Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.634
1.
Heliyon ; 10(11): e31320, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38841477

Background: collagen type I is a fundamental composition of extracellular matrix. Typically it exists in the form of a heterotrimer, consisting of two α1 chains encoded by COL1A1 and one α2 chain encoded by COL1A2. However, in cancer a homotrimeric form of collagen type I comprises three α1 chains encoded by COL1A1 was founded. There is still a lack of transcriptional and histologic methods for detecting homotrimeric collagen type I. Furthermore, a comprehensive analysis of the pan-cancer distribution pattern and clinical relevance of homotrimeric collagen type I is conspicuously absent. Method: Using transcriptional and immunoflourance method, we established homocol signature, which is able to transcriptionally and histologically detect homotrimeric collagen type I. We investigated the diagnostic and prognostic potential of homocol as a novel cancer biomarker in a pan-cancer cohort. Furthermore, we assessed its association with clinical manifestations in a liver cancer cohort undergoing treatment at our institute. Result: Homotrimer Collagen Type I is predominantly expressed by cancer cells and is linked to several critical cancer hallmarks, particularly inflammatory response and proliferation. Survival analyses have indicated that a high Homocol expression is correlated with poor outcomes in most types of cancer studied. In terms of cancer detection, Homocol demonstrated strong performance in Receiver Operating Characteristic (ROC) analysis, with an Area Under Curve (AUC) of 0.83 for pan-cancer detection and between 0.72 and 0.99 for individual cancers.In cohorts undergoing PD1 treatment, we noted a higher presence of Homocol in the response group. In a Hepatocellular Carcinoma (HCC) clinical set, high Homocol expression was associated with an increased formation of intra-tumor tertiary lymphoid structures (TLS), larger tumor sizes, more advanced Barcelona Clinic Liver Cancer (BCLC) stages, higher microvascular invasion (MVI) grades, absence of a capsule, and an enriched para-tumor collagen presence. Conclusion: our research has led to the development of a novel gene signature that facilitates the detection of Homotrimer Collagen Type I. This may greatly assist efforts in cancer detection, prognosis, treatment response prediction, and further research into Homotrimer Collagen Type I.

2.
Discov Oncol ; 15(1): 205, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831128

The secretagogin (SCGN) was originally identified as a secreted calcium-binding protein present in the cytoplasm. Recent studies have found that SCGN has a close relationship with cancer. However, its role in the occurrence, progression, and prognosis of clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, we utilized a mutual authentication method based on public databases and clinical samples to determine the role of SCGN in the progression and prognosis of ccRCC. Firstly, we comprehensively analyzed the expression characteristics of SCGN in ccRCC in several public databases. Subsequently, we systematically evaluated SCGN expression on 252 microarrays of ccRCC tissues from different grades. It was found that SCGN was absent in all the normal kidney tissues and significantly overexpressed in ccRCC tumor tissues. In addition, the expression level of SCGN gradually decreased with an increase in tumor grade, and the percentage of SCGN staining positivity over 50% was 86.7% (13/15) and 73.4% (58/79) in Grade1 and Grade2, respectively, while it was only 8.3% (12/144) in Grade3, and the expression of SCGN was completely absent in Grade4 (0/14) and distant metastasis group (0/4). Additionally, the expression of SCGN was strongly correlated with the patient's prognosis, with the higher the expression levels of SCGN being associated with longer overall survival and disease-free survival of patients. In conclusion, our results suggest that reduced expression of SCGN in cancer cells is correlated with the progression and prognosis of ccRCC.

3.
Small ; : e2403380, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38837583

Zinc metal is a promising anode candidate for aqueous zinc ion batteries due to its high theoretical capacity, low cost, and high safety. However, its application is currently restricted by hydrogen evolution reactions (HER), by-product formation, and Zn dendrite growth. Herein, a "Zn2+ in salt" (ZIS) interphase is in situ constructed on the surface of the anode (ZIS@Zn). Unlike the conventional "Zn2+ in water" working environment of Zn anodes, the intrinsic hydrophobicity of the ZIS interphase isolates the anode from direct contact with the aqueous electrolyte, thereby protecting it from HER, and the accompanying side reactions. More importantly, it works as an ordered water-free ion-conducting medium, which guides uniform Zn deposition and facilitates rapid Zn2+ migration at the interface. As a result, the symmetric cells assembled with ZIS@Zn exhibit dendrite-free plating/striping at 4500 h and a high critical current of 14 mA cm-2. When matched with a vanadium-based (NVO) cathode, the full battery exhibits excellent long-term cycling stability, with 88% capacity retention after 1600 cycles. This work provides an effective strategy to promote the stability and reversibility of Zn anodes in aqueous electrolytes.

