Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 292
1.
Environ Res ; 252(Pt 4): 119069, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38735376

Dwarf bamboo (Indocalamus decorus) is an O3-tolerant plant species. To identify the possible mechanism and response of leaf morphological, antioxidant, and anatomical characteristics to elevated atmospheric O3 (EO3) concentrations, we exposed three-year-old I. decorus seedlings to three O3 levels (low O3-LO: ambient air; medium O3-MO: Ambient air+70 ppb high O3-HO: Ambient air+140 ppb O3) over a growing season using open-top chambers. Leaf shape and stomatal characteristics, and leaf microscopic structure of I. decorus were examined. The results indicated that 1) the stomata O3 flux (Fst) of HO decreased more rapidly under EO3 as the exposure time increased. The foliar O3 injury of HO and MO occurred when AOT40 was 26.62 ppm h and 33.20 ppm h, respectively, 2) under EO3, leaf number, leaf mass per area, leaf area, and stomata length/width all decreased, while leaf thickness, stomatal density, width, and area increased compared to the control, 3) MDA and total soluble protein contents all showed significantly increase under HO (36.57% and 32.77%) and MO(31.91% and 19.52%) while proline contents only increased under HO(33.27%). 4) MO and HO increased bulliform cells numbers in the leaves by 6.28% and 23.01%, respectively. HO reduced the transverse area of bulliform cells by 13.73%, while MO treatments had no effect, and 5) the number of fusoid cells interspace, the transverse area of fusoid cells interspace, and mesophyll thickness of HO significantly increased by 11.16%, 28.58%, and 13.42%, respectively. In conclusion, I. decorus exhibits strong O3 tolerance characteristics, which stem from adaptions in the leaf's morphological, structural, antioxidant, and anatomical features. One critical attribute was the enlargement of the bulliform cell transverse area and the transverse area of fusoid cells interspace that drove this resistance to O3. Local bamboo species with high resistance to O3 pollution thus need to be promoted for sustained productivity and ecosystem services in areas with high O3 pollution.


Air Pollutants , Ozone , Plant Leaves , Plant Leaves/anatomy & histology , Plant Leaves/drug effects , Ozone/toxicity , Air Pollutants/toxicity , Air Pollutants/analysis , Poaceae/drug effects , Poaceae/anatomy & histology , Plant Stomata/drug effects , Plant Stomata/anatomy & histology
2.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 303-310, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710514

Objective To clarify the relationship between astrocyte activation patterns and disease progression in epidemic encephalitis B (Japanese encephalitis). Methods First, a mouse model of epidemic encephalitis B was constructed by foot-pad injection of Japanese encephalitis virus (JEV), and the expression of viral protein NS3 in different brain regions was detected by immunofluorescence assay (IFA). Next, IFA, RNA sequencing (RNA-seq) and real-time quantitative PCR (qRT-PCR) were used to clarify the changes in the astrocyte activation patterns at different stages of epidemic encephalitis B. Finally, intracerebroventricular administration of irisin was conducted to regulate the proportion of activation in complement C3-positive A1 astrocytes and S100A10-positive A2 astrocytes, investigating whether it could improve the body mass, behavioral scores, and brain tissue damage in a mouse model. Results NS3 protein was detected by IFA predominantly in the M1/M2 region of the motor cortex and the hippocampus. The number and volume of GFAP-positive astrocytes significantly increased in JEV-infected brain regions, in which the expression of multiple genes associated with A1/A2 astrocyte activation was significantly enhanced. Although intracerebroventricular or intraperitoneal injection of irisin did not improve the prognosis of epidemic encephalitis B, it inhibited the activation of A1 astrocytes and ameliorate neuroinflammation. Conclusion Neurons in the M1/M2 motor cortex and hippocampus are susceptible to JEV infection, in which the abnormal astrocyte activation contributes to the neuroinflammatory injury. Irisin administration may restrain A1 astrocyte activation and alleviate neuroinflammation following JEV infection.


Astrocytes , Disease Models, Animal , Disease Progression , Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Astrocytes/metabolism , Astrocytes/virology , Mice , Encephalitis, Japanese/immunology , Encephalitis Virus, Japanese/physiology , Brain/metabolism , Brain/virology , Brain/pathology , Male , Fibronectins/metabolism , Fibronectins/genetics
3.
Glob Chang Biol ; 30(5): e17303, 2024 May.
Article En | MEDLINE | ID: mdl-38741339

