Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
BMC Plant Biol ; 24(1): 617, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937686

ABSTRACT

BACKGROUND: Ichang papeda (Citrus ichangensis), a wild perennial plant of the Rutaceae family, is a cold-hardy plant. WRKY transcription factors are crucial regulators of plant growth and development as well as abiotic stress responses. However, the WRKY genes in C. ichangensis (CiWRKY) and their expression patterns under cold stress have not been thoroughly investigated, hindering our understanding of their role in cold tolerance. RESULTS: In this study, a total of 52 CiWRKY genes identified in the genome of C. ichangensis were classified into three main groups and five subgroups based on phylogenetic analysis. Comprehensive analyses of motif features, conserved domains, and gene structures were performed. Segmental duplication plays a significant role in the CiWRKY gene family expansion. Cis-acting element analysis revealed the presence of various stress-responsive elements in the promoters of the majority of CiWRKYs. Gene ontology (GO) analysis and protein-protein interaction predictions indicate that the CiWRKYs exhibit crucial roles in regulation of both development and stress response. Expression profiling analysis demonstrates that 14 CiWRKYs were substantially induced under cold stress. Virus-induced gene silencing (VIGS) assay confirmed that CiWRKY31, one of the cold-induced WRKYs, functions positively in regulation of cold tolerance. CONCLUSION: Sequence and protein properties of CiWRKYs were systematically analyzed. Among the 52 CiWRKY genes 14 members exhibited cold-responsive expression patterns, and CiWRKY31 was verified to be a positive regulator of cold tolerance. These findings pave way for future investigations to understand the molecular functions of CiWRKYs in cold tolerance and contribute to unravelling WRKYs that may be used for engineering cold tolerance in citrus.


Subject(s)
Citrus , Cold-Shock Response , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Citrus/genetics , Citrus/physiology , Cold-Shock Response/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Gene Expression Profiling , Genes, Plant , Cold Temperature
2.
J Mater Chem B ; 12(27): 6690-6702, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38895854

ABSTRACT

Peripheral nerve injuries (PNIs) caused by mechanical contusion are frequently encountered in clinical practice, using nerve guidance conduits (NGCs) is now a promising therapy. An NGC creates a microenvironment for cell growth and differentiation, thus understanding physical and biochemical cues that can affect nerve-cell fate is a prerequisite for rationally designing NGCs. However, most of the previous works were focused on some static cues, the dynamic nature of the nerve microenvironment has not yet been well captured. Herein, we develop a micropatterned shape-memory polymer as a programmable substrate for providing a dynamic cue for nerve-cell growth. The shape-memory properties enable temporal programming of the substrate, and a dynamic microenvironment is created during standard cell culturing at 37 °C. Unlike most of the biomedical shape-memory polymers that recover rapidly at 37 °C, the proposed substrate shows a slow recovery process lasting 3-4 days and creates a long-term dynamic microenvironment. Results demonstrate that the vertically programmed substrates provide the most suitable dynamic microenvironment for PC12 cells as both the differentiation and maturity are promoted. Overall, this work provides a strategy for creating a long-term dynamic microenvironment for regulating nerve-cell fate and will inspire the rational design of NGCs for the treatment of PNIs.


Subject(s)
Cell Differentiation , PC12 Cells , Rats , Animals , Polymers/chemistry , Cell Proliferation/drug effects , Surface Properties , Cellular Microenvironment , Neurons/cytology , Smart Materials/chemistry
3.
Plant Physiol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875157

ABSTRACT

Citrus is one of the most important fruit crop genera in the world, but many Citrus species are vulnerable to cold stress. Ichang papeda (Citrus ichangensis), a cold-hardy citrus species, holds great potential for identifying valuable metabolites that are critical for cold tolerance in Citrus. However, the metabolic changes and underlying mechanisms that regulate Ichang papeda cold tolerance remain largely unknown. In this study, we compared the metabolomes and transcriptomes of Ichang papeda and HB pummelo (Citrus grandis 'Hirado Buntan', a cold-sensitive species) to explore the critical metabolites and genes responsible for cold tolerance. Metabolomic analyses led to the identification of common and genotype-specific metabolites, consistent with transcriptomic alterations. Compared to HB pummelo under cold stress, Ichang papeda accumulated more sugars, flavonoids, and unsaturated fatty acids, which are well-characterized metabolites involved in stress responses. Interestingly, sphingosine and chlorogenic acid substantially accumulated only in Ichang papeda. Knockdown of CiSPT (C. ichangensis serine palmitoyltransferase) and CiHCT2 (C. ichangensis hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyltransferase2), two genes involved in sphingosine and chlorogenic acid biosynthesis, dramatically decreased endogenous sphingosine and chlorogenic acid levels, respectively. This reduction in sphingosine and chlorogenic acid notably compromised the cold tolerance of Ichang papeda, whereas exogenous application of these metabolites increased plant cold tolerance. Taken together, our findings indicate that greater accumulation of a spectrum of metabolites, particularly sphingosine and chlorogenic acid, promotes cold tolerance in cold-tolerant citrus species. These findings broaden our understanding of plant metabolic alterations in response to cold stress and provide valuable targets that can be manipulated to improve Citrus cold tolerance.