4.
BMJ Open Respir Res ; 11(1)2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834332

OBJECTIVE: This study aims to explore the common genetic basis between respiratory diseases and to identify shared molecular and biological mechanisms. METHODS: This genome-wide pleiotropic association study uses multiple statistical methods to systematically analyse the shared genetic basis between five respiratory diseases (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, lung cancer and snoring) using the largest publicly available genome wide association studies summary statistics. The missions of this study are to evaluate global and local genetic correlations, to identify pleiotropic loci, to elucidate biological pathways at the multiomics level and to explore causal relationships between respiratory diseases. Data were collected from 27 November 2022 to 30 March 2023 and analysed from 14 April 2023 to 13 July 2023. MAIN OUTCOMES AND MEASURES: The primary outcomes are shared genetic loci, pleiotropic genes, biological pathways and estimates of genetic correlations and causal effects. RESULTS: Significant genetic correlations were found for 10 paired traits in 5 respiratory diseases. Cross-Phenotype Association identified 12 400 significant potential pleiotropic single-nucleotide polymorphism at 156 independent pleiotropic loci. In addition, multitrait colocalisation analysis identified 15 colocalised loci and a subset of colocalised traits. Gene-based analyses identified 432 potential pleiotropic genes and were further validated at the transcriptome and protein levels. Both pathway enrichment and single-cell enrichment analyses supported the role of the immune system in respiratory diseases. Additionally, five pairs of respiratory diseases have a causal relationship. CONCLUSIONS AND RELEVANCE: This study reveals the common genetic basis and pleiotropic genes among respiratory diseases. It provides strong evidence for further therapeutic strategies and risk prediction for the phenomenon of respiratory disease comorbidity.


Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Respiratory Tract Diseases/genetics , Genetic Pleiotropy , Pulmonary Disease, Chronic Obstructive/genetics , Asthma/genetics
5.
Sci Rep ; 14(1): 12602, 2024 06 01.
Article En | MEDLINE | ID: mdl-38824202

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Brain Neoplasms , Glioma , Humans , Glioma/genetics , Glioma/pathology , Prognosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , RNA Processing, Post-Transcriptional , Neoplasm Grading , Mitochondria/genetics , Mitochondria/metabolism , Biomarkers, Tumor/genetics , Gene Expression Profiling , Multiomics
6.
Int J Nanomedicine ; 19: 4907-4921, 2024.
Article En | MEDLINE | ID: mdl-38828197

Purpose: Pueraria lobata (P. lobata), a dual-purpose food and medicine, displays limited efficacy in alcohol detoxification and liver protection, with previous research primarily focused on puerarin in its dried roots. In this study, we investigated the potential effects and mechanisms of fresh P. lobata root-derived exosome-like nanovesicles (P-ELNs) for mitigating alcoholic intoxication, promoting alcohol metabolism effects and protecting the liver in C57BL/6J mice. Methods: We isolated P-ELNs from fresh P. lobata root using differential centrifugation and characterized them via transmission electron microscopy, nanoscale particle sizing, ζ potential analysis, and biochemical assays. In Acute Alcoholism (AAI) mice pre-treated with P-ELNs, we evaluated their effects on the timing and duration of the loss of the righting reflex (LORR), liver alcohol metabolism enzymes activity, liver and serum alcohol content, and ferroptosis-related markers. Results: P-ELNs, enriched in proteins, lipids, and small RNAs, exhibited an ideal size (150.7 ± 82.8 nm) and negative surface charge (-31 mV). Pre-treatment with 10 mg/(kg.bw) P-ELNs in both male and female mice significantly prolonged ebriety time, shortened sobriety time, enhanced acetaldehyde dehydrogenase (ALDH) activity while concurrently inhibited alcohol dehydrogenase (ADH) activity, and reduced alcohol content in the liver and serum. Notably, P-ELNs demonstrated more efficacy compared to P-ELNs supernatant fluid (abundant puerarin content), suggesting alternative active components beyond puerarin. Additionally, P-ELNs prevented ferroptosis by inhibiting the reduction of glutathione peroxidase 4 (GPX4) and reduced glutathione (GSH), and suppressing acyl-CoA synthetase long-chain family member 4 (ACSL4) elevation, thereby mitigating pathological liver lipid accumulation. Conclusion: P-ELNs exhibit distinct exosomal characteristics and effectively alleviate alcoholic intoxication, improve alcohol metabolism, suppress ferroptosis, and protect the liver from alcoholic injury. Consequently, P-ELNs hold promise as a therapeutic agent for detoxification, sobriety promotion, and prevention of alcoholic liver injury.