Nitrous oxide (N2O) emissions from livestock manure contribute significantly to the growth of atmospheric N2O, a powerful greenhouse gas and dominant ozone-depleting substance. Here, we estimate global N2O emissions from livestock manure during 1890-2020 using the tier 2 approach of the 2019 Refinement to the 2006 IPCC Guidelines. Global N2O emissions from livestock manure increased by ~350% from 451 [368-556] Gg N year-1 in 1890 to 2042 [1677-2514] Gg N year-1 in 2020. These emissions contributed ~30% to the global anthropogenic N2O emissions in the decade 2010-2019. Cattle contributed the most (60%) to the increase, followed by poultry (19%), pigs (15%), and sheep and goats (6%). Regionally, South Asia, Africa, and Latin America dominated the growth in global emissions since the 1990s. Nationally, the largest emissions were found in India (329 Gg N year-1), followed by China (267 Gg N year-1), the United States (163 Gg N year-1), Brazil (129 Gg N year-1) and Pakistan (102 Gg N year-1) in the 2010s. We found a substantial impact of livestock productivity, specifically animal body weight and milk yield, on the emission trends. Furthermore, a large spread existed among different methodologies in estimates of global N2O emission from livestock manure, with our results 20%-25% lower than those based on the 2006 IPCC Guidelines. This study highlights the need for robust time-variant model parameterization and continuous improvement of emissions factors to enhance the precision of emission inventories. Additionally, urgent mitigation is required, as all available inventories indicate a rapid increase in global N2O emissions from livestock manure in recent decades.


Livestock , Manure , Nitrous Oxide , Nitrous Oxide/analysis , Manure/analysis , Animals , Air Pollutants/analysis
4.
PLoS One ; 19(5): e0295350, 2024.
Article En | MEDLINE | ID: mdl-38748674

BACKGROUND: Talar fractures often require osteotomy during surgery to achieve reduction and screw fixation of the fractured fragments due to limited visualization and operating space of the talar articular surface. The objective of this study was to evaluate the horizontal approach to the medial malleolus facet by maximizing exposure through dorsiflexion and plantarflexion positions. METHODS: In dorsiflexion, plantarflexion, and functional foot positions, we respectively obtained the anterior and posterior edge lines of the projection of the medial malleolus on the medial malleolar facet. The talar model from Mimics was imported into Geomagic software for image refinement. Then Solidworks software was used to segment the medial surface of the talus and extend the edge lines from the three positions to project them onto the "semicircular" base for 2D projection. The exposed area in different positions, the percentage of total area it represents, and the anatomic location of the insertion point at the groove between the anteroposternal protrusions of the medial malleolus were calculated. RESULTS: The mean total area of the "semicircular" region on the medial malleolus surface of the talus was 542.10 ± 80.05 mm2. In the functional position, the exposed mean area of the medial malleolar facet around the medial malleolus both anteriorly and posteriorly was 141.22 ± 24.34 mm2, 167.58 ± 22.36mm2, respectively. In dorsiflexion, the mean area of the posterior aspect of the medial malleolar facet was 366.28 ± 48.12 mm2. In plantarflexion, the mean of the anterior aspect of the medial malleolar facet was 222.70 ± 35.32 mm2. The mean overlap area of unexposed area in both dorsiflexion and plantarflexion was 23.32 ± 5.94 mm2. The mean percentage of the increased exposure area in dorsiflexion and plantarflexion were 36.71 ± 3.25% and 15.13 ± 2.83%. The mean distance from the insertion point to the top of the talar dome was 10.69 ± 1.24 mm, to the medial malleolus facet border of the talar trochlea was 5.61 ± 0.96 mm, and to the tuberosity of the posterior tibiotalar portion of the deltoid ligament complex was 4.53 ± 0.64 mm. CONCLUSIONS: Within the 3D model, we measured the exposed area of the medial malleolus facet in different positions and the anatomic location of the insertion point at the medial malleolus groove. When the foot is in plantarflexion or dorsiflexion, a sufficiently large area and operating space can be exposed during surgery. The data regarding the exposed visualization area and virtual screws need to be combined with clinical experience for safer reduction and fixation of fracture fragments. Further validation of its intraoperative feasibility will require additional clinical research.


