Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.266
Filter
1.
EFORT Open Rev ; 9(8): 806-816, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087493

ABSTRACT

Purpose: In the military, neck pain is second to low back pain among musculoskeletal disorders. However, the prevalence and related factors of neck pain in military personnel have not been systematically investigated, which may lead to the lack of neck pain prevention and the generation of additional medical expenses, posing challenges to medical care. This review aimed to obtain the prevalence and related factors for neck pain in military personnel in an attempt to provide directions for prevention and intervention. Methods: We searched PubMed, Embase, and Cochrane databases in December 2021. Two researchers independently screened studies according to eligibility criteria and assessed study quality. Results: We screened titles and abstracts of 503 articles, and 17 articles met the inclusion criteria. Sixteen articles received moderate to high-quality evaluations. Neck pain is common in the military, with 1-year prevalence as high as 83% and lifetime prevalence as high as 78%. Old age (OR = 5.0), poor neck mobility (OR = 3.61), shoulder pain (OR = 4.9), low back pain (OR = 2.3), high-G pilots (OR = 1.6), longer flight time (OR = 2.53), type of aircraft (OR = 3.93), and use of helmets and night vision systems (OR = 1.9) may be associated with the prevalence of neck pain. Conclusion: Neck pain is highly prevalent in military personnel and exhibits a substantial lifetime prevalence rate. The high prevalence rate of neck pain in the military is related to many individual-related factors and work-related factors. The in-depth assessment and prevention of specific factors is an important direction of future research.

2.
Asian J Androl ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39091129

ABSTRACT

The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.

3.
HLA ; 104(2): e15625, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091273

ABSTRACT

Donor-specific HLA antibody (DSA) has been recognised as an independent risk factor for graft failure in patients undergoing haploidentical haematopoietic stem cell transplantation (HID HSCT). Therapeutic plasma exchange (TPE), as a first-line strategy for DSA desensitisation, can promptly reduce serum DSA levels. This study aimed to investigate DSA characteristics and identify a biomarker predicting the efficacy of DSA desensitisation in patients proceeding to HID HSCT. We retrospectively enrolled 32 patients with DSA from April 2021 to January 2024, and analysed the mean fluorescence intensity (MFI) value of DSA at the different time points of desensitisation treatment. Compared with baseline DSA level before TPE, the median MFI of HLA class I DSA was reduced from 8178.6 to 795.3 (p < 0.001), and HLA class II DSA decreased from 6210.9 to 808.8 (p < 0.001) after TPE. The DSA level in 1:16 diluted pre-TPE serum correlated well with DSA value in post-TPE serum (class I, r = 0.85, p < 0.0001; class II, r = 0.94, p < 0.0001), predicting TPE efficacy in 84.4% of patients. Based on the degree of DSA reduction after TPE, patients were divided into complete responders (decreased by >70%), partial responders (decreased by 30 to 70%) and non-responders (decreased by <30%) and the percentages were 43.8%, 25% and 31.2%, respectively. Non-responders receiving aggressive immunotherapy had longer overall survival compared to those receiving standard strategies (p < 0.05). The 1:16 diluted pre-TPE serum may predict the efficacy of TPE and allow for more rational immunotherapy strategy for patients with DSA proceeding to HID HSCT.


Subject(s)
HLA Antigens , Hematopoietic Stem Cell Transplantation , Isoantibodies , Humans , Hematopoietic Stem Cell Transplantation/methods , Male , Female , Adult , Retrospective Studies , Middle Aged , HLA Antigens/immunology , Isoantibodies/blood , Isoantibodies/immunology , Tissue Donors , Graft Rejection/immunology , Plasma Exchange/methods , Adolescent , Transplantation, Haploidentical/methods , Young Adult , Biomarkers/blood , Desensitization, Immunologic/methods
4.
BMC Palliat Care ; 23(1): 201, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107758