Alcoholic Intoxication , Exosomes , Liver , Mice, Inbred C57BL , Plant Roots , Pueraria , Animals , Pueraria/chemistry , Exosomes/metabolism , Exosomes/drug effects , Exosomes/chemistry , Mice , Male , Alcoholic Intoxication/drug therapy , Plant Roots/chemistry , Liver/drug effects , Liver/metabolism , Ethanol/chemistry , Ethanol/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alcoholism/drug therapy , Isoflavones
7.
Environ Res ; 257: 119291, 2024 May 30.
Article En | MEDLINE | ID: mdl-38823607

The presence of butylparaben (BP), a prevalent pharmaceutical and personal care product, in surface waters has raised concerns regarding its impact on aquatic ecosystems. Despite its frequent detection, the toxicity of BP to the cyanobacterium Microcystis aeruginosa remains poorly understood. This study investigates the influence of BP on the growth and physiological responses of M. aeruginosa. Results indicate that low concentrations of BP (below 2.5 mg/L) have negligible effects on M. aeruginosa growth, whereas higher concentrations (5 mg/L and 10 mg/L) lead to significant growth inhibition. This inhibition is attributed to the severe disruption of photosynthesis, evidenced by decreased Fv/Fm values and chlorophyll a content. BP exposure also triggers the production of reactive oxygen species (ROS), resulting in elevated activity of antioxidant enzymes. Excessive ROS generation stimulates the production of microcystin-LR (MC-LR). Furthermore, lipid peroxidation and cell membrane damage indicate that high BP concentrations cause cell membrane rupture, facilitating the release of MC-LR into the environment. Transcriptome analysis reveals that BP disrupts energy metabolic processes, particularly affecting genes associated with photosynthesis, carbon fixation, electron transport, glycolysis, and the tricarboxylic acid cycle. These findings underscore the profound physiological impact of BP on M. aeruginosa and highlight its role in stimulating the production and release of MC-LR, thereby amplifying environmental risks in aquatic systems.

