increased radiation protection and therapy attention due to their low toxicity. AIM OF THE STUDY: The present study aimed to investigate the protective effects of Yiqi Jiedu (YQJD) decoction on spleen injury induced by 2 Gy 60Co γ ray in mice. MATERIALS AND METHODS: A total of 180 Balb/c mice were randomly divided into five groups: blank control (Ctrl), model (IR), positive drug (IRA), low-dose YQJD decoction (IRL), and high-dose YQJD decoction (IRH). After a ten-day intervention, mice were exposed to a single dose of total body irradiation (2 Gy) and sacrificed on the 1st, 3rd, and 7th day after irradiation. The indicators include general observations and body weight, changes in peripheral hemogram, index and histopathology examination of the spleen, distribution of lymphocyte subsets, cytokine levels, and apoptosis in the spleen. RESULTS: In comparison to the Ctrl group, the body weight, spleen index, peripheral blood cell, and splenocyte quantities decreased significantly after exposure, accompanied by a notable increase of apoptosis in spleen cells. Moreover, ionizing radiation also broke the balance of CD4+/CD8+, Th1/Th2, and Th17/Treg, triggering immune imbalance and immunosuppression. The above injuries occurred on the 1st day after exposure, worsened on the 3rd, and were relieved on the 7th day. However, the pretreatment of YQJD decoction increased the spleen index, improved the spleen structure, and inhibited radiation-induced apoptosis after exposure. Additionally, YQJD decoction has shown its ability to promote immunological balance recovery following exposure by regulating CD4+/CD8+, Th1/Th2, and Th17/Treg ratios, which may minimize the risk of infection. In addition, the high-dose of YQJD decoction showed a better protective effect than the low-dose group. CONCLUSION: The protective effects of YQJD decoction on 2 Gy 60Coγray induced spleen injury were confirmed in this study. This mechanism may be related to inhibiting apoptosis and modulating immune balance. This exploration might provide new insights into the use of Chinese herbs on radioprotection of the immune system.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Gamma Rays/adverse effects , Radiation-Protective Agents/pharmacology , Spleen/drug effects , Animals , Apoptosis/drug effects , Cobalt Radioisotopes , Cytokines/metabolism , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Male , Mice , Mice, Inbred BALB C , Radiation-Protective Agents/administration & dosage , Spleen/immunology , Spleen/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...