4.
Fish Shellfish Immunol ; 149: 109609, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705549

ABSTRACT

As a crucial member of pattern-recognition receptors (PRRs), the Tolls/Toll-like receptors (TLRs) gene family has been proven to be involved in innate immunity in crustaceans. In this study, nine members of TLR gene family were identified from the mud crab (Scylla paramamosain) transcriptome, and the structure and phylogeny of different SpTLRs were analyzed. It was found that different SpTLRs possessed three conserved structures in the TIR domain. Meanwhile, the expression patterns of different Sptlr genes in examined tissues detected by qRT-PCR had wide differences. Compared with other Sptlr genes, Sptlr-6 gene was significantly highly expressed in the hepatopancreas and less expressed in other tissues. Therefore, the function of Sptlr-6 was further investigated. The expression of the Sptlr-6 gene was up-regulated by Poly I: C, PGN stimulation and Vibrio parahaemolyticus infection. In addition, the silencing of Sptlr-6 in hepatopancreas mediated by RNAi technology resulted in the significant decrease of several conserved genes involved in innate immunity in mud crab after V. parahaemolyticus infection, including relish, myd88, dorsal, anti-lipopolysaccharide factor (ALF), anti-lipopolysaccharide factor 2 (ALF-2) and glycine-rich antimicrobial peptide (glyamp). This study provided new knowledge for the role of the Sptlr-6 gene in defense against V. parahaemolyticus infection in S. paramamosain.


Subject(s)
Arthropod Proteins , Brachyura , Immunity, Innate , Phylogeny , Toll-Like Receptors , Vibrio parahaemolyticus , Animals , Brachyura/immunology , Brachyura/genetics , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Toll-Like Receptors/chemistry , Vibrio parahaemolyticus/physiology , Gene Expression Regulation/immunology , Amino Acid Sequence , Sequence Alignment , Gene Expression Profiling , Poly I-C/pharmacology
5.
ACS Appl Mater Interfaces ; 16(19): 25404-25414, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38692284

ABSTRACT

Liquid crystal elastomers (LCEs), as a classical two-way shape-memory material, are good candidates for developing artificial muscles that mimic the contraction, expansion, or rotational behavior of natural muscles. However, biomimicry is currently focused more on the actuation functions of natural muscles dominated by muscle fibers, whereas the tactile sensing functions that are dominated by neuronal receptors and synapses have not been well captured. Very few studies have reported the sensing concept for LCEs, but the signals were still donated by macroscopic actuation, that is, variations in angle or length. Herein, we develop a conductive porous LCE (CPLCE) using a solvent (dimethyl sulfoxide (DMSO))-templated photo-cross-linking strategy, followed by carbon nanotube (CNT) incorporation. The CPLCE has excellent reversible contraction/elongation behavior in a manner similar to the actuation functions of skeletal muscles. Moreover, the CPLCE shows excellent pressure-sensing performance by providing real-time electrical signals and is capable of microtouch sensing, which is very similar to natural tactile sensing. Furthermore, macroscopic actuation and tactile sensation can be integrated into a single system. Proof-of-concept studies reveal that the CPLCE-based artificial muscle is sensitive to external touch while maintaining its excellent actuation performance. The CPLCE with tactile sensation beyond reversible actuation is expected to benefit the development of versatile artificial muscles and intelligent robots.


