Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 668
Filter
1.
Acc Chem Res ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007720

ABSTRACT

ConspectusIntegrating functional materials and devices with living systems enables novel methods for recording, manipulating, or augmenting organisms not accessible by traditional chemical, optical, or genetic approaches. (The term "device" refers to the fundamental components of complex electronic systems, such as transistors, capacitors, conductors, and electrodes.) Typically, these advanced materials and devices are synthesized, either through chemical or physical reactions, outside the biological systems (ex situ) before they are integrated. This is due in part to the more limited repertoire of biocompatible chemical transformations available for assembling functional materials in vivo. Given that most of the assembled bulk materials are impermeable to cell membranes and cannot go through the blood-brain barrier (BBB), the external synthesis poses challenges when trying to interface these materials and devices with cells precisely and in a timely manner and at the micro- and nanoscale─a crucial requirement for modulating cellular functions. In contrast to presynthesis in a separate location, in situ assembly, wherein small molecules or building blocks are directly assembled into functional materials within a biological system at the desired site of action, has offered a potential solution for spatiotemporal and genetic control of material synthesis and assembly.In this Account, we highlight recent advances in spatially and temporally targeted functional material synthesis and assembly in living cells, tissues and animals and provide perspective on how they may enable novel probing, modulation, or augmentation of fundamental biology. We discuss several strategies, starting from the traditional nontargeted methods to targeted assembly of functional materials and devices based on the endogenous markers of the biological system. We then focus on genetically targeted assembly of functional materials, which employs enzymatic catalysis centers expressed in living systems to assemble functional materials in specific molecular-defined cell types. We introduce the recent efforts of our group to modulate membrane capacitance and neuron excitability using in situ synthesized electrically functional polymers in a genetically targetable manner. These advances demonstrate the promise of in situ synthesis and assembly of functional materials and devices, including the optogenetic polymerization developed by our lab, to interface with cells in a cellular- or subcellular-specific manner by incorporating genetic and/or optical control over material assembly. Finally, we discuss remaining challenges, areas for improvement, potential applications to other biological systems, and novel methods for the in situ synthesis of functional materials that could be elevated by incorporating genetic or material design strategies. As researchers expand the toolkit of biocompatible in situ functional material synthetic techniques, we anticipate that these advancements could potentially offer valuable tools for exploring biological systems and developing therapeutic solutions.

2.
Sci Total Environ ; : 174395, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992353

ABSTRACT

Ginger, a vegetable export from China, is well-known for its spicy flavour and use in traditional Chinese medicine. By examining the interactions of ginger plants' microbiome and metabolome, we can gain insights to advance agriculture, the environment, and other fields. Our study used metataxonomic analysis to investigate ginger plants' prokaryotic and fungal microbiomes in open fields and greenhouses. We also conducted untargeted metabolomic analysis to identify specific metabolites closely associated with ginger microbiome assembly under both agricultural conditions. Various bacteria and fungi were classified as generalists or specialists based on their ability to thrive in different environments and microbial niches. Our results indicate that ginger plants grown in greenhouses have a greater prokaryotic diversity, while those grown in open fields exhibit a greater fungal diversity. We have identified specific co-occurring prokaryotic and fungal genera associated with ginger plant agroecosystems that can enhance the health and growth of ginger plants while maintaining a healthy environment. In the open field these genera include Sphingomonas, Methylobacterium-Methylorubrum, Bacillus, Acidovorax, Rhizobium, Microbacterium, unclassified_f_Comamonadaceae, Herbaspirillum, Klebsiella, Enterobacter, Chryseobacterium, Nocardioides, Subgroup_10, Enterococcus, Pseudomonas, Devosia, g_unclassified_f_Chaetomiaceae, Pseudaleuria, Mortierella, Cheilymenia, and Pseudogymnoascus. In the greenhouse, the enriched genera were Rhizobium, Stenotrophomonas, Aureimonas, Bacillus, Nocardioides, Pseudomonas, Enterobacter, Delftia, Trichoderma, Mortierella, Cheilymenia, Schizothecium, and Actinomucor. Our research has identified several previously unknown microbial genera for ginger plant agroecosystems. Furthermore, our study has important implications for understanding the correlation between ginger's microbiome and metabolome profiles in diverse environments and may pave the way for future research. Specific microbial genera in crop production environments are associated with essential metabolites, including Safingol, Docosatrienoic acid, P-acetaminophen, and Hypoglycin B.