8.
Phytomedicine ; 131: 155783, 2024 May 29.
Article En | MEDLINE | ID: mdl-38838402

BACKGROUND: Psoriasis, a chronic immune-mediated skin disease with pathological features such as aberrant differentiation of keratinocytes, dermal-epidermal inflammation, and angiogenesis. 2,3,5,4'-Tetrahydroxy stilbene 2-Ο-ß-d-glucoside (2354Glu) is a natural small molecule polyhydrostilbenes isolated from Polygonum multiglorum Thunb. The regulation of IL-36 subfamily has led to new pharmacologic strategies to reverse psoriasiform dermatitis. PURPOSE: Here we investigated the therapeutic potential of 2354Glu and elucidated the underlying mechanism in psoriasis. METHODS: The effects of 2354Glu on IL-36 signaling were assessed by psoriasiform in vivo, in vitro and ex vivo model. The in vivo mice model of psoriasis-like skin inflammation was established by applying imiquimod (IMQ), and the in vitro and ex vitro models were established by stimulating mouse primary keratinocyte, human keratinocytes cells (HaCaT) and ex vivo skin tissue isolated from the mice back with Polyinosine-polycytidylic acid (Poly(I:C)), IMQ, IL-36γ and Lipopolysaccharide (LPS) respectively. Moreover, NETs formation was inhibited by Cl-amidine to evaluate the effect of NETs in psoriatic mouse model. The effects of 2354Glu on skin inflammation were assessed by western blot, H&E, immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay and real-time quantitative PCR. RESULTS: In Poly(I:C)-stimulated keratinocytes, the secretion of IL-36 was inhibited after treatment with 2354Glu, similar to the effects of TLR3, P2X7R and caspase-1 inhibitors. In aldara (imiquimod)-induced mice, 2354Glu (100 and 25 mg/kg) improved immune cell infiltration and hyperkeratosis in psoriasis by directly targeting IL-36 in keratinocytes through P2X7R-caspase-1. When treatment with 2354Glu (25 mg/kg) was insufficient to inhibit IL-36γ, NETs reduced pathological features and IL-36 signaling by interacting with keratinocytes to combat psoriasis like inflammation. CONCLUSION: These results indicated that NETs had a beneficial effect on psoriasiform dermatitis. 2354Glu alleviates psoriasis by directly targeting IL-36/P2X7R axis and NET formation, providing a potential candidate for the treatment of psoriasis.

10.
J Sci Med Sport ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38697867

OBJECTIVES: We aimed to identify the major determinants of cardiac troponin changes response to exercise among non-elite runners participating in the Beijing 2022 marathon, with a particular focus on the associations with the cardiac function assessed by tissue Doppler echocardiography and speckle tracking. DESIGN: A prospective study. METHODS: A total of 33 non-elite participants in the 2022 Beijing Marathon were included in the study. Echocardiographic assessment and blood sample collection were conducted before, immediately after, and two weeks after the marathon. Blood samples were analyzed using the same Abbot high-sensitivity cTnI STAT assay. Echocardiography included tissue Doppler and speckle tracking echocardiography. RESULTS: Following the marathon, significant increases were observed in cardiac biomarkers, with hs-cTnI elevating from 3.1 [2.3-6.7] to 49.6 [32.5-76.9] ng/L (P < 0.0001). Over 72 % of participants had post-race hs-TnI levels surpassing the 99th percentile upper reference limit. There was a notable correlation between pre-marathon hs-cTnI levels (ß coefficient, 0.56 [0.05, 1.07]; P = 0.042), weekly average training (ß coefficient, -1.15 [-1.95, -0.35]; P = 0.009), and hs-cTnI rise post-marathon. Echocardiography revealed significant post-race cardiac function changes, including decreased E/A ratio (P < 0.0001), GWI (P < 0.0001), and GCW (P < 0.0001), with LVEF (ß coefficients, 0.112 [0.01, 0.21]; P = 0.042) and RV GLS (ß coefficients, 0.124 [0.01, 0.23]; P = 0.035) changes significantly associated with hs-TnI alterations. All echocardiographic and laboratory indicators reverted to baseline levels within two weeks. CONCLUSIONS: Baseline hs-cTnI levels and weekly average training influence exercise-induced hs-cTnI elevation in non-elite runners. Echocardiography revealed post-race changes in cardiac function, with LVEF and RV GLS significantly associated with hs-TnI alterations. These findings contribute to understanding the cardiac response to exercise and could guide training and recovery strategies.

11.
J Phys Condens Matter ; 36(35)2024 Jun 04.
Article En | MEDLINE | ID: mdl-38754446

The successful prediction and confirmation of unprecedentedly high-temperature superconductivity in compressed hydrogen-rich hydrides signify a remarkable advancement in the continuous quest for attaining room-temperature superconductivity. The recent studies have established a broad scope for developing binary and ternary hydrides and illustrated correlation between specific hydrogen motifs and high-Tcs under high pressures. The analysis of the microscopic mechanism of superconductivity in hydrides suggests that the high electronic density of states at the Fermi level (EF), the large phonon energy scale of the vibration modes and the resulting enhanced electron-phonon coupling are crucial contributors towards the high-Tcphonon-mediated superconductors. The aim of our efforts is to tackle forthcoming challenges associated with elevating theTcand reducing the stabilization pressures of hydrogen-based superconductors, and offer insights for the future discoveries of room-temperature superconductors. Our present Review offers an overview and analysis of the latest advancements in predicting and experimentally synthesizing various crystal structures, while also exploring strategies to enhance the superconductivity and reducing their stabilization pressures of hydrogen-rich hydrides.