Subject(s)
Elastomers , Liquid Crystals , Nanotubes, Carbon , Liquid Crystals/chemistry , Elastomers/chemistry , Nanotubes, Carbon/chemistry , Porosity , Solvents/chemistry , Touch/physiology , Artificial Organs , Muscle, Skeletal/physiology , Muscle, Skeletal/chemistry , Humans
6.
Fish Shellfish Immunol ; 149: 109561, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636738

ABSTRACT

Toll-interacting protein (Tollip) serves as a crucial inhibitory factor in the modulation of Toll-like receptor (TLR)-mediated innate immunological responses. The structure and function of Tollip have been well documented in mammals, yet the information in teleost remained limited. This work employed in vitro overexpression and RNA interference in vivo and in vitro to comprehensively examine the regulatory effects of AjTollip on NF-κB and MAPK signaling pathways. The levels of p65, c-Fos, c-Jun, IL-1, IL-6, and TNF-α were dramatically reduced following overexpression of AjTollip, whereas knocking down AjTollip in vivo and in vitro enhanced those genes' expression. Protein molecular docking simulations showed AjTollip interacts with AjTLR2, AjIRAK4a, and AjIRAK4b. A better understanding of the transcriptional regulation of AjTollip is crucial to elucidating the role of Tollip in fish antibacterial response. Herein, we cloned and characterized a 2.2 kb AjTollip gene promoter sequence. The transcription factors GATA1 and Sp1 were determined to be associated with the activation of AjTollip expression by using promoter truncation and targeted mutagenesis techniques. Collectively, our results indicate that AjTollip suppresses the NF-κB and MAPK signaling pathways, leading to the decreased expression of the downstream inflammatory factors, and GATA1 and Sp1 play a vital role in regulating AjTollip expression.


Subject(s)
Anguilla , Fish Proteins , GATA1 Transcription Factor , NF-kappa B , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Fish Proteins/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Anguilla/genetics , Anguilla/immunology , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Gene Expression Regulation/immunology , Immunity, Innate/genetics , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/chemistry , Signal Transduction
7.
Fish Shellfish Immunol ; 149: 109591, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679344

ABSTRACT

Toll-like receptors (TLRs) are one of the extensively studied pattern recognition receptors (PRRs) and play crucial roles in the immune responses of vertebrates and invertebrates. In this study, 14 TLR genes were identified from the genome-wide data of Octopus sinensis. Protein structural domain analysis showed that most TLR proteins had three main structural domains: extracellular leucine-rich repeats (LRR), transmembrane structural domains, and intracellular Toll/IL-1 receptor domain (TIR). The results of subcellular localization prediction showed that the TLRs of O. sinensis were mainly located on the plasma membrane. The results of quantitative real-time PCR (qPCR) showed that the detected TLR genes were differentially expressed in the hemolymph, white bodies, hepatopancreas, gills, gill heart, intestine, kidney, and salivary gland of O. sinensis. Furthermore, the present study investigated the expression changes of O. sinensis TLR genes in hemolymph, white bodies, gills, and hepatopancreas in different phases (6 h, 12 h, 24 h, 48 h) after stimulation with PGN, poly(I: C) and Vibrio parahaemolyticus. The expression of most of the TLR genes was upregulated at different time points after infection with pathogens or stimulation with PAMPs, a few genes were unchanged or even down-regulated, and many of the TLR genes were much higher after V. parahaemolyticus infection than after PGN and poly(I:C) stimulation. The results of this study contribute to a better understanding of the molecular immune mechanisms of O. sinensis TLRs genes in resistance to pathogen stimulation.


Subject(s)
Gene Expression Regulation , Immunity, Innate , Octopodiformes , Toll-Like Receptors , Vibrio parahaemolyticus , Animals , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Toll-Like Receptors/chemistry , Vibrio parahaemolyticus/physiology , Octopodiformes/genetics , Octopodiformes/immunology , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Phylogeny , Gene Expression Profiling/veterinary , Poly I-C/pharmacology , Peptidoglycan/pharmacology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Pathogen-Associated Molecular Pattern Molecules/pharmacology
8.
Fish Shellfish Immunol ; 149: 109533, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575039