3.
BMC Public Health ; 24(1): 1754, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956531

ABSTRACT

BACKGROUND: This study aimed to investigate the relationships between accelerometer-measured physical activity (PA) and sedentary behaviour (SB) with physical function (PF) among older Chinese women in the community. METHODS: The present study comprised 1,113 community-dwelling older females, with an average age of 65 ± 2 years. We employed a linear regression analysis to investigate the relationship between patterns of PA and SB with PF. PA variables consisted of total PA time, bouted PA time (a continuous PA that lasts equal to or more than 10 min), and sporadic PA time (a continuous PA that lasts less than 10 min). SB variables included total SB time, 30-min bout of SB (a continuous SB that lasts equal to or more than 30 min), and 60-min bout of SB (a continuous SB that lasts equal to or more than 60 min). PF variables comprised handgrip strength (HGS), one-legged stance test with eyes closed (OLSTEC), usual walking speed (UWS), maximum walking speed (MWS) and chair-stand time (CT). To explore the joint effects of moderate-to-vigorous-intensity PA (MVPA) and SB on PF, we divided the duration of SB and MVPA participation in older women into different combinations: low MVPA & high SB, low MVPA & low SB, high MVPA & high SB, high MVPA & low SB. RESULTS: The study revealed a significant association between 30-min bout of SB and CT, which remained after adjusting for total MVPA time (P = 0.021). Both total MVPA and bouted MVPA were found to be positively associated with better UWS, MWS, CT, and PF Z-score. When the combination of low MVPA & high SB was used as a reference, the regression coefficients for PF ascended by 1.32 (P < 0.001) in the high MVPA & high SB group and by 1.13 (P < 0.001) in the high MVPA & low SB group. CONCLUSIONS: A significant association was observed between poorer lower limb function and prolonged, uninterrupted SB in older women, rather than with the total SB time. Concurrently, the insufficient engagement in MVPA may also be a crucial factor contributing to poorer PF in older women. Engaging in longer durations and higher intensity of PA, such as bouts of MVPA lasting a minimum of 10 min or longer, may contribute to better PF.


Subject(s)
Accelerometry , Exercise , Sedentary Behavior , Humans , Female , Cross-Sectional Studies , Aged , Exercise/physiology , Middle Aged , Independent Living , China
4.
Biomater Adv ; 163: 213950, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38972278

ABSTRACT

Traditional tendon engineering using cell-loaded scaffold has limited application potential due to the need of autologous cells. We hypothesize that potent mechanical loading can efficiently induce in situ Achilles tendon regeneration in a rabbit model by using a cell-free porous composite scaffold. In this study, melt-spinning was used to fabricate PGA (polyglycolic acid) and PLA (polylactic acid) filament fibers as well as non-woven PGA fibers. The PLA/PGA (4:2) filament fibers were further braided into a hybrid yarn,which was knitted into a PLA/PGA tubular mesh with potent mechanical property for sustaining natural tendon strain. The results showed that a complete cross-section of Achilles tendon created a model of full mechanical loading on the bridging scaffold, which could efficiently induce in situ tendon regeneration by promoting host cell infiltration, matrix production and tissue remodeling. Histologically, mechanical loading assisted in forming parallel aligned collagen fibers and tenocytes in a fashion similar to those of native tendon. Transmission electron microscope further demonstrated that mechanical strain induced collagen fibril development by increasing fibril diameter and forming bipolar structure, which resulted in enhanced mechanical properties. Interestingly, the synergistic effect between mechanical loading and hyaluronic acid modification was also observed on the induced tenogenic differentiation of infiltrated host fibroblasts. In conclusion, potent mechanical loading is the key inductive microenvironment for in situ tendon regeneration for this polymer-based composite scaffold with proper matrix modification, which may serve as a universal scaffold product for tendon regeneration.

5.
Oncol Lett ; 28(2): 364, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38903698

ABSTRACT

[This retracts the article DOI: 10.3892/ol.2017.7375.].

