Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(13): e2314901121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466880

ABSTRACT

Tactile perception of softness serves a critical role in the survival, well-being, and social interaction among various species, including humans. This perception informs activities from food selection in animals to medical palpation for disease detection in humans. Despite its fundamental importance, a comprehensive understanding of how softness is neurologically and cognitively processed remains elusive. Previous research has demonstrated that the somatosensory system leverages both cutaneous and kinesthetic cues for the sensation of softness. Factors such as contact area, depth, and force play a particularly critical role in sensations experienced at the fingertips. Yet, existing haptic technologies designed to explore this phenomenon are limited, as they often couple force and contact area, failing to provide a real-world experience of softness perception. Our research introduces the softness-rendering interface (SORI), a haptic softness display designed to bridge this knowledge gap. Unlike its predecessors, SORI has the unique ability to decouple contact area and force, thereby allowing for a quantitative representation of softness sensations at the fingertips. Furthermore, SORI incorporates individual physical fingertip properties and model-based softness cue estimation and mapping to provide a highly personalized experience. Utilizing this method, SORI quantitatively replicates the sensation of softness on stationary, dynamic, homogeneous, and heterogeneous surfaces. We demonstrate that SORI accurately renders the surfaces of both virtual and daily objects, thereby presenting opportunities across a range of fields, from teleoperation to medical technology. Finally, our proposed method and SORI will expedite psychological and neuroscience research to unlock the nature of softness perception.


Subject(s)
Touch Perception , Humans , Skin , Cues , Fingers , Touch , User-Computer Interface
2.
ACS Appl Mater Interfaces ; 16(6): 7850-7859, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38300735

ABSTRACT

Grasping and twisting motions are vital when manipulating objects due to their fundamental role in enabling precision, adaptability, and effective interaction. However, few studies in soft robotics exploiting artificial muscles have achieved object manipulation in situ through the coordination of twisting and grasping motions akin to our forearm and hand's capabilities. Especially, when using the same artificial muscle module to achieve these two motions will greatly simplify the manufacturing and control complexity. Here, we introduce identical origami artificial muscle modules (OAMMs) subjected to distinct end constraints into the design of the robotic manipulator, allowing it to achieve independent grasping and twisting motions to achieve effective, precise object manipulation. Applying different end constraints to the identical OAMMs yields distinct motions at their ends, where utilizing a fixed end and a sliding end realizes pure translation, while opting for a fixed end and a rotating end enables pure rotation. The differentially constrained OAMMs then serve as soft actuators for the manipulator's torsional mechanism and grasping mechanism to accomplish independent, controllable twisting and grasping motions. The coordination of twisting and grasping motions finally enables the manipulator to complete various tasks, including installing a light bubble, pouring the water from a lidded bottle into a cup, and sorting and stacking puzzle blocks. Our study pioneers the utilization of OAMMs for precise and versatile object manipulation through the coordination of independent twisting and grasping motions.

3.
Research (Wash D C) ; 2022: 9839815, 2022.
Article in English | MEDLINE | ID: mdl-36082210

ABSTRACT

Haptics as a communication medium has been increasingly emphasized across various disciplines. Recent efforts have focused on developing various haptic stimulation technologies; however, most of them suffer from critical drawbacks stemming from their bulk, complexity, large power input, or high cost. Here, we describe a strategy to design portable and affordable refreshable haptic interfaces composed of an array of individually addressable and controllable liquid pouch motor-based haptic units embedded in either rigid or flexible substrates for different application contexts. The pouch motor filled with low boiling fluid, under a controlled manner, expands or contracts by Joule heating or cooling, enabling the haptic pin in contact to be protruded or retracted. Programming the actuation sequence of an array of haptic units enables the haptic interface to apply different stimuli to the skin to convey corresponding information. We finally demonstrate the applications to portable rigid braille displays and flexible epidermal VR devices. This study opens the avenue to the design of ubiquitous refreshable haptic interfaces that is portable, affordable, scalable, and uninjurious.

SELECTION OF CITATIONS
SEARCH DETAIL