ABSTRACT

The Commd (Copper Metabolism gene MURR1 Domain) family genes play crucial roles in various biological processes, including copper and sodium transport regulation, NF-κB activity, and cell cycle progression. Their function in Haliotis discus hannai, however, remains unclear. This study focused on identifying and analyzing the Commd genes in H. discus hannai, including their gene structure, phylogenetic relationships, expression profiles, sequence diversity, and alternative splicing. The results revealed significant homology between H. discus hannai's Commd genes and those of other mollusks. Both transcriptome quantitative analysis and qRT-PCR demonstrated the responsiveness of these genes to heat stress and Vibrio parahaemolyticus infection. Notably, alternative splicing analysis revealed that COMMD2, COMMD4, COMMD5, and COMMD7 produce multiple alternative splice variants. Furthermore, sequence diversity analysis uncovered numerous missense mutations, specifically 9 in COMMD5 and 14 in COMMD10. These findings contribute to expanding knowledge on the function and evolution of the Commd gene family and underscore the potential role of COMMD in the innate immune response of H. discus hannai. This research, therefore, offers a novel perspective on the molecular mechanisms underpinning the involvement of Commd genes in innate immunity, paving the way for further explorations in this field.


Subject(s)
Gastropoda , Immunity, Innate , Phylogeny , Vibrio parahaemolyticus , Animals , Vibrio parahaemolyticus/physiology , Immunity, Innate/genetics , Gastropoda/immunology , Gastropoda/genetics , Gastropoda/microbiology , Stress, Physiological/immunology , Stress, Physiological/genetics , Multigene Family , Gene Expression Profiling , Sequence Alignment , Amino Acid Sequence , Gene Expression Regulation/immunology , Evolution, Molecular
9.
J Steroid Biochem Mol Biol ; 241: 106529, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670516

ABSTRACT

Mud crab (Scylla paramamosain) has become an important mariculture crab along the southeast coast of China due to its strong adaptability, delicious taste, and rich nutrition. Several vertebrate steroid hormones and their synthesis-related genes and receptors have been found in crustaceans, but there are few reports on their synthesis process and mechanism. 3-beta-hydroxysteroid dehydrogenase (HSD3B) is a member of the Short-chain Dehydrogenase/Reductase (SDR) family, and an indispensable protein in vertebrates' steroid hormone synthesis pathway. In this study, the SpHsd3b gene sequence was obtained from the transcriptome data of S. paramamosain, and its full-length open reading frame (ORF) was cloned. The spatial and temporal expression pattern of SpHsd3b was performed by quantitative real-time PCR (qRT-PCR). SpHsd3b dsRNA interference (RNAi) and HSD3B inhibitor (trilostane) were used to analyze the function of SpHSD3B. The results showed that the SpHsd3b gene has an 1113 bp ORF encoding 370 amino acids with a 3ß-HSD domain. SpHSD3B has lower homology with HSD3B of vertebrates and higher homology with HSD3B of crustaceans. SpHsd3b was expressed in all examined tissues in mature crabs, and its expression was significantly higher in the testes than in the ovaries. SpHsd3b expression level was highest in the middle stage of testicular development, while its expression was higher in the early and middle stages of ovarian development. RNAi experiment and trilostane injection results showed that SpHSD3B had regulatory effects on several genes related to gonadal development and steroid hormone synthesis. 15-day trilostane suppression could also inhibit ovarian development and progesterone level of hemolymph. According to the above results, crustaceans may have steroid hormone synthesis pathways like vertebrates, and the Hsd3b gene may be involved in the gonadal development of crabs. This study provides further insight into the function of genes involved in steroid hormone synthesis in crustaceans.


Subject(s)
Brachyura , Phylogeny , Animals , Brachyura/genetics , Brachyura/growth & development , Brachyura/metabolism , Brachyura/enzymology , Female , Male , Amino Acid Sequence , 3-Hydroxysteroid Dehydrogenases/genetics , 3-Hydroxysteroid Dehydrogenases/metabolism , Ovary/metabolism , Ovary/growth & development , Cloning, Molecular , RNA Interference , Dihydrotestosterone/analogs & derivatives
10.
J Phys Chem Lett ; 15(16): 4422-4429, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38626393

ABSTRACT

Heterocycles with saturated N atoms (HetSNs) are widely used electron donors in organic light-emitting diode (OLED) materials. Their relatively low bond dissociation energy (BDE) of exocyclic C-N bonds has been closely related to material intrinsic stability and even device lifetime. Thus, it is imperative to realize fast prediction and precise regulation of those C-N BDEs, which demands a deep understanding of the relationship between the molecular structure and BDE. Herein, via machine learning (ML), we rapidly and accurately predicted C-N BDEs in various HetSNs and found that five-membered HetSNs (5-HetSNs) have much higher BDEs than almost all 6-HetSNs, except emerging boron-N blocks. Thorough analysis disclosed that high aromaticity is the foremost factor accounting for the high BDE of 5-HetSNs, and introducing intramolecular hydrogen-bond or electron-withdrawing moieties could also increase BDE. Importantly, the ML models performed well in various realistic OLED materials, showing great potential in characterizing material intrinsic stability for high-throughput virtual-screening and material design efforts.