ABSTRACT

BACKGROUND: Advance care planning (ACP) can contribute to individuals making decisions about their healthcare preferences in advance of serious illness. Up to now, the acceptance level and associated factors of ACP among the public in China remain unclear. This study aims to investigate the acceptance level of ACP in China and identify factors associated with it based on the socioecological model. METHODS: A total of 19,738 participants were included in this survey. We employed a random forest regression analysis to select factors derived from the socioecological model. Multivariate generalized linear model analysis was then conducted to explore the factors that were associated with the acceptance level of ACP. RESULTS: On a scale ranging from 0 to 100, the median score for acceptance level of ACP was 64.00 (IQR: 48.00-83.00) points. The results of the multivariate generalized linear model analysis revealed that participants who scored higher on measures of openness and neuroticism personality traits, as well as those who had greater perceptions of social support, higher levels of health literacy, better neighborly relationships, family health, and family social status, were more likely to accept ACP. Conversely, participants who reported higher levels of subjective well-being and greater family communication levels demonstrated a lower likelihood of accepting ACP. CONCLUSIONS: This study identified multiple factors associated with the acceptance level of ACP. The findings offer valuable insights that can inform the design and implementation of targeted interventions aimed at facilitating a good death and may have significant implications for the formulation of end-of-life care policies and practices in other countries facing similar challenges.


Subject(s)
Advance Care Planning , Humans , Advance Care Planning/statistics & numerical data , Advance Care Planning/standards , Advance Care Planning/trends , Male , Female , Middle Aged , Adult , China , Surveys and Questionnaires , Aged , Patient Acceptance of Health Care/psychology , Patient Acceptance of Health Care/statistics & numerical data , Adolescent
5.
J Phys Chem A ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112434

ABSTRACT

Microhydrated closo-boranes have attracted great interest due to their superchaotropic activity related to the well-known Hofmeister effect and important applications in biomedical and battery fields. In this work, we report a combined negative ion photoelectron spectroscopy and quantum chemical investigation on hydrated closo-decaborate clusters [B10H10]2-·nH2O (n = 1-7) with a direct comparison to their analogues [B12H12]2-·nH2O and free water clusters. A single H2O molecule is found to be sufficient to stabilize the intrinsically unstable [B10H10]2- dianion. The first two water molecules strongly interact with the solute forming B-H···H-O dihydrogen bonds while additional water molecules show substantially reduced binding energies. Unlike [B12H12]2-·nH2O possessing a highly structured water network with the attached H2O molecules arranged in a unified pattern by maximizing B-H···H-O dihydrogen bonding, distinct structural arrangements of the water clusters within [B10H10]2-·nH2O are achieved with the water cluster networks from trimer to heptamer resembling free water clusters. Such a distinct difference arises from the variations in size, symmetry, and charge distributions between these two dianions. The present finding again confirms the structural diversity of hydrogen-bonding networks in microhydrated closo-boranes and enriches our understanding of aqueous borate chemistry.

6.
Commun Chem ; 7(1): 176, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122780

ABSTRACT

The oxidation of phenolic compounds is one of the most important reactions prevalent in various biological processes, often explicitly coupled with proton transfers (PTs). Quantitative descriptions and molecular-level understanding of these proton-coupled electron transfer (PCET) reactions have been challenging. This work reports a direct observation of PCET in photodetachment (PD) photoelectron spectroscopy (PES) of hydrogen-bonded phenolic (ArOH) nitrate (NO3-) complexes, in which a much slower rising edge provides a spectroscopic signature to evidence PCET. Electronic structure calculations unveil the PCET processes to be isomer-specific, occurred only in those with their HOMOs localized on ArOH, leading to charge-separated transient states ArOH•+·NO3- triggered by ionizing phenols while simultaneously promoting PT from ArOH•+ to NO3-. Importantly, this study showcases that gas-phase PD-PES is a generic means enabling to identify PCET reactions with explicit structural and binding information.

7.
Compr Physiol ; 14(2): 1-41, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-39109974

ABSTRACT

The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.


Subject(s)
Epithelial Sodium Channels , Humans , Epithelial Sodium Channels/metabolism , Epithelial Sodium Channels/physiology , Animals
8.
Food Funct ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135486