Talus , Humans , Male , Fractures, Bone/surgery , Fracture Fixation, Internal/methods , Female , Adult , Bone Screws , Ankle Fractures/surgery , Ankle Fractures/diagnostic imaging
5.
J Hepatol ; 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38460791

BACKGROUND & AIMS: NOTCH signaling in liver sinusoidal endothelial cells (LSECs) regulates liver fibrosis, a pathological feature of chronic liver diseases. POFUT1 is an essential regulator of NOTCH signaling. Here, we investigated the role of LSEC-expressed POFUT1 in liver fibrosis. METHODS: Endothelial-specific Pofut1 knockout mice were generated and experimental liver fibrosis was induced by chronic carbon tetrachloride exposure or common bile duct ligation. Liver samples were assessed by ELISA, histology, electron microscopy, immunostaining and RNA in situ hybridization. LSECs and hepatic stellate cells (HSCs) were isolated for gene expression analysis by RNA sequencing, qPCR, and western blotting. Signaling crosstalk between LSECs and HSCs was investigated by treating HSCs with supernatant from LSEC cultures. Liver single-cell RNA sequencing datasets from patients with cirrhosis and healthy individuals were analyzed to evaluate the clinical relevance of gene expression changes observed in mouse studies. RESULTS: POFUT1 loss promoted injury-induced LSEC capillarization and HSC activation, leading to aggravated liver fibrosis. RNA sequencing analysis revealed that POFUT1 deficiency upregulated fibrinogen expression in LSECs. Consistently, fibrinogen was elevated in LSECs of patients with cirrhosis. HSCs treated with supernatant from LSECs of Pofut1 null mice showed exacerbated activation compared to those treated with supernatant from control LSECs, and this effect was attenuated by knockdown of fibrinogen or by pharmacological inhibition of fibrinogen receptor signaling, altogether suggesting that LSEC-derived fibrinogen induced the activation of HSCs. Mechanistically, POFUT1 loss augmented fibrinogen expression by enhancing NOTCH/HES1/STAT3 signaling. CONCLUSIONS: Endothelial POFUT1 prevents injury-induced liver fibrosis by repressing the expression of fibrinogen, which functions as a profibrotic paracrine signal to activate HSCs. Therapies targeting the POFUT1/fibrinogen axis offer a promising strategy for the prevention and treatment of fibrotic liver diseases. IMPACT AND IMPLICATIONS: Paracrine signals produced by liver vasculature play a major role in the development of liver fibrosis, which is a pathological hallmark of most liver diseases. Identifying those paracrine signals is clinically relevant in that they may serve as therapeutic targets. In this study, we discovered that genetic deletion of Pofut1 aggravated experimental liver fibrosis in mouse models. Moreover, fibrinogen was identified as a downstream target repressed by Pofut1 in liver endothelial cells and functioned as a novel paracrine signal that drove liver fibrosis. In addition, fibrinogen was found to be relevant to cirrhosis and may serve as a potential therapeutic target for this devastating human disease.

6.
Aging (Albany NY) ; 16(5): 4348-4362, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38431308

Diesel exhaust particles (DEPs) are major air pollutants emitted from automobile engines. Prenatal exposure to DEPs has been linked to neurodevelopmental and neurodegenerative diseases associated with aging. However, the specific mechanism by DEPs impair the hippocampal synaptic plasticity in the offspring remains unclear. Pregnant C57BL/6 mice were administered DEPs solution via the tail vein every other day for a total of 10 injections, then the male offsprings were studied to assess learning and memory by the Morris water maze. Additionally, protein expression in the hippocampus, including CPEB3, NMDAR (NR1, NR2A, NR2B), PKA, SYP, PSD95, and p-CREB was analyzed using Western blotting and immunohistochemistry. The alterations in the histomorphology of the hippocampus were observed in male offspring on postnatal day 7 following prenatal exposure to DEPs. Furthermore, 8-week-old male offspring exposed to DEPs during prenatal development exhibited impairments in the Morris water maze test, indicating deficits in learning and memory. Mechanistically, the findings from our study indicate that exposure to DEPs during pregnancy may alter the expression of CPEB3, SYP, PSD95, NMDAR (NR1, NR2A, and NR2B), PKA, and p-CREB in the hippocampus of both immature and mature male offspring. The results offer evidence for the role of the NMDAR/PKA/CREB and CPEB3 signaling pathway in mediating the learning and memory toxicity of DEPs in male offspring mice. The alterations in signaling pathways may contribute to the observed damage to synaptic structure and transmission function plasticity caused by DEPs. The findings hold potential for informing future safety assessments of DEPs.


Prenatal Exposure Delayed Effects , Vehicle Emissions , Female , Pregnancy , Humans , Mice , Animals , Male , Vehicle Emissions/toxicity , Maze Learning , Prenatal Exposure Delayed Effects/metabolism , Mice, Inbred C57BL , Receptors, N-Methyl-D-Aspartate/metabolism , Hippocampus/metabolism , Neuronal Plasticity , RNA-Binding Proteins/metabolism
7.
Toxicol Appl Pharmacol ; 485: 116916, 2024 Apr.
Article En | MEDLINE | ID: mdl-38537874