11.
Article in English | MEDLINE | ID: mdl-38340389

ABSTRACT

As the most important cultural crustacean species worldwide, studies about Pacific white shrimp (Litopenaeus vannamei) have received more attention. It has been well-documented that various pathogens could infect L. vannamei, resulting in huge economic losses. The studies about the responding mechanism of L. vannamei to sole pathogens such as Vibrio parahaemolyticus and white spot virus (WSSV) have been extensively reported, while the studies about the differently responding mechanisms remain unclear. In the present study, we identified the differently expressed genes (DEGs) of L. vannamei hemocytes post V. parahaemolyticus and WSSV infection with RNA-seq technology and compared the DEGs between the two groups. The results showed 2672 DEGs post the V. parahaemolyticus challenge (1079 up-regulated and 1593 down-regulated genes), while 1146 DEGs post the WSSV challenge (1067 up-regulated and 513 down-regulated genes). In addition, we screened the genes that simultaneously respond to WSSV and V. parahaemolyticus (434), solely respond to WSSV (1146), and V. parahaemolyticus challenge (2238), respectively. Six DEGs involved in innate immunity were quantified to validate the RNA-seq results, and the results confirmed the high consistency of both methods. Furthermore, we found plenty of innate immunity-related genes that responded to V. parahaemolyticus and WSSV infection, including pattern recognition receptors (PRRs), the proPO activating system, antimicrobial peptides (AMPs), and other immunity-related proteins. The results revealed that they were differently expressed after different pathogen challenges, demonstrating the complex and specific recognition systems involved in defending against the invasion of different pathogens in the environment. The present study improved our understanding of the molecular response of hemocytes of L. vannamei to V. parahaemolyticus and WSSV stimulation.


Subject(s)
Hemocytes , Penaeidae , Transcriptome , Vibrio parahaemolyticus , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Penaeidae/genetics , Penaeidae/virology , Penaeidae/immunology , Penaeidae/microbiology , Gene Expression Profiling , Arthropod Proteins/genetics , Arthropod Proteins/immunology
12.
Phys Med Biol ; 69(7)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38306971

ABSTRACT

Objective. Celiac disease (CD) has emerged as a significant global public health concern, exhibiting an estimated worldwide prevalence of approximately 1%. However, existing research pertaining to domestic occurrences of CD is confined mainly to case reports and limited case analyses. Furthermore, there is a substantial population of undiagnosed patients in the Xinjiang region. This study endeavors to create a novel, high-performance, lightweight deep learning model utilizing endoscopic images from CD patients in Xinjiang as a dataset, with the intention of enhancing the accuracy of CD diagnosis.Approach. In this study, we propose a novel CNN-Transformer hybrid architecture for deep learning, tailored to the diagnosis of CD using endoscopic images. Within this architecture, a multi-scale spatial adaptive selective kernel convolution feature attention module demonstrates remarkable efficacy in diagnosing CD. Within this module, we dynamically capture salient features within the local channel feature map that correspond to distinct manifestations of endoscopic image lesions in the CD-affected areas such as the duodenal bulb, duodenal descending segment, and terminal ileum. This process serves to extract and fortify the spatial information specific to different lesions. This strategic approach facilitates not only the extraction of diverse lesion characteristics but also the attentive consideration of their spatial distribution. Additionally, we integrate the global representation of the feature map obtained from the Transformer with the locally extracted information via convolutional layers. This integration achieves a harmonious synergy that optimizes the diagnostic prowess of the model.Main results. Overall, the accuracy, specificity, F1-Score, and precision in the experimental results were 98.38%, 99.04%, 98.66% and 99.38%, respectively.Significance. This study introduces a deep learning network equipped with both global feature response and local feature extraction capabilities. This innovative architecture holds significant promise for the accurate diagnosis of CD by leveraging endoscopic images captured from diverse anatomical sites.