ABSTRACT

Objective: The purpose of this study is to investigate the impact of dietary fibre on the mental health and cognitive function of children and adolescents. Methods: All interventional and observational studies that contained information on the relevant population (children and adolescents), intervention/exposures (high dietary fibre consumption) and outcomes (mental and cognitive parameters) were eligible. Eight electronic databases (Embase, Medline, Pubmed, Web of Science, Scopus, PsycINFO, Cochrane Library and ClinicalTrials.gov) were searched up to December 11, 2023. Results: A total of 15 studies (n = 4628) met inclusion criteria, consisting of 9 intervention trials and 6 observational studies. According to observational studies, higher dietary fibre consumption was associated with a 49% reduction in the odds of depression compared to lower intake (P < 0.0001; OR = 0.51; 95% CI: 0.38, 0.69; I2 = 0%). Furthermore, no significant correlations were found between dietary fibre consumption and intelligence or anxiety. Among intervention studies, no significant difference was observed between fibre supplementation and placebo in terms of anxiety (standardized mean difference (SMD): -0.23; 95% CI: -0.72, 0.27), stress (SMD: 0.03; 95% CI: -0.21, 0.28), memory (SMD: 0.46; 95% CI: -0.79, 1.71), or attention (SMD: -2.72; 95% CI: -6.30, 0.86). Conclusion: Evidence from observation studies demonstrated that higher dietary fibre consumption is associated with a decreased odds of depression symptoms, both in childhood and adolescence. However, the causal relationship between dietary fibre intake and mental and cognitive function in children and adolescents still requires further clarification through high-quality intervention studies in the future.

9.
Small ; : e2405396, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136423

ABSTRACT

Covalent organic frameworks (COFs) are promising porous materials due to their high specific surface area, adjustable structure, highly ordered nanochannels, and abundant functional groups, which brings about wide applications in the field of gas adsorption, hydrogen storage, optics, and so forth. In recent years, COFs have attracted considerable attention in electrochemical energy storage and conversion. Specifically, COF-based functional separators are ideal candidates for addressing the ionic transport-related issues in high-energy batteries, such as dendritic formation and shuttle effect. Therefore, it is necessary to make a comprehensive understanding of the mechanism of COFs in functional separators. In this review, the advantages, applications as well as synthesis of COFs are firstly presented. Then, the mechanism of COFs in functional separators for high-energy batteries is summarized in detail, including pore channels regulating ionic transport, functional groups regulating ionic transport, adsorption effect, and catalytic effect. Finally, the application prospect of COFs-based separators in high-energy batteries is proposed. This review may provide new insights into the design of functional separators for advanced electrochemical energy storage and conversion systems.

10.
Bioresour Technol ; : 131242, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122126

ABSTRACT

Applied voltage is a crucial parameter in hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) systems for enhancing methane production from waste activated sludge (WAS). This study explored the impact of applied voltage on the initial biofilm formation on electrodes during the MEC-AD startup using raw WAS (Rr) and heat-pretreated WAS (Rh). The findings indicated that the maximum methane productivity for Rr and Rh were 3.4 ±â€¯0.5 and 3.4 ±â€¯0.2 mL/gVSS/d, respectively, increasing 1.5 times and 2.6 times over the productivity at 0 V. The biomass on electrode biofilms for Rr and Rh at 0.8 V increased by 70 % and 100 % compared to 0 V. The core functional microorganisms in the cathode biofilm were Methanobacterium and Syntrophomonas, and Geobacter in the anode biofilm, enhancing methane production through syntrophism and direct interspecies electron transfer, respectively. These results offer academic insights into optimizing AD functional electrode biofilms by applying voltage.

11.
Molecules ; 29(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39125108

ABSTRACT

Hypericum beanii N. Robson, a perennial upright herb, predominantly inhabits temperate regions. This species has been utilized for the treatment of various inflammation-related diseases. One new xanthone 3,7-dihydroxy-1,6-dimethoxyxanthone (1) and twenty-three known xanthones (2-24) were isolated from the aerial parts of H. beanii. The structure of the new compound was determined based on high-resolution electrospray ionization mass spectroscopy (HR-ESIMS), nuclear magnetic resonance (NMR), Infrared Spectroscopy (IR), ultraviolet spectrophotometry (UV) spectroscopic data. The anti-inflammatory effects of all the isolates were assessed by measuring the inhibitory effect on nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages. Compounds 3,4-dihydroxy-2-methoxyxanthone (15), 1,3,5,6-tetrahydroxyxanthone (19), and 1,3,6,7-tetrahydroxyxanthone (22) exhibited significant anti-inflammatory effects at a concentration of 10 µM with higher potency compared to the positive control quercetin. Furthermore, compounds 15, 19, and 22 reduced inducible NO synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), IL-6, and cyclooxygenase 2 (COX-2) mRNA expression in the LPS-stimulated RAW 264.7 macrophages, suggesting that these compounds may mitigate the synthesis of the aforementioned molecules at the transcriptional level, provisionally confirming their anti-inflammatory efficacy.