This study aims to explore the impact and underlying mechanism of sulforaphane (SFN) intervention on the migration and invasion of lung adenocarcinoma induced by 7, 8-dihydroxy-9, 10-epoxy-benzo (a) pyrene (BPDE). Human lung adenocarcinoma A549 cells were exposed to varying concentrations of BPDE (0.25, 0.50, and 1.00 µM) and subsequently treated with 5 µM SFN. Cell viability was determined using CCK8 assay, while migration and invasion were assessed using Transwell assays. Lentivirus transfection was employed to establish NLRP12 overexpressing A549 cells. ELISA was utilized to quantify IL-33, CXCL12, and CXCL13 levels in the supernatant, while quantitative real-time PCR (qRT-PCR) and Western Blot were used to analyze the expression of NLRP12 and key factors associated with canonical and non-canonical NF-κB pathways. Results indicated an increase in migratory and invasive capabilities, concurrent with heightened expression of IL-33, CXCL12, CXCL13, and factors associated with both canonical and non-canonical NF-κB pathways. Moreover, mRNA and protein levels of NLRP12 were decreased in BPDE-stimulated A549 cells. Subsequent SFN intervention attenuated BPDE-induced migration and invasion of A549 cells. Lentivirus-mediated NLRP12 overexpression not only reversed the observed phenotype in BPDE-induced cells but also led to a reduction in the expression of critical factors associated with both canonical and non-canonical NF-κB pathways. Collectively, we found that SFN could inhibit BPDE-induced migration and invasion of A549 cells by upregulating NLRP12, thereby influencing both canonical and non-canonical NF-κB pathways.


Adenocarcinoma of Lung , Cell Movement , Isothiocyanates , Lung Neoplasms , Neoplasm Invasiveness , Sulfoxides , Humans , Isothiocyanates/pharmacology , Sulfoxides/pharmacology , Cell Movement/drug effects , A549 Cells , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Anticarcinogenic Agents/pharmacology , NF-kappa B/metabolism , Cell Survival/drug effects , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects
8.
Ecotoxicol Environ Saf ; 270: 115948, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38184976

The increasing production and prevalence of antimony (Sb)-related products raise concerns regarding its potential hazards to reproductive health. Upon environmental exposure, Sb reportedly induces testicular toxicity during spermatogenesis; moreover, it is known to affect various testicular cell populations, particularly germline stem cell populations. However, the cell-cell communication resulting from Sb exposure within the testicular niche remains poorly understood. To address this gap, herein we analyzed testicular single-cell RNA sequencing data from Sb-exposed Drosophila. Our findings revealed that the epidermal growth factor receptor (EGFR) and WNT signaling pathways were associated with the stem cell niche in Drosophila testes, which may disrupt the homeostasis of the testicular niche in Drosophila. Furthermore, we identified several ligand-receptor pairs, facilitating the elucidation of intercellular crosstalk involved in Sb-mediated reproductive toxicology. We employed scRNA-seq analysis and conducted functional verification to investigate the expression patterns of core downstream factors associated with EGFR and WNT signatures in the testes under the influence of Sb exposure. Altogether, our results shed light on the potential mechanisms of Sb exposure-mediated testicular cell-lineage communications.


Drosophila , Testis , Male , Animals , Testis/metabolism , Drosophila/metabolism , Antimony/toxicity , Antimony/metabolism , Cell Communication , ErbB Receptors/metabolism , Sequence Analysis, RNA
9.
Thromb J ; 22(1): 14, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38263151

BACKGROUND AND PURPOSE: Microbial infection has been associated with thrombogenesis. This study aimed to detect bacterium-specific genes and other signatures in thrombi from patients with acute ischemic stroke and to relate these signatures to clinical characteristics. METHODS: Blood samples were collected before thrombectomy procedures, and thrombus samples were obtained during the procedure. Identification and classification of bacteria in the samples were accomplished using 16 S rRNA gene sequencing. Bacterium-specific structures were observed with transmission electron microscopy. Bacterium-specific biomarkers were detected through immunohistochemical staining. RESULTS: 16 S rRNA gene was detected in 32.1% of the thrombus samples from 81 patients. Bacillus (0.04% vs. 0.00046%, p = 0.003), Parabacteroides (0.20% vs. 0.09%, p = 0.029), Prevotella (1.57% vs. 0.38%, p = 0.010), Streptococcus (1.53% vs. 0.29%, p = 0.001), Romboutsia (0.18% vs. 0.0070%, p = 0.029), Corynebacterium (1.61% vs. 1.26%, p = 0.026) and Roseburia (0.53% vs. 0.05%, p = 0.005) exhibited significantly higher abundance in thrombi compared to arterial blood. Bacteria-like structures were observed in 22 (27.1%), while whole bacteria-like structures were observed in 7 (8.6%) thrombi under transmission electron microscopy. Immunohistochemical staining detected bacterium-specific monocyte/macrophage markers in 51 (63.0%) out of 81 thrombi. Logistic regression analysis indicated that alcohol consumption was associated with a higher bacteria burden in thrombi (odds ratio = 3.19; 95% CI, 1.10-9.27; p = 0.033). CONCLUSION: Bacterial signatures usually found in the oral cavity and digestive tract were detected in thrombi from patients with ischemic stroke. This suggests a potential involvement of bacterial infection in the development of thrombosis. Long-term alcohol consumption may potentially enhance this possibility.