6.
Sensors (Basel) ; 24(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931738

ABSTRACT

Borehole strain gauges play a crucial role in geophysical, seismological, and crustal dynamics studies. While existing borehole strain gauges are proficient in measuring horizontal strains within vertical boreholes, their effectiveness in capturing vertical and oblique strains is limited due to technical constraints arising from the cylindrical probe's characteristics. However, the accurate measurement of three-dimensional strain is essential for a comprehensive understanding of crustal tectonics, dynamics, and geophysics, particularly considering the diverse geological structures and force sources within the crustal medium. In this study, we present a novel approach to address this challenge by enhancing an existing horizontal-component borehole strain gauge with a bellows structure and line strain measurement technology to enable vertical and borehole oblique strain measurements. Integrating these enhancements with horizontal strain measurement capabilities enables comprehensive three-dimensional borehole strain measurements within the same hole section. The system was deployed and tested at the Gongxian seismic station in Sichuan Province. Clear observations of solid tides were recorded across horizontal, oblique, and vertical measurement units, with the tidal morphology and amplitude being consistent with the theoretical calculations. The achieved measurement sensitivity of 10-10 meets the requirements for borehole strain measurement, enabling the characterization of three-dimensional strain states within boreholes through association methods.

7.
PLoS One ; 19(6): e0303525, 2024.
Article in English | MEDLINE | ID: mdl-38865335

ABSTRACT

With the development of low-carbon economy and the dominant position of retailers, through the establishment and comparison of three cooperative advertising models: model of supplier's independent advertising, model of supplier's independent advertising and model of retailer's and supplier's cooperative advertising, this paper studies the cooperative advertising decision-making of fresh agricultural products supply chain with two channels, and the demand of both channels is affected by the level of advertising investment, the proportion of advertising cost sharing and the efficiency of carbon emission reduction. The results show that when supplier and retailer adopt the two-way cooperative advertising mode, the demand and profit level of the two channels reach the optimal level. Numerical analysis shows that carbon emission reduction efficiency has an important impact on profits and market demand, which is closely related to cooperative advertising strategy.


Subject(s)
Advertising , Advertising/methods , Carbon/chemistry , Commerce , Agriculture/methods , Food Supply/economics , Food Supply/methods , Leadership , Models, Theoretical
8.
Front Genet ; 15: 1387724, 2024.
Article in English | MEDLINE | ID: mdl-38846960

ABSTRACT

Fetal chromosomal abnormalities are the main cause of adverse pregnancy outcomes and are the focus of invasive prenatal diagnosis. Recent studies have demonstrated that various techniques have distinct advantages. Achieving high-resolution and effective prenatal chromosomal abnormality diagnosis requires a multi-technology integration strategy. Based on retrospective samples from a single center, we propose that integrating CNV-seq and karyotype analysis is an effective strategy for prenatal diagnosis of chromosomal abnormalities. In this study, 13.80% of the pregnant women (347/2514) were found to have likely pathogenic or pathogenic fetal chromosomal abnormalities using this integrated approach. Among these cases, 53.89% (187/347) had consistent chromosomal abnormalities detected by both CNV-seq and karyotyping analysis, while 19.02% (66/347) and 27.09% (94/347) of cases were diagnosed solely by CNV-seq or karyotyping, respectively. Fetal chromosomal abnormalities were identified in 18.39% of samples with abnormal ultrasound, which was significantly higher than the percentage found in samples with normal ultrasound (p < 0.001). Samples with multiple ultrasound abnormalities and single-indicator ultrasound abnormalities such as nasal bone dysplasia, renal dysplasia, or echogenic fetal bowel also had higher rates of chromosomal abnormalities (p < 0.05) compared to normal samples. Analyzing samples with Trio family data (N = 521) revealed that about 94% of variants of uncertain significance were inherited from parents and were non-pathogenic. Overall, integrating CNV-seq and karyotype analysis is an effective strategy for prenatal diagnosis of chromosomal abnormalities. This study provides valuable insights for correlating prenatal screening indicators with chromosomal abnormalities.

9.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38853924

ABSTRACT

The design of bioelectronics capable of stably tracking brain-wide, single-cell, and millisecond-resolved neural activities in the developing brain is critical to the study of neuroscience and neurodevelopmental disorders. During development, the three-dimensional (3D) structure of the vertebrate brain arises from a 2D neural plate 1,2 . These large morphological changes previously posed a challenge for implantable bioelectronics to track neural activity throughout brain development 3-9 . Here, we present a tissue-level-soft, sub-micrometer-thick, stretchable mesh microelectrode array capable of integrating into the embryonic neural plate of vertebrates by leveraging the 2D-to-3D reconfiguration process of the tissue itself. Driven by the expansion and folding processes of organogenesis, the stretchable mesh electrode array deforms, stretches, and distributes throughout the entire brain, fully integrating into the 3D tissue structure. Immunostaining, gene expression analysis, and behavioral testing show no discernible impact on brain development or function. The embedded electrode array enables long-term, stable, brain-wide, single-unit-single-spike-resolved electrical mapping throughout brain development, illustrating how neural electrical activities and population dynamics emerge and evolve during brain development.