12.
ACS Nano ; 18(22): 14000-14019, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38764194

While surface-enhanced Raman spectroscopy (SERS) has experienced substantial advancements since its discovery in the 1970s, it is an opportunity to celebrate achievements, consider ongoing endeavors, and anticipate the future trajectory of SERS. In this perspective, we encapsulate the latest breakthroughs in comprehending the electromagnetic enhancement mechanisms of SERS, and revisit CT mechanisms of semiconductors. We then summarize the strategies to improve sensitivity, selectivity, and reliability. After addressing experimental advancements, we comprehensively survey the progress on spectrum-structure correlation of SERS showcasing their important role in promoting SERS development. Finally, we anticipate forthcoming directions and opportunities, especially in deepening our insights into chemical or biological processes and establishing a clear spectrum-structure correlation.

13.
Photodiagnosis Photodyn Ther ; : 104220, 2024 May 20.
Article En | MEDLINE | ID: mdl-38777309

BACKGROUND: Accurate diagnosis of patients with ulcerative colitis (UC) can reduce their risk of developing colorectal cancer. This study intended to explore whether moxifloxacin, an agent with fluorescence potential, could promote two-photon microscopy (TPM) diagnosis for mice with dextran sodium sulfate (DSS)-induced colitis, which could imitate human UC. METHODS: 32 Balb/c mice were randomly divided into 4 groups: control, acute colitis, remission colitis and chronic colitis. Fluorescence parameters, imaging performance, and tissue features of different mouse models were compared under moxifloxacin-assisted TPM and label-free TPM. RESULTS: Excitation wavelength of 720 nm and moxifloxacin labeling time of 2 min was optimal for moxifloxacin-assisted TPM. With moxifloxacin labeling for colonic tissues, excitation power was decreased to 1/10 of that without labeling while fluorescence intensity was increased to 10-fold of that without labeling. Photobleaching was negligible after moxifloxacin labeling and moxifloxacin fluorescence kept stable within 2 hours. Compared with the control group, moxifloxacin fluorescence was reduced in the three colitis groups (P<0.05). Meanwhile, the proportion of enhanced moxifloxacin fluorescence regions was (22.4±1.6)%, (7.7±1.0)%, (13.5±1.7)% and (5.0±1.3)% in the control, acute, remission and chronic groups respectively, with significant reduction in the three colitis groups (P<0.05). Besides, variant tissue features of experimental colitis models were presented under moxifloxacin-assisted TPM, such as crypt opening, glandular structure, adjacent glandular space and moxifloxacin distribution. CONCLUSIONS: With unique biological interaction between moxifloxacin and colonic mucosa, moxifloxacin-assisted TPM imaging is feasible and effective for accurate diagnosis of different stages of experimental colitis.

14.
Bioresour Technol ; 402: 130762, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692371

Ionic cadmium (Cd (II)) in water is a significant threat to ecosystems, the environment, and human health. Research is currently focused on developing efficient adsorption materials to combat Cd (II) pollution in water. One promising solution involves co-pyrolyzing solid residue from anaerobic digestion of food waste with oil-based drill cuttings pyrolysis residue to create a biochar with high organic matter content. This biochar has a lower heavy metal content and leaching toxicity compared to China's national standards, making it both safe and resourceful. It exhibits a high adsorption capacity for Cd (II) in water, reaching up to 47.80 ± 0.37 mg/g. Raising the pyrolysis temperature above 600 °C and increasing the amount of pyrolysis residue beyond 30 % enhances the biochar's adsorption capacity. The adsorption process is primarily driven by mineral precipitation, offering a promising approach for dual waste resource management and reducing heavy metal pollution.