10.
J Environ Manage ; 351: 119754, 2024 Feb.
Article En | MEDLINE | ID: mdl-38071916

The effects of volatile organic compounds on urban air quality and the ozone have been widely acknowledged, and the contributions of relevant biogenic sources are currently receiving rising attentions. However, inventories of biogenic volatile organic compounds (BVOCs) are in fact limited for the environmental management of megacities. In this study, we provided an estimation of BVOC emissions and their spatial characteristics in a typical urbanized area, Shenzhen megacity, China, based on an in-depth vegetation investigation and using remote sensing data. The total BVOC emission in Shenzhen in 2019 was estimated to be 3.84 × 109 g C, of which isoprene contributed to about 24.4%, monoterpenes about 44.4%, sesquiterpenes about 1.9%, and other VOCs (OVOCs) about 29.3%. Metropolitan BVOC emissions exhibited a seasonal pattern with a peak in July and a decline in January. They were mainly derived from the less built-up areas (88.9% of BVOC emissions). Estimated BVOCs comprised around 5.2% of the total municipal VOC emissions in 2019. This percentage may increase as more green spaces emerge and anthropogenic emissions decrease in built-up areas. Furthermore, synergistic effects existed between BVOC emissions and relevant vegetation-based ecosystem services (e.g., air purification, carbon fixation). Greening during urban sprawl should be based on a trade-off between BVOC emissions and ecosystem benefits of urban green spaces. The results suggested that urban greening in Shenzhen, and like other cities as well, need to account for BVOC contributions to ozone. Meanwhile, greening cites should adopt proactive environmental management by using plant species with low BVOC emissions to maintain urban ecosystem services while avoid further degradation to ozone pollution.


Air Pollutants , Ozone , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Air Pollutants/analysis , Trees/metabolism , Ecosystem , Environmental Monitoring , China
11.
Cerebrovasc Dis ; 53(2): 160-167, 2024.
Article En | MEDLINE | ID: mdl-37524067

INTRODUCTION: Owing to the antioxidant and anti-inflammatory effects, flavonoids can influence the initiation and development of atherosclerosis, but the underlying mechanisms remain largely undetermined. This study aimed to evaluate the associations between dietary flavonoids and carotid calcification in patients with ischemic stroke. METHODS: This study screened consecutive patients with ischemic stroke via Nanjing Stroke Registry Program from February 2016 to April 2021. A semiquantitative food frequency questionnaire was used to evaluate dietary consumption of flavonoids and other nutritional components. Presence and degree of carotid calcification were determined according to Agatston scores on computer tomography angiography. Logistic regression was performed to evaluate the association between dietary flavonoids (total flavonoids, flavonols, flavones, flavanones, flavan-3-ols, anthocyanins, and isoflavones) and carotid calcification. RESULTS: Of the 601 enrolled patients, 368 (61.2%) were detected with carotid calcification. Patients with high intake of total flavonoids (the fifth quintile) had a 52% lower carotid calcification risk than those with low intake (the first quintile; odds ratio [OR] = 0.48; 95% confidence interval [CI], 0.26-0.90; p = 0.007 for trends) after adjusting for major confounders. Patients with high intake of flavan-3-ols (the fifth quintile) had a 51% lower carotid calcification risk than those with low intake (the first quintile; OR = 0.49; 95% CI, 0.25-0.97; p = 0.016 for trends). CONCLUSION: Dietary flavonoid intake is associated with carotid calcification, and, therefore, may influence the risk of stroke occurrence and recurrence.