Subject(s)
Celiac Disease , Humans , Celiac Disease/diagnostic imaging , Endoscopy
13.
Sci Rep ; 14(1): 3132, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326358

ABSTRACT

Carbon-neutral growth is a crucial long-term climatic aim in the context of global warming. This paper introduces complex network theory and explores its potential application to achieve this goal. Specifically, we investigate the spatial and temporal distribution of nodes and sources in the ecological network, and examine whether a relationship exists between the topological index of network nodes and the landscape pattern index of ecological source areas. We also determine the contribution of nodes to the carbon stock of the entire network by exploring the correlation between the carbon stock of nodes and sources to develop an optimization strategy based on the synergistic effect of node-source carbon enhancement. Finally, we test the effect of network optimization through robustness. Our results show that: (1) The correlation topological feature index analysis reveals that the degree distribution of the node network's topological characteristics becomes dispersed and modular, exhibiting the characteristics of small-world networks according to a large clustering coefficient. The heterogeneity and extent of ecological source landscapes have increased by modularity index but remain distributed and locally fragmented; (2) According to correlation analysis, by enhancing the eccentricity of the node topology, the patch cohesion index (COHESION) of the ecological source site can maximize the contribution of the node to the enhancement of the carbon stock benefits of the source site; (3) According to the tests on the robustness of nodes and edges and the robustness of network links, network stability is improved and carbon sink capacity is enhanced. Simultaneously, the restoration and rejuvenation of ecological space through national ecological construction projects can effectively improve the carbon sink within the organized region, contributing to the carbon neutrality aim. This research gives scientific and quantifiable references for potential ecological construction projects for sustainable cities and the optimization of urban ecological space structure.

14.
RSC Adv ; 14(1): 568-576, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38173603

ABSTRACT

To avoid the undesired bacterial attachment on polyurethane-based biomedical devices, we designed a class of novel perfluoropolyether-incorporated polyurethanes (PFPU) containing different contents of perfluoropolyether (PFPE) segments. After blending with Ag nanoparticles (AgNPs), a series of bifunctional PFPU/AgNPs composites with bactericidal and anti-adhesion abilities were obtained and correspondingly made into PFPU/AgNPs films (PFPU/Ag-F) using a simple solvent-casting method. Due to its highest hydrophobicity and suitable mechanical properties, PFPU8/Ag-F containing 8 mol% of PFPE content was chosen as the optimized one for the next antibacterial assessment. The PFPU8/Ag-F can effectively deactivate over 99.9% of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) cells at 106 CFU mL-1 within 30 min. Furthermore, the PFPU8/AgNPs composite was used as painting material to form a protective coating for the commercial polyurethane (PU) catheter. The as-prepared PFPU8/Ag coating exhibits high resistance to bacterial adhesion in a continuous-flow artificial urine model in an 8 day exposure. Therefore, it can be expected that the proposed PFPE-containing films and coatings can effectively prevent bacterial colonization and biofilm formation on catheters or other implants, thereby reducing the risk of postoperative catheter-induced infection.

15.
Gen Comp Endocrinol ; 345: 114396, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37879419

ABSTRACT

Scylla paramamosain is an important cultured crab species on the southeast coast of China. However, the molecular regulation mechanism of its gonadal development still has not been thoroughly studied. Dsx (doublesex) and foxl-2 (forkhead transcription factor gene 2) are important transcription factors involved in gonadal development. So far, studies on the functions of dsx and foxl-2 in crustaceans are very limited. Insulin-like androgenic gland hormone (IAG) is an effector molecule that regulates the differentiation, development and sex maintenance of testes in crustaceans. In this study, the promoter region of Sp-IAG was predicted, and several potential binding sites of dsx and foxl-2 were found. Site-directed mutagenesis was performed on the predicted potential binding sites, and their promoter activity was analyzed. The results showed that there was a dsx and a foxl-2 binding site, respectively, that could regulate the expression of Sp-IAG. In order to verify the regulatory effect of these two transcription factors on Sp-IAG, we constructed the expression plasmids of dsx and foxl-2 and co-transfected them into HEK293T cell lines with the promoter of Sp-IAG, respectively. The results showed that dsx could significantly promote the expression of Sp-IAG, while foxl-2 could inhibit its expression substantially. Then we carried out in vivo RNA interference experiment on mud crabs. The expression of dsx and foxl-2 in crabs was interfered respectively. The results of qRT-PCR showed that the expression of Sp-IAG was significantly inhibited after interfering with dsx, while significantly increased after interfering with foxl-2, which was consistent with the cell experiment. In conclusion, dsx and foxl-2 transcription factors play opposite roles in regulating the expression of Sp-IAG.