Subject(s)
Anti-Inflammatory Agents , Cyclooxygenase 2 , Hypericum , Interleukin-1beta , Interleukin-6 , Macrophages , Nitric Oxide , Tumor Necrosis Factor-alpha , Xanthones , Mice , Xanthones/pharmacology , Xanthones/chemistry , Xanthones/isolation & purification , Animals , RAW 264.7 Cells , Nitric Oxide/metabolism , Nitric Oxide/biosynthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Macrophages/drug effects , Macrophages/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Interleukin-6/biosynthesis , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Hypericum/chemistry , Lipopolysaccharides/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry
12.
Phys Rev Lett ; 133(3): 036003, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39094159

ABSTRACT

This work reports on the emergence of quantum Griffiths singularity (QGS) associated with the magnetic field induced superconductor-metal transition (SMT) in unconventional Nd_{0.8}Sr_{0.2}NiO_{2} infinite layer superconducting thin films. The system manifests isotropic SMT features under both in-plane and perpendicular magnetic fields. Importantly, after scaling analysis of the isothermal magnetoresistance curves, the obtained effective dynamic critical exponents demonstrate divergent behavior when approaching the zero-temperature critical point B_{c}^{*}, identifying the QGS characteristics. Moreover, the quantum fluctuation associated with the QGS can quantitatively explain the upturn of the upper critical field around zero temperature for both the in-plane and perpendicular magnetic fields in the phase boundary of SMT. These properties indicate that the QGS in the Nd_{0.8}Sr_{0.2}NiO_{2} superconducting thin film is isotropic. Moreover, a higher magnetic field gives rise to a metallic state with the resistance-temperature relation R(T) exhibiting lnT dependence among the 2-10 K range and T^{2} dependence of resistance below 1.5 K, which is significant evidence of Kondo scattering. The interplay between isotropic QGS and Kondo scattering in the unconventional Nd_{0.8}Sr_{0.2}NiO_{2} superconductor can illustrate the important role of rare region in QGS and help to uncover the exotic superconductivity mechanism in this system.

13.
Arch Insect Biochem Physiol ; 116(4): e22139, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39106355

ABSTRACT

Pollination is essential for achieving high yields and enhancing the quality of kiwifruit cultivation, both of which significantly influence growers' interests and consumers' preferences. However, compared to studies on yield, there are fewer studies exploring the impact of pollination methods on the flavor of kiwifruit Actinidia chinensis Planchon. This study examined the effects of bee (Apis mellifera L.) pollination and artificial pollination on the yield and flavor of kiwifruit in the main producing areas of China. Compared with those pollinated artificially, bee-pollinated kiwifruit exhibited a greater fruit set rate, heavier fruit weight, and greater number of seeds. Notably, the number of seeds was positively correlated with fruit weight in bee-pollinated kiwifruit, whereas no such correlation was detected in artificially pollinated fruit. Bee pollination not only enhanced the yield but also improved the flavor of kiwifruit. Specifically, bee-pollinated kiwifruit contained higher levels of sucrose and lower concentrations of glucose and fructose, while the acid content was less affected by pollination methods. Furthermore, significant differences were observed in the volatile organic compound (VOC) levels in kiwifruit subjected to different pollination treatments, with bee-pollinated fruit exhibiting a superior flavor. Our findings provide new insights into the beneficial role of bee pollination in enhancing kiwifruit yield and quality, underscoring the crucial importance of bees in kiwifruit pollination.


Subject(s)
Actinidia , Fruit , Pollination , Bees/physiology , Animals , Actinidia/physiology , Actinidia/growth & development , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Taste , China
14.
Angew Chem Int Ed Engl ; : e202408736, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107260

ABSTRACT

The electrooxidation of catalyst surfaces is across various electrocatalytic reactions, directly impacting their activity, stability and selectivity. Precisely characterizing the electrooxidation on well-defined surfaces is essential to understanding electrocatalytic reactions comprehensively. Herein, we employed in situ Raman spectroscopy to monitor the electrooxidation process of palladium single crystal. Our findings reveal that the Pd surface's initial electrooxidation process involves forming *OH intermediate and ClO4- ions facilitate the deprotonation process, leading to the formation of PdOx. Subsequently, under deep electrooxidation potential range, the oxygen atoms within PdOx contribute to creating surface-bound peroxide species, ultimately resulting in oxygen generation. The adsorption strength of *OH and the coverage of ClO4- can be adjusted by the controllable electronic effect, resulting in different oxidation rates. This study offers valuable insights into elucidating the electrooxidation mechanisms underlying a range of electrocatalytic reactions, thereby contributing to the rational design of catalysts.