Flavones , Ischemic Stroke , Humans , Flavonoids/adverse effects , Anthocyanins , Flavonols , Diet/adverse effects , Polyphenols , Risk Factors
12.
Free Radic Biol Med ; 208: 418-429, 2023 11 01.
Article En | MEDLINE | ID: mdl-37666440

The toxic heavy metal antimony (Sb) is ubiquitous in our daily lives. Various models have shown that Sb induces neuronal and reproductive toxicity. However, little is known about the developmental toxicity of Sb exposure during gestation and the underlying mechanisms. To study its effects on growth and development, Drosophila stages from eggs to pupae were exposed to different Sb concentrations (0, 0.3, 0.6 and 1.2 mg/mL Sb); RNA sequencing was used to identify the underlying mechanism. The model revealed that prenatal Sb exposure significantly reduced larval body size and weight, the pupation and eclosion rates, and the number of flies at all stages. With 1.2 mg/mL Sb exposure in 3rd instar larvae, 484 genes were upregulated and 694 downregulated compared to controls. Biological analysis showed that the disrupted transcripts were related to the oxidative stress pathway, as verified by reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) and glutathione (GSH) intervention experiments. Sb exposure induced oxidative stress imbalance could be rectified by chelation and antioxidant effects of NAC/GSH. The Drosophila Schneider 2 (S2) model further demonstrated that NAC and GSH greatly ameliorated cell death induced by Sb exposure. In conclusion, gestational Sb exposure disrupted oxidative stress homeostasis, thereby impairing growth and development.


Antimony , Drosophila , Animals , Antimony/toxicity , Drosophila/metabolism , Developmental Disabilities , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Glutathione/metabolism , Acetylcysteine/pharmacology , Acetylcysteine/metabolism
13.
BMC Musculoskelet Disord ; 24(1): 636, 2023 Aug 08.
Article En | MEDLINE | ID: mdl-37550653

BACKGROUND: In calcaneal fractures, the percutaneous screw fixation (PSF) is currently considered to be the better choice, but it is difficult to accurately place the screw into the sustentaculum tali (ST) during the operation. In this study, the ideal entry point, angle, diameter and length of the screw were calculated by simulating the operation process. METHODS: We retrospectively collected the calcaneus computed tomography (CT) scans of 180 adults, DICOM-formatted CT-scan images of each patient were imported into Mimics software to establish calcaneus model. Virtual screws were placed on the lateral of the posterior talar articular surface (PTAS), the lateral edge of the anterior process of calcaneus (APC), and the calcaneal tuberosity, respectively, the trajectory and size of the screws were calculated. RESULTS: The mean maximum diameter of the PTAS screw was 42.20 ± 3.71 mm. The vertical distance between the midpoint of the APC optimal screw trajectory and the lowest point of the tarsal sinus was 10.67 ± 1.84 mm, and the distance between the midpoint of the APC optimal screw trajectory and the calcaneocuboid joint was 5 mm ~ 19.81 ± 2.08 mm. The mean maximum lengths of APC screws was 44.69 ± 4.81 mm, and the Angle between the screw and the coronal plane of the calcaneus from proximal to distal was 4.72°±2.15° to 20.52°±3.77°. The optimal point of the maximum diameter of the calcaneal tuberosity screw was located at the lateral border of the achilles tendon endpoint. The mean maximum diameters of calcaneal tuberosity screws was 4.46 ± 0.85 mm, the mean maximum lengths of screws was 65.31 ± 4.76 mm. We found gender-dependent differences for the mean maximum diameter and the maximum length of the three screws. CONCLUSIONS: The study provides effective positioning for percutaneous screw fixation of calcaneal fractures. For safer and more efficient screw placement, we suggest individualised preoperative 3D reconstruction simulations. Further biomechanical studies are needed to verify the function of the screw.


Ankle Injuries , Calcaneus , Fractures, Bone , Adult , Humans , Calcaneus/diagnostic imaging , Calcaneus/surgery , Retrospective Studies , Fracture Fixation, Internal/methods , Fractures, Bone/diagnostic imaging , Fractures, Bone/surgery , Bone Screws
14.
Glob Chang Biol ; 29(18): 5304-5320, 2023 09.
Article En | MEDLINE | ID: mdl-37376714

Ecological restoration projects (ERPs) are an indispensable component of natural climate solutions and have proven to be very important for reversing environmental degradation in vulnerable regions and enhancing ecosystem services. However, the level of enhancement would be inevitably influenced by global drought and rising CO2 , which remain less investigated. In this study, we took the Beijing-Tianjin sand source region (which has experienced long-term ERPs), China, as an example and combined the process-based Biome-BGCMuSo model to set multiple scenarios to address this issue. We found ERP-induced carbon sequestration (CS), water retention (WR), soil retention (SR), and sandstorm prevention (SP) increased by 22.21%, 2.87%, 2.35%, and 28.77%, respectively. Moreover, the ecosystem services promotion from afforestation was greater than that from grassland planting. Approximately 91.41%, 98.13%, and 64.51% of the increased CS, SR, and SP were contributed by afforestation. However, afforestation also caused the WR to decline. Although rising CO2 amplified ecosystem services contributed by ERPs, it was almost totally offset by drought. The contribution of ERPs to CS, WR, SR, and SP was reduced by 5.74%, 32.62%, 11.74%, and 14.86%, respectively, under combined drought and rising CO2 . Our results confirmed the importance of ERPs in strengthening ecosystem services provision. Furthermore, we provide a quantitative way to understand the influence rate of drought and rising CO2 on ERP-induced ecosystem service dynamics. In addition, the considerable negative climate change impact implied that restoration strategies should be optimized to improve ecosystem resilience to better combat negative climate change impacts.