Subject(s)
Brachyura , Animals , Humans , Brachyura/genetics , Brachyura/metabolism , Gene Expression Regulation , Gonads/metabolism , HEK293 Cells , Transcription Factors/genetics , Forkhead Transcription Factors
16.
Expert Opin Drug Saf ; : 1-7, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37909653

ABSTRACT

BACKGROUND: Hypoglycemia is an adverse event (AE) that cannot be ignored in clinical practice. This study aimed to identify the most common and top drugs associated with the risk of hypoglycemia based on the United States Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database. RESEARCH DESIGN AND METHODS: We used OpenVigil 2.1 pharmacovigilance analytics platform to query FAERS database and data from 2004 to 2023 were retrieved. The Medical Dictionary for Regulatory Activities (MedDRA) was used to identify hypoglycemia cases, and DrugBank database was used to determine drug generic names. RESULTS: A total of 11,155,106 AEs reports were identified, of which 28,443 (0.25%) were related to hypoglycemia. Metformin (6926 cases) was associated with most cases of hypoglycemia. According to the disproportionality analysis, the top five drugs with the highest ROR and PRR were penamecillin, nikethamide, sotagliflozin, norethandrolone, glimepiride/pioglitazone. Nineteen of the top 50 drugs did not have hypoglycemia indicated in the package insert. CONCLUSIONS: By analyzing the FAERS database, we listed drugs with a strong hypoglycemic signal for which the label does not provide a reminder. Notably, the potential hypoglycemia risks are of great importance and should be closely monitored in medical practice.

17.
Pediatr Radiol ; 53(13): 2672-2682, 2023 12.
Article in English | MEDLINE | ID: mdl-37889296

ABSTRACT

BACKGROUND: Quantitative magnetic resonance imaging (MRI) is considered an objective biomarker of Duchenne muscular dystrophy (DMD), but the longitudinal progression of MRI biomarkers in gluteal muscle groups and their predictive value for future motor function have not been described. OBJECTIVE: To explore MRI biomarkers of the gluteal muscle groups as predictors of motor function decline in DMD by characterizing the progression over 12 months. MATERIALS AND METHODS: A total of 112 participants with DMD were enrolled and underwent MRI examination of the gluteal muscles to determine fat fraction and longitudinal relaxation time (T1). Investigations were based on gluteal muscle groups including flexors, extensors, adductors, and abductors. The North Star Ambulatory Assessment and timed functional tests were performed. All participants returned for follow-up at an average of 12 months and were divided into two subgroups (functional stability/decline groups) based on changes in timed functional tests. Univariable and multivariable logistic regression methods were used to explore the risk factors associated with future motor function decline. RESULTS: For the functional decline group, all T1 values decreased, while fat fraction values increased significantly over 12 months (P<0.05). For the functional stability group, only the fat fraction of the flexors and abductors increased significantly over 12 months (P<0.05). The baseline T1 value was positively correlated with North Star Ambulatory Assessment and negatively correlated with timed functional tests at the 12-month follow-up (P<0.001), while the baseline fat fraction value was negatively correlated with North Star Ambulatory Assessment and positively correlated with timed functional tests at the 12-month follow-up (P<0.001). Multivariate regression showed that increased fat fraction of the abductors was associated with future motor function decline (model 1: odds ratio [OR]=1.104, 95% confidence interval [CI]: 1.026~1.187, P=0.008; model 2: OR=1.085, 95% CI: 1.013~1.161, P=0.019), with an area under the curve of 0.874. CONCLUSION: Fat fraction of the abductors is a powerful predictor of future motor functional decline in DMD patients at 12 months, underscoring the importance of focusing early on this parameter in patients with DMD.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/diagnostic imaging , Muscular Dystrophy, Duchenne/pathology , Cohort Studies , Muscle, Skeletal/diagnostic imaging , Magnetic Resonance Imaging/methods , Biomarkers
18.
Animals (Basel) ; 13(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37835763