Cadmium , Charcoal , Solid Waste , Cadmium/chemistry , Charcoal/chemistry , Adsorption , Pyrolysis , Water Pollutants, Chemical/chemistry , Minerals/chemistry , Chemical Precipitation , Water Purification/methods
15.
Sci Total Environ ; 933: 173053, 2024 Jul 10.
Article En | MEDLINE | ID: mdl-38723973

Nitrochlorobenzene (NCB) is very common in pesticide and chemical industries, which has become a major problem in soil environment. However, the remediation of NCB contaminated soil is received finite concern. Using biochar as a substrate for nanoscale-zero valent iron (nZVI/p-BC) to activate peroxodisulfate (PDS), a novel heterogeneous oxidative system had been applied in the current study to remediate NCB contaminants in soil. The degradation efficiencies and kinetics of m-NCB, p-NCB, and o-NCB by various systems were contrasted in soil slurry. Key factors including the dosage of nZVI/p-BC, the molar ratio of nZVI/PDS, initial pH and temperature on degradation of NCB were further examined. The results confirmed that the nZVI/p-BC/PDS displayed the remarkable performance for removing NCB compared with other systems. Higher temperature with nZVI/PDS molar ratio of 2:1 under the acidic condition favored the reduction of NCB. The treatment for NCB with optimal conditions were evaluated for the engineering application. The mechanism of nZVI/p-BC/PDS indicated that electron transfer between p-BC and nZVI was responsible for activation of PDS, generating active species (SO4•-, •OH and 1O2) via both the free and non-free radical pathways. Experimental results revealed prominent availability of nZVI/p-BC/PDS system in remediation of actual contaminated field by NCB.

16.
Med Phys ; 2024 May 27.
Article En | MEDLINE | ID: mdl-38801337

BACKGROUND: Accurate and noninvasive assessment of split renal dysfunction is crucial, while there is lack of corresponding method clinically. PURPOSE: To investigate the feasibility of using diffusion-weighted imaging (DWI)-based radiomics models to evaluate split renal dysfunction. METHODS: We enrolled patients with impaired and normal renal function undergoing renal DWI examination. Glomerular filtration rate (GFR, mL/min) was measured using 99mTc-DTPA scintigraphy, which is reference standard of GFR measurement. The kidneys were classified into normal (GFR ≥40), mildly impaired (20≤ GFR < 40), moderately impaired (10≤ GFR < 20), and severely impaired (GFR < 10) renal function groups. Optimized subsets of radiomics features were selected from renal DWI images and radiomics scores (Rad-score) calculated to discriminate groups with different renal function. The radiomics model (Rad-score based) was developed in a training cohort and validated in a test cohort. Evaluations were conducted on the discrimination, calibration, and clinical application of the method. RESULTS: The final analysis included 330 kidneys. Logistic regression was used to develop three radiomics models, model A, B, and C, which were used to distinguish normal from impaired, mild from moderate, and moderate from severe renal function, respectively. The area under the curve of the three models were 0.822, 0.704, and 0.887 in the training cohort and 0.843, 0.717, and 0.897 in the test cohort, respectively, indicating efficient discrimination performance. CONCLUSIONS: DWI-based radiomics models have potential for evaluating split renal dysfunction and discriminating between normal and impaired renal function groups and their subgroups.

17.
World J Pediatr ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38806855

BACKGROUND: The diagnosis and treatment of attention deficit hyperactivity disorder (ADHD) comorbid with epilepsy have been insufficiently addressed in China. We conducted a study in China to investigate the current status, diagnosis, and treatment of ADHD in children to further our understanding of ADHD comorbid with epilepsy, strengthen its management, and improve patients' quality of life. METHODS: We carried out a multicenter cross-sectional survey of children with epilepsy across China between March 2022 and August 2022. We screened all patients for ADHD and compared various demographic and clinical factors between children with and without ADHD, including gender, age, age at epilepsy onset, duration of epilepsy, seizure types, seizure frequency, presence of epileptiform discharges, and treatment status. Our objective was to explore any possible associations between these characteristics and the prevalence of ADHD. RESULTS: Overall, 395 epilepsy patients aged 6-18 years were enrolled. The age at seizure onset and duration of epilepsy ranged from 0.1-18 to 0.5-15 years, respectively. Focal onset seizures were observed in 212 (53.6%) patients, while 293 (76.3%) patients had epileptiform interictal electroencephalogram (EEG) abnormalities. Among the 370 patients treated with anti-seizure medications, 200 (54.1%) had monotherapy. Although 189 (47.8%) patients had ADHD, only 31 received treatment for it, with the inattentive subtype being the most common. ADHD was more common in children undergoing polytherapy compared to those on monotherapy. Additionally, poor seizure control and the presence of epileptiform interictal EEG abnormalities may be associated with a higher prevalence of ADHD. CONCLUSIONS: While the prevalence of ADHD was higher in children with epilepsy than in normal children, the treatment rate was notably low. This highlights the need to give more importance to the diagnosis and treatment of ADHD in children with epilepsy.