10.
Food Res Int ; 188: 114352, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823826

ABSTRACT

In the ongoing quest to formulate sensory-rich, low-fat products that maintain structural integrity, this work investigated the potential of bigels, especially those created using innovative Pickering techniques. By harnessing the unique properties of whey protein isolate (WPI) and whey protein microgel (WPM) as interfacial stabilizers, WPM-based Pickering bigels exhibited a remarkable particle localization at the interface due to specific intermolecular interactions. The rise in protein concentration not only intensified particle coverage and interface stabilization but also amplified attributes like storage modulus, yield stress, and adhesiveness, owing to enhanced intermolecular forces and a compact gel matrix. Impressively, WPM-based Pickering bigels outshone in practical applications, showcasing exceptional oil retention during freeze-thaw cycles and extended flavor release-a promising indication for frozen food product applications. Furthermore, these bigels underwent a sensory evolution from a lubricious texture at lower concentrations to a stable plateau at higher ones, offering an enriched consumer experience. In a comparative digestibility assessment, WPM-based Pickering bigels demonstrated superior prowess in decelerating the release of free fatty acids, indicating slowed lipid digestion. This study demonstrates the potential to fine-tune oral sensations and digestive profiles in bigels by modulating Pickering particle concentrations.


Subject(s)
Digestion , Microgels , Taste , Whey Proteins , Whey Proteins/chemistry , Humans , Microgels/chemistry , Food Handling/methods , Gastrointestinal Tract/metabolism , Sensation
11.
Article in English | MEDLINE | ID: mdl-38702162

ABSTRACT

Objective: NHISS score, MMSE scale, craniocerebral CTA or DSA, and craniocerebral magnetic resonance 3D-ASL were used to evaluate the efficacy and safety of superficial temporal artery-middle cerebral artery (STA-MCA) shunt combined with cranial-muscular-merging (EMS) in the treatment of symptomatic chronic internal carotid artery occlusion. Methods: The purpose of this study was to retrospectively analyze the clinical data of 15 patients with symptomatic chronic internal carotid artery occlusion who received STA-MCA shunt combined with EMS treatment at Weifang Brain Hospital and Weifang Traditional Chinese Medicine Hospital from July 2016 to December 2020. The patients' neurological and cognitive functions were evaluated by NHISS score and MMSE examination before surgery and 6 months after surgery. Adverse reactions after surgery were observed, and preoperative and postoperative cerebral hemodynamics, the patency of the shunt anastomosis, and the compensation of collateral circulation were evaluated by cranial CTA or DSA and cranial MRI 3D-ASL. Results: All 15 patients underwent successful surgery. One patient experienced transient mild cerebral hyperperfusion syndrome postoperatively. Six months after surgery, the NHISS score was significantly improved compared with that before surgery (P = .0001), and the MMSE score was also significantly improved compared with before surgery (P = .0124). No adverse events of poor scalp healing, intracranial infection, subcutaneous fluid accumulation, subdural hematoma, or cerebral hemorrhage were observed postoperatively. Imaging examination showed that the shunt vessels were unobstructed, the middle cerebral artery was dilated, collateral circulation in the surgical area was increased, and cerebral blood flow increased. Conclusion: STA-MCA shunt combined with EMS treatment is safe and effective for symptomatic chronic internal carotid artery occlusion. It has the potential to improve cerebral blood flow and reduce clinical symptoms.