15.
Chem Commun (Camb) ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110448

ABSTRACT

A new antibacterial system (HG) based on the host-guest chemistry between pillar[5]arene and a zwitterionic guest was fabricated. The HG complex displayed excellent antibacterial and biofilm formation inhibition and dispersal activities against E. coli, S. aureus and MRSA.

16.
J Chem Phys ; 161(5)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39105554

ABSTRACT

Conducting a comprehensive molecular-level evaluation of a photoacid generator (PAG) and its subsequent impact on lithography performance can facilitate the rational design of a promising 193 nm photoresist tailored to specific requirements. In this study, we integrated spectroscopy and computational techniques to meticulously investigate the pivotal factors of three prototypical PAG anions, p-toluenesulfonate (pTS-), 2-(trifluoromethyl)benzene-1-sulfonate (TFMBS-), and triflate (TF-), in the lithography process. Our findings reveal a significant redshift in the absorption spectra caused by specific PAG anions, attributed to their involvement in electronic transition processes, thereby enhancing the transparency of the standard PAG cation, triphenylsulfonium (TPS+), particularly at ∼193 nm. Furthermore, the electronic stability of PAG anions can be enhanced by solvent effects with varying degrees of strength. We observed the lowest vertical detachment energy of 6.6 eV of pTS- in PGMEA solution based on the polarizable continuum model, which prevents anion loss at 193 nm lithography. In addition, our findings indicate gas-phase proton affinity values of 316.4 kcal/mol for pTS-, 308.1 kcal/mol for TFMBS-, and 303.2 kcal/mol for TF-, which suggest the increasing acidity strength, yet even the weakest acid pTS- is still stronger than strong acid HBr. The photolysis of TPS+-based PAG, TPS+·pTS-, generated an excited state leading to homolysis bond cleavage with the lowest reaction energy of 83 kcal/mol. Overall, the PAG anion pTS- displayed moderate acidity, possessed the lowest photolysis reaction energy, and demonstrated an appropriate redshift. These properties collectively render it a promising candidate for an effective acid producer.

17.
Mol Biol Evol ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101592

ABSTRACT

The epithelial Na+ channel (ENaC) emerged early in vertebrates and has played a role in Na+ and fluid homeostasis throughout vertebrate evolution. We previously showed that proteolytic activation of the channel evolved at the water to land transition of vertebrates. Sensitivity to extracellular Na+, known as Na+ self-inhibition, reduces ENaC function when Na+ concentrations are high and is a distinctive feature of the channel. A fourth ENaC subunit, δ, emerged in jawed fishes from an α subunit gene duplication. Here, we analyzed 849 α and δ subunit sequences and found that a key Asp in a postulated Na+ binding site was nearly always present in the α subunit, but frequently lost in the δ subunit (e.g., human). Analysis of site evolution and codon substitution rates provide evidence that the ancestral α subunit had the site and that purifying selection for the site relaxed in the δ subunit after its divergence from the α subunit, coinciding with a loss of δ subunit expression in renal tissues. We also show that the proposed Na+ binding site in the α subunit is a bona fide site by conferring novel function to channels comprising human δ subunits. Together, our findings provide evidence that ENaC Na+ self-inhibition improves fitness through its role in Na+ homeostasis in vertebrates.

18.
Chem Sci ; 15(31): 12200-12233, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39118602

ABSTRACT

Recent advancements in artificial intelligence and automation are transforming catalyst discovery and design from traditional trial-and-error manual mode into intelligent, high-throughput digital methodologies. This transformation is driven by four key components, including high-throughput information extraction, automated robotic experimentation, real-time feedback for iterative optimization, and interpretable machine learning for generating new knowledge. These innovations have given rise to the development of self-driving labs and significantly accelerated materials research. Over the past two years, the emergence of large language models (LLMs) has added a new dimension to this field, providing unprecedented flexibility in information integration, decision-making, and interacting with human researchers. This review explores how LLMs are reshaping catalyst design, heralding a revolutionary change in the fields.