ABSTRACT

IFNAR1, one of the type I IFN receptors, is crucial to mammalian host defense against viral invasion. However, largely unknown is the immunological role of the fish teleost protein IFNAR1, also known as CRFB5. We have successfully cloned the whole cDNA of the Japanese eel's (Anguilla japonica) CRFB5a homolog, AjCRFB5a. The two fibronectin-3 domains and the transmembrane region (238-260 aa) of AjCRFB5a are normally present, and it shares a three-dimensional structure with zebrafish, Asian arowana, and humans. According to expression analyses, AjCRFB5a is highly expressed in all tissues found, particularly the liver and intestine. In vivo, Aeromonas hydrophila, LPS, and the viral mimic poly I:C all dramatically increased AjCRFB5a expression in the liver. Japanese eel liver cells were reported to express AjCRFB5a more strongly in vitro after being exposed to Aeromonas hydrophila or being stimulated with poly I: C. The membranes of Japanese eel liver cells contained EGFP-AjCRFB5a proteins, some of which were condensed, according to the results of fluorescence microscopy. Luciferase reporter assays showed that AjCRFB5a overexpression strongly increased the expression of immune-related genes in Japanese eel liver cells, such as IFN1, IFN2, IFN3, IFN4, IRF3, IRF5, and IRF7 of the type I IFN signaling pathway, as well as one of the essential antimicrobial peptides LEAP2, in addition to significantly inducing human IFN-promoter activities in HEK293 cells. Additionally, RNA interference (RNAi) data demonstrated that knocking down AjCRFB5a caused all eight of those genes to drastically lower their expression in Japanese eel liver cells, as well as to variable degrees in the kidney, spleen, liver, and intestine. Our findings together showed that AjCRFB5a participates in the host immune response to bacterial infection by inducing antimicrobial peptides mediated by LEAP2 and favorably modulates host antiviral immune responses by activating IRF3 and IRF7-driven type I IFN signaling pathways.

19.
Nat Commun ; 14(1): 3927, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400475

ABSTRACT

The 3rd-Gen OLED materials employing thermally-activated delayed fluorescence (TADF) combine advantages of first two for high-efficiency and low-cost devices. Though urgently needed, blue TADF emitters have not met stability requirement for applications. It is essential to elucidate the degradation mechanism and identify the tailored descriptor for material stability and device lifetime. Here, via in-material chemistry, we demonstrate chemical degradation of TADF materials involves critical role of bond cleavage at triplet state rather than singlet, and disclose the difference between bond dissociation energy of fragile bonds and first triplet state energy (BDE-ET1) is linearly correlated with logarithm of reported device lifetime for various blue TADF emitters. This significant quantitative correlation strongly reveals the degradation mechanism of TADF materials have general characteristic in essence and BDE-ET1 could be the shared "longevity gene". Our findings provide a critical molecular descriptor for high-throughput-virtual-screening and rational design to unlock the full potential of TADF materials and devices.

20.
Fish Shellfish Immunol ; 139: 108881, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37279830

ABSTRACT

Tumor necrosis factor (TNF) is an inflammatory cytokine that is important in cell survival, proliferation, differentiation, and death. However, the functions of TNF in the innate immune responses of invertebrates have been less studied. In this study, SpTNF was cloned and characterized from mud crab (Scylla paramamosain) for the first time. SpTNF contains an open reading frame of 354 bp encoding 117 deduced amino acids, with a conserved C-terminal TNF homology domain (THD) domain. RNAi knockdown of SpTNF reduced hemocyte apoptosis and antimicrobial peptide (AMP) synthesis. Expression of SpTNF was initially down-regulated but subsequently up-regulated after 48 h in hemocytes of mud crabs after WSSV infection. Results of RNAi knockdown and overexpression showed that SpTNF inhibits the WSSV infection through activating apoptosis, NF-κB pathway, and AMP synthesis. Furthermore, the lipopolysaccharide-induced TNF-α factor (SpLITAF) can regulate the expression of SpTNF, induction of apoptosis, and activation of the NF-κB pathway and AMP synthesis. The expression and nuclear translocation of SpLITAF were found to be regulated by WSSV infection. Knocking down of SpLITAF increased the WSSV copy number and expression of VP28 gene. Taken together, these results proved the protective function of SpTNF, which is regulated by SpLITAF, in the immune response of mud crabs against WSSV through the regulation of apoptosis and activation of AMP synthesis.


Subject(s)
Brachyura , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Gene Expression Regulation , NF-kappa B/metabolism , Immunity, Innate/genetics , Apoptosis , Antimicrobial Peptides , Arthropod Proteins , Phylogeny , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...