12.
Cogn Sci ; 48(5): e13452, 2024 05.
Article in English | MEDLINE | ID: mdl-38742272

ABSTRACT

Slower perceptual alternations, a notable perceptual effect observed in psychiatric disorders, can be alleviated by antidepressant therapies that affect serotonin levels in the brain. While these phenomena have been well documented, the underlying neurocognitive mechanisms remain to be elucidated. Our study bridges this gap by employing a computational cognitive approach within a Bayesian predictive coding framework to explore these mechanisms in depression. We fitted a prediction error (PE) model to behavioral data from a binocular rivalry task, uncovering that significantly higher initial prior precision and lower PE led to a slower switch rate in patients with depression. Furthermore, serotonin-targeting antidepressant treatments significantly decreased the prior precision and increased PE, both of which were predictive of improvements in the perceptual alternation rate of depression patients. These findings indicated that the substantially slower perception switch rate in patients with depression was caused by the greater reliance on top-down priors and that serotonin treatment's efficacy was in its recalibration of these priors and enhancement of PE. Our study not only elucidates the cognitive underpinnings of depression, but also suggests computational modeling as a potent tool for integrating cognitive science with clinical psychology, advancing our understanding and treatment of cognitive impairments in depression.


Subject(s)
Bayes Theorem , Depression , Humans , Male , Female , Adult , Visual Perception , Antidepressive Agents/therapeutic use , Serotonin/metabolism , Middle Aged
13.
Article in English | MEDLINE | ID: mdl-38739182

ABSTRACT

Neurofeedback training (NFT) is a promising adjuvant intervention method. The desynchronization of mu rhythm (8-13 Hz) in the electroencephalogram (EEG) over centro-parietal areas is known as a valid indicator of mirror neuron system (MNS) activation, which has been associated with social skills. Still, the effect of neurofeedback training on the MNS requires to be well investigated. The present study examined the possible impact of NFT with a mu suppression training protocol encompassing 15 NFT sessions (45 min each) on 16 healthy neurotypical participants. In separate pre- and post-training sessions, 64-channel EEG was recorded while participants (1) observed videos with various types of movements (including complex goal-directed hand movements and social interaction scenes) and (2) performed the "Reading the Mind in the Eyes Test" (RMET). EEG source reconstruction analysis revealed statistically significant mu suppression during hand movement observation across MNS-attributed fronto-parietal areas after NFT. The frequency analysis showed no significant mu suppression after NFT, despite the fact that numerical mu suppression appeared to be visible in a majority of participants during goal-directed hand movement observation. At the behavioral level, RMET accuracy scores did not suggest an effect of NFT on the ability to interpret subtle emotional expressions, although RMET response times were reduced after NFT. In conclusion, the present study exhibited preliminary and partial evidence that mu suppression NFT can induce mu suppression in MNS-attributed areas. More powerful experimental designs and longer training may be necessary to induce substantial and consistent mu suppression, particularly while observing social scenarios.

14.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727360

ABSTRACT

Renewable, green, and safe natural biopolymer-derived materials are highly desired for the purification of pollutants, but significantly improving their performance without the introduction of additional harmful chemicals remains a huge challenge. Based on the concept of "structure optimization design", environment-friendly composite beads (named SA/PASP/RE) with excellent adsorption performance and recyclability were rationally constructed through a green ionic crosslinking route, using the completely green biopolymer sodium alginate (SA), sodium salt of polyaspartic acid (PASP), and the natural nanoclay rectorite (RE) as starting materials. The nano-layered RE was embedded in the polymer matrix to prevent the polymer chain from becoming over-entangled so that more adsorption sites inside the polymer network were exposed, which effectively improved the mass transfer efficiency of the adsorbent and the removal rate of contaminants. The composite beads embedded with 0.6% RE showed high adsorption capacities of 211.78, 197.13, and 195.69 mg/g for Pb(II) and 643.00, 577.80, and 567.10 mg/g for methylene blue (MB) in Yellow River water, Yangtze River water, and tap water, respectively. And the beads embedded with 43% RE could efficiently adsorb Pb(II) and MB with high capacities of 187.78 mg/g and 586.46 mg/g, respectively. This study provides a new route to design and develop a green, cost-effective, and efficient adsorbent for the decontamination of wastewater.

15.
Chem Asian J ; 19(12): e202400211, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38709109

ABSTRACT

The growing demand for wearable electronics has driven the development of flexible thermoelectric (TE) generators which can harvest waste body heat as a renewable power source. Despite carbon nanotube (CNT) yarns have attracted significant attention as a promising candidate for TE materials, challenges still exist in improving their TE efficiency for commercial applications. Herein, we developed high performance CNT/polyaniline (PANI) yarns by engineering the coating of polyaniline emeraldine base (PANIeb), in which CNT yarns were firstly coated by PANIeb layer and further doped by HCl vapor treatment. With the incorporation of PANIeb, σ and S were simultaneously increased to 1796 S cm-1 and 74.8 µV K-1 for CNT/PANIeb 4-2d fibers, respectively. Further HCl vapor treatment induced greatly increased σ to 3194 S cm-1, but maintained be 83 % value before doping, giving rise to the highest power factor of 1224 µW m-1K-2, higher than pristine CNT yarns of 576 µW m-1K-2. Combining outstanding high TE performance and bending durability, a flexible TE generator was constructed to deliver high out power of 187 nW with temperature gradients of about 30 K. These results demonstrate the potential promise of high-performance CNT/PANI-HCl yarns to harvest waste body heat for sustainable power supply.