18.
J Contemp Brachytherapy ; 16(2): 121-127, 2024 Apr.
Article En | MEDLINE | ID: mdl-38808212

Purpose: Few studies have focused on the management of inoperable ampullary carcinoma (AC), and patients with jaundice suffer from biliary stents replacement frequently. Iodine-125 (125I) brachytherapy has been used in the treatment of malignant tumors owing to its curative effect, minimal surgical trauma, and tolerable complications. The aim of the study was to investigate the role of 125I seed implantation in patients with unresectable ampullary carcinoma after relief of obstructive jaundice. Material and methods: A total of 44 patients with obstructive jaundice resulting from unresectable ampullary carcinoma from January 1, 2010 to October 31, 2020 were enrolled in the study. Eleven patients underwent implantation of 125I seeds under endoscopic ultrasound (EUS) after receiving biliary stent placement via endoscopic retrograde cholangiopancreatography (ERCP) (treatment group), and 33 patients received a stent alone via ERCP (control group). Cox regression model was applied in this single-center retrospective comparison study. Results: The median maximum intervention interval for biliary obstruction was 381 days (interquartile range [IQR]: 204-419 days) in the treatment group and 175 days (IQR: 126-274 days) in the control group (p < 0.05). Stent occlusion rates at 90 and 180 days in the control group were 12.9% and 51.6%, respectively. No stent occlusion occurred in the treatment group. Patients in the treatment group obtained longer survival time (median, 26 vs. 13 months; p < 0.01) and prolonged duodenal obstruction (median, 20.5 vs. 11 months; p < 0.05). No brachytherapy-related grade 3 or 4 adverse events were observed. Conclusions: Longer intervention interval for biliary obstruction and survival as well as better stent patency and prolonged time to duodenal obstruction could be achieved by implanting 125I seeds combined with biliary stent in patients with unresectable ampullary cancer.

19.
Heliyon ; 10(9): e30330, 2024 May 15.
Article En | MEDLINE | ID: mdl-38726177

Background: Colon cancer (CC) stem cells can self-renew as well as expand, thereby promoting tumor progression and conferring resistance to chemotherapeutic agents. The acetyltransferase NAT10 mediates N4-acetylcytidine (ac4C) modification, which in turn drives tumorigenesis, metastasis, stemness properties maintenance, and cell fate decisions. Nonetheless, the specific involvement of ac4C modification mediated by NAT10 in regulating stemness and chemosensitivity in CC remains undetermined. Methods: The levels of NAT10 in normal colon and chemoresistant CC tissues were determined utilizing quantitative real-time polymerase chain reaction alongside immunohistochemistry. Assessing cancer cell stemness and chemosensitivity was conducted by various methods including spheroid and colony formation, western blotting, and flow cytometry. RNA-Seq was used to identify target genes, and RNA immunoprecipitation analysis was used to explore the potential mechanisms. Results: We observed NAT10 overexpression and increased ac4C modification levels in chemoresistant CC tissues. The in vivo and in vitro analysis findings suggested that NAT10 promoted CC cell stemness while suppressing their chemosensitivity. Conversely, Remodelin, a NAT10-specific inhibitor, enhanced CC cell chemosensitivity. Mechanistically, NAT10 increased the level of NANOGP8 ac4C modification and promoted NANOGP8 mRNA stability. Conclusions: NAT10 promotes the maintenance of stemness and chemoresistance in CC cells by augmenting the mRNA stability of NANOGP8. The inhibition of NAT10 via Remodelin improves chemotherapeutic efficacy and impedes CC progression.

...