19.
Front Nutr ; 11: 1410196, 2024.
Article in English | MEDLINE | ID: mdl-39114122

ABSTRACT

Background: Hypoalbuminemia and cognitive impairment (CI) each independently increase the mortality risk in older adults. However, these two geriatric syndromes can occur simultaneously. In community-dwelling older adults, is the combination of hypoalbuminemia and CI linked to a higher mortality risk than either condition alone? Objective: We aimed to investigate the association between plasma albumin, cognitive function, and their synergistic effect on mortality in Chinese community-dwelling older adults. Methods: Data from the Chinese Longitudinal Healthy Longevity Survey (2012) included 1,858 participants aged ≥65. Baseline assessments comprised albumin levels and cognitive status. All-cause mortality was confirmed through 2014-2018 surveys. Cox proportional hazards models assessed associations, and restricted cubic splines explored albumin-mortality relationship. Results: During a median follow-up of 48.85 months, 921 deaths. Albumin≥35 g/L vs < 35g/L [HR: 1.33 (95%CI, 1.10, 1.62)] and CI vs normal cognition [HR: 1.69 (95%CI, 1.43, 1.99)] independently predicted mortality. A dose-response relationship with mortality was observed for albumin quartiles (p < 0.001). Each SD increase in MMSE or albumin correlated with 22% and 15% lower mortality risk, respectively. Combined hypoproteinemia and CI increased the mortality risk by 155%, with a notably higher risk in males, those aged <85 years, and individuals living in rural areas. Interaction effects of albumin and CI on mortality were observed (p < 0.001). In the single CI group, older adults had a 61% increased risk of mortality in the hypoproteinaemia group compared with the albumin-normal group. Restricted cubic spline revealed a reverse J-shaped association, particularly for participants without CI. For individuals with CI, albumin levels were inversely associated with mortality risk. Conclusion: Hypoproteinemia and CI, individually and combined, increased all-cause mortality risk in Chinese older adults, with stronger effects observed in males, younger older adults, and those living in rural areas. These findings emphasize the importance of targeted adjustments and early nutrition programs in health prevention and clinical care for older adults.

20.
Int J Infect Dis ; : 107198, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117174

ABSTRACT

OBJECTIVE: To investigate the effects of repeated vaccination with ancestral SARS-CoV-2 (Wuhan-hu-1)-based inactivated, recombinant protein subunit or vector-based vaccines on the neutralizing antibody response to Omicron subvariants. METHODS: Individuals who received four-dose vaccinations with the Wuhan-hu-1 strain, individuals who were infected with the BA.5 variant alone without prior vaccination, and individuals who experienced a BA.5 breakthrough infection following receiving 2-4 doses of the Wuhan-hu-1 vaccine were enrolled. Neutralizing antibodies against D614G, BA.5, XBB.1.5, EG.5.1, and BA.2.86 were detected using a pseudovirus-based neutralization assay. Antigenic cartography was used to analyze cross-reactivity patterns among D614G, BA.5, XBB.1.5, EG.5.1, and BA.2.86 and sera from individuals. RESULTS: The highest neutralizing antibody titers against D614G were observed in individuals who only received four-dose vaccination and those who experienced BA.5 breakthrough infection, which was also significantly higher than the antibody titers against XBB.1.5, EG.5.1, and BA.2.86. In contrast, only BA.5 infection elicited comparable neutralizing antibody titers against the tested variants. While neutralizing antibody titers against D614G or BA.5 were similar across the cohorts, the neutralizing capacity of antibodies against XBB.1.5, EG.5.1, and BA.2.86 was significantly reduced. BA.5 breakthrough infection following heterologous booster induced significantly higher neutralizing antibody titers against the variants, particularly against XBB.1.5 and EG.5.1, than uninfected vaccinated individuals, only BA.5 infected individuals, or those with BA.5 breakthrough infection after primary vaccination. CONCLUSIONS: Our findings suggest that repeated vaccination with the Wuhan-hu-1 strain imprinted a neutralizing antibody response toward the Wuhan-hu-1 strain with limited effects on the antibody response to the Omicron subvariants.

SELECTION OF CITATIONS
SEARCH DETAIL