16.
BMC Microbiol ; 24(1): 189, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811884

ABSTRACT

BACKGROUND: The study aims to analyze the epidemiology of preservation fluid (PF) contamination and investigate the impact of PF contamination and possible donor-derived infections(p-DDI) on early postoperative prognosis in kidney transplant (KT) recipients. METHODS: A total of 256 PF samples were collected for microbiological evaluation from all KT recipients who received deceased donor donations in our hospital from June 2018 to August 2022. Data on the baseline and clinical characteristics of these PF corresponding to recipients and donors were extracted from the electronic medical record. It mainly included the early postoperative complications and prognosis of KT recipients. RESULTS: From June 2018 to August 2022, 597 kidney transplants were performed in our center, with 260 recipients receiving kidney transplantation from donation after citizens' death. A total of 256 samples of PF were collected, of which 64.5% (165/256) were culture positive, and 24.6% (63/165) of the culture-positive PF were polymicrobial contamination. A total of 238 strains were isolated, of which coagulase-negative staphylococci (CoNS) had the highest proportion of 34.0% (81/238), followed by Klebsiella pneumoniae with 20.6% (49/238) and Escherichia coli with 8.8% (21/238). Recipients with culture-positive PF had a significantly higher incidence of postoperative infection (55.8% vs. 20.9%, P < 0.001) and DGF (38.2% vs. 24.2%, P = 0.023). In addition, the incidence of p-DDI was 12.9% (33/256). CRKP was the most common pathogen causing p-DDI. The recipients who developed p-DDI had a higher rate of graft loss (9.1% vs. 0.4%, P < 0.001), mortality (12.1% vs. 3.1%, P = 0.018), and longer postoperative hospital stay (30 days (19.5-73.5) vs. (22 days (18-32), P < 0.05) compared with recipients who did not develop p-DDI. CONCLUSIONS: Culture-positive PF is potentially significant for KT recipients, and p-DDI may increase the risk of poor prognosis for recipients. Prophylactic anti-infective treatment should be actively performed for highly virulent or multidrug-resistant (MDR) pathogens (especially Carbapenem-resistant Klebsiella pneumoniae, CRKP) in PF to avoid the occurrence of p-DDI.


Subject(s)
Kidney Transplantation , Organ Preservation Solutions , Tissue Donors , Humans , Kidney Transplantation/adverse effects , Male , Female , Middle Aged , Adult , Prognosis , Postoperative Complications/microbiology , Postoperative Complications/epidemiology , Transplant Recipients/statistics & numerical data , Retrospective Studies , Aged , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics
17.
J Colloid Interface Sci ; 670: 709-718, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38788438

ABSTRACT

The production of hydrogen through seawater electrolysis has recently garnered increasing concern. However, hydrogen evolution reaction (HER) by alkaline seawater electrocatalysis is severely impeded by the slow H2O adsorption and H* binding kinetics at industrial current densities. Herein, a face-centered cubic/hexagonal close packed (fcc/hcp) NiRu alloy heterojunction was fabricated on Ni foam (N doped NiRu-inf/NF) by a low-temperature nitrogen plasma activation. Simultaneously, nitrogen atoms are introduced into the alloy to facilitate d-p hybridization. When N doped NiRu-inf/NF is integrated into a dual-electrode cell for urea-assisted seawater electrolysis, it achieves 100 mA cm-2 with an ultra-low voltage of 1.36 V and excellent stability. Density functional theory (DFT) verifies that the robust d-p hybridization among Ni, Ru and N exhibits more energy level matching for H2O molecule adsorption at the Ru sites, while simultaneously reducing the interaction between H* and Ni sites in N-doped NiRu-inf.