Carbon Dioxide , Ecosystem , Droughts , China , Beijing , Soil , Climate Change
15.
ACS Nano ; 17(13): 12040-12051, 2023 Jul 11.
Article En | MEDLINE | ID: mdl-37338534

Currently, the development of calcium-ion batteries (CIBs) is still in its infancy and greatly plagued by the absence of satisfactory cathode materials and compatible electrolytes. Herein, an acetonitrile-water hybrid electrolyte is first developed in CIB chemistry, in which, the strong lubricating and shielding effect of water solvent significantly boosts the swift transport of bulky Ca2+, thus contributing to large capacity storage of Ca2+ in layered vanadium oxides (Ca0.25V2O5·nH2O, CVO). Meanwhile, the acetonitrile component noticeably suppresses the dissolution of vanadium species during repeated Ca2+-ion uptake/release, endowing the CVO cathode with a robust cycle life. More importantly, spectral characterization and molecular dynamics simulation confirm that the water molecules are well stabilized by the mutual hydrogen bonding with acetonitrile molecules (O-H···N), endowing the aqueous hybrid electrolyte with high electrochemical stability. By using this aqueous hybrid electrolyte, the CVO electrode shows a high specific discharge capacity of 158.2 mAh g-1 at 0.2 A g-1, an appealing capacity of 104.6 mAh g-1 at a high rate of 5 A g-1, and a capacity retention of 95% after 2000 cycles at 1.0 A g-1, which is a record-high performance for CIBs reported so far. A mechanistic study exemplifies the reversible extraction of Ca2+ from the gap of VO polyhedral layers, which are accompanied by the reversible V-O and V-V skeleton change as well as reversible variation of layer spacing. This work constitutes a major advance in developing high-performance Ca-ion batteries.

16.
J Agric Food Chem ; 71(21): 8192-8202, 2023 May 31.
Article En | MEDLINE | ID: mdl-37204063

Short-chain chlorinated paraffins (SCCPs) are novel toxicants in food and are reported to possess neurotoxicity. Here, we investigated the mechanism of SCCP-induced astrocyte activation and neuroinflammation. SCCP gavage induced astrocyte activation and neuronal cell death with the changes of gut microbiome and metabolites. Antibiotic cocktail administration to deplete the gut microbiome ameliorated the astrocyte activation and inflammation induced by SCCPs. In fecal microbiota transplantation (FMT) assays, mice that received transplanted gut microbiome from SCCP-treated mice showed increased astrocyte activation and elevated inflammatory response. In addition, SCCP exposure promotes zonulin expression and tight junction injury, and antibiotic cocktail administration inhibited that in the intestinal tract. Increased zonulin and tight junction injury were also observed in SCCPs_FMT mice. The zonulin inhibition protected the tight junction in the intestinal tract from SCCP exposure and suppressed astrocyte activation. In summary, this study proposes a novel possibility for SCCP-induced astrocyte activation and neurotoxicity by the gut microbiome-mediated zonulin expression and tight junction.


Gastrointestinal Microbiome , Hydrocarbons, Chlorinated , Animals , Mice , Paraffin , Up-Regulation , Astrocytes , Tight Junctions , Environmental Monitoring , China
17.
Int J Biometeorol ; 67(5): 777-791, 2023 May.
Article En | MEDLINE | ID: mdl-36943496

Urbanization-induced phenological changes have received considerable attention owing to their implications for determining urban ecosystem productivity and predicting the response of plants and ecosystem carbon cycles to future climate change. However, inconsistent rural-urban gradients in plant phenology remain, and phenological drivers other than temperature are poorly understood. In this study, we simultaneously observed the micro-climate and spring leaf phenology of seven woody plant species at 13 parks along a rural-urban gradient in Beijing, China. The minimum (Tmin) and mean (Tmean) air temperature and the minimum (VPDmin) and mean (VPDmean) vapor pressure deficit increased significantly along the rural-urban gradient, but the maximum air temperature (Tmax) and maximum vapor pressure deficit (VPDmax) did not. All observed leaf phenological phases for the seven species were significantly advanced along the rural-urban gradient by 0.20 to 1.02 days/km. Advances in the occurrence of leaf phenological events were significantly correlated with increases in Tmean (accounting for 57-59% variation), Tmin (21-26%), VPDmin (12-16%), and VPDmean (3-5%), but not with changes in Tmax or VPDmax. Advances in spring leaf phenology along the rural-urban gradient differed between non-native species and native species and between shrubs and trees. The reason may be mainly that the sensitivities of spring leaf phenology to micro-climate differ with species origin and growth form. This study highlights that urbanization-induced increases in Tmean and Tmin are the major contributors to advances in spring leaf phenology along the rural-urban gradient, exerting less influence on native species than on non-native species.