18.
Cortex ; 175: 54-65, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704919

ABSTRACT

The dorsal attention network (DAN) is a network of brain regions essential for attentional orienting, which includes the lateral intraparietal area (LIP) and frontal eye field (FEF). Recently, the putative human dorsal posterior infero-temporal area (phPITd) has been identified as a new node of the DAN. However, its functional relationship with other areas of the DAN and its specific role in visual attention remained unclear. In this study, we analyzed a large publicly available neuroimaging dataset to investigate the intrinsic functional connectivities (FCs) of the phPITd with other brain areas. The results showed that the intrinsic FCs of the phPITd with the areas of the visual network and the DAN were significantly stronger than those with the ventral attention network (VAN) areas and areas of other networks. We further conducted individual difference analyses with a sample size of 295 participants and a series of attentional tasks to investigate which attentional components each phPITd-based DAN edge predicts. Our findings revealed that the intrinsic FC of the left phPITd with the LIPv could predict individual ability in attentional orienting, but not in alerting, executive control, and distractor suppression. Our results not only provide direct evidence of the phPITd's functional relationship with the LIPv, but also offer a comprehensive understanding of its specific role in visual attention.


Subject(s)
Attention , Brain Mapping , Magnetic Resonance Imaging , Temporal Lobe , Visual Perception , Humans , Attention/physiology , Male , Female , Adult , Temporal Lobe/physiology , Temporal Lobe/diagnostic imaging , Young Adult , Magnetic Resonance Imaging/methods , Visual Perception/physiology , Orientation/physiology , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Nerve Net/physiology , Nerve Net/diagnostic imaging
19.
Micromachines (Basel) ; 15(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38793168

ABSTRACT

The pigeon robot has attracted significant attention in the field of animal robotics thanks to its outstanding mobility and adaptive capability in complex environments. However, research on pigeon robots is currently facing bottlenecks, and achieving fine control over the motion behavior of pigeon robots through brain-machine interfaces remains challenging. Here, we systematically quantify the relationship between electrical stimulation and stimulus-induced motion behaviors, and provide an analytical method to demonstrate the effectiveness of pigeon robots based on electrical stimulation. In this study, we investigated the influence of gradient voltage intensity (1.2-3.0 V) on the indoor steering motion control of pigeon robots. Additionally, we discussed the response time of electrical stimulation and the effective period of the brain-machine interface. The results indicate that pigeon robots typically exhibit noticeable behavioral responses at a 2.0 V voltage stimulus. Increasing the stimulation intensity significantly controls the steering angle and turning radius (p < 0.05), enabling precise control of pigeon robot steering motion through stimulation intensity regulation. When the threshold voltage is reached, the average response time of a pigeon robot to the electrical stimulation is 220 ms. This study quantifies the role of each stimulation parameter in controlling pigeon robot steering behavior, providing valuable reference information for the precise steering control of pigeon robots. Based on these findings, we offer a solution for achieving precise control of pigeon robot steering motion and contribute to solving the problem of encoding complex trajectory motion in pigeon robots.

20.
Materials (Basel) ; 17(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38793514

ABSTRACT

Co-condensation of mixed SiGe nanoclusters and impingement of SiGe nanoclusters on a Si substrate were applied using molecular dynamics (MD) simulation in this study to mimic the fast epitaxial growth of SiGe/Si heterostructures under mesoplasma chemical vapor deposition (CVD) conditions. The condensation dynamics and properties of the SiGe nanoclusters during the simulations were investigated first, and then the impingement of transient SiGe nanoclusters on both Si smooth and trench substrate surfaces under varying conditions was studied theoretically. The results show that the mixed nanoclusters as precursors demonstrate potential for enhancing epitaxial SiGe film growth at a high growth rate, owing to their loosely bound atomic structures and high mobility on the substrate surface. By varying cluster sizes and substrate temperatures, this study also reveals that smaller clusters and higher substrate temperatures contribute to faster structural ordering and smoother surface morphologies. Furthermore, the formed layers display a consistent SiGe composition, closely aligning with nominal values, and the cluster-assisted deposition method achieves the epitaxial bridging of heterostructures during cluster impingement, highlighting its additional distinctive characteristics. The implications of this work make it clear that the mechanism of fast alloyed epitaxial film growth by cluster-assisted mesoplasma CVD is critical for extending it as a versatile platform for synthesizing various epitaxial films.

SELECTION OF CITATIONS
SEARCH DETAIL
...