Ecosystem , Trees , Beijing , Temperature , Seasons , Plants , Plant Leaves , Climate Change
18.
Cerebrovasc Dis ; 52(6): 663-670, 2023.
Article En | MEDLINE | ID: mdl-36972564

INTRODUCTION: Endothelial dysfunction (ED) may result in parenchymal injury and therefore worsen the outcomes of ischemic stroke. This study aimed to determine whether ED could predict parenchymal hematoma (PH) in ischemic stroke patients treated with endovascular thrombectomy (EVT). METHODS: Patients with large artery occlusion in the anterior circulation and treated with EVT were prospectively enrolled from 2 stroke centers. Serum soluble intercellular adhesion molecule-1, soluble vascular cell adhesion molecule-1, soluble E-selectin, and von Willebrand factor (vWF) were tested and summed to a standardized score to reflect the levels of ED. PH was diagnosed according to the Heidelberg Bleeding Classification. RESULTS: Of the 325 enrolled patients (mean age, 68.6 years; 207 men), 41 (12.6%) developed PH. Patients with PH had higher concentrations of soluble E-selectin, vWF, and ED sum score. After adjusting for demographic characteristics, National Institutes of Health Stroke Scale score, pretreatment Alberta stroke program early computed tomography score, and other potential confounders, the increased ED burden was associated with PH (odds ratio, 1.432; 95% confidence interval, 1.031-1.988; p = 0.032). Similar significant results were found in the sensitivity analysis. The multiple-adjusted spline regression model showed a linear association between the total ED score and PH (p = 0.001 for linearity). Adding the ED score to the conventional model significantly improved the risk prediction of PH (net reclassification improvement = 25.2%, p = 0.001; integrated discrimination index = 2.9%; p = 0.001). CONCLUSIONS: This study demonstrated that ED might be related to PH. Introducing the ED score could increase the reliability of the PH risk model for stroke patients treated with EVT.


Brain Ischemia , Endovascular Procedures , Ischemic Stroke , Stroke , Male , Humans , Aged , Brain Ischemia/diagnostic imaging , Brain Ischemia/therapy , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/therapy , E-Selectin , Reproducibility of Results , von Willebrand Factor , Stroke/diagnostic imaging , Stroke/therapy , Thrombectomy/adverse effects , Thrombectomy/methods , Hematoma/etiology , Endovascular Procedures/adverse effects , Endovascular Procedures/methods , Treatment Outcome
20.
Z Gesundh Wiss ; : 1-20, 2023 Jan 31.
Article En | MEDLINE | ID: mdl-36744108

Aim: This study explored the influence of daily new case videos posted by public health agencies (PHAs) on TikTok in the context of COVID-19 normalization, as well as public sentiment and concerns. Five different stages were used, based on the Crisis and Emergency Risk Communication model, amidst the 2022 Shanghai lockdown. Subject and Methods: After dividing the duration of the 2022 Shanghai lockdown into stages, we crawled all the user comments of videos posted by Healthy China on TikTok with the theme of daily new cases based on these five stages. Third, we constructed the pre-training model, ERNIE, to classify the sentiment of user comments. Finally, we performed semantic network analyses based on the sentiment classification results. Results: First, the high cost of fighting the epidemic during the 2022 Shanghai lockdown was why ordinary people were reluctant to cooperate with the anti-epidemic policy in the pre-crisis stage. Second, Shanghai unilaterally revised the definition of asymptomatic patients led to an escalation of risk levels and control conditions in other regions, ultimately affecting the lives and work of ordinary people in the area during the initial event stage. Third, the public reported specific details that affected their lives due to the long-term resistance to the epidemic in the maintenance stage. Fourth, the public became bored with videos regarding daily new cases in the resolution stage. Finally, the main reason for the negative public sentiment was that the local government did not follow the central government's anti-epidemic policy. Conclusion: Our results suggest that the methodology used in this study is feasible. Furthermore, our findings will help the Chinese government or PHAs improve the possible behaviors that displease the public in the anti-epidemic process.

...