Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
J Environ Manage ; 356: 120694, 2024 Apr.
Article En | MEDLINE | ID: mdl-38522271

Ramie (Boehmeria nivea L.) is a promising phytoremediation candidate due to its high tolerance and enrichment capacity for antimony (Sb). However, challenges arise as Sb accumulated mainly in roots, complicating soil extraction. Under severe Sb contamination, the growth of ramie may be inhibited. Strategies are needed to enhance Sb accumulation in ramie's aboveground parts and improve tolerance to Sb stress. Considering the beneficial effects of selenium (Se) on plant growth and enhancing resistance to abiotic stresses, this study aimed to investigate the potential use of Se in enhancing Sb uptake by ramie. We investigated the effects of Se (0.5, 1, 2, 5, or 10 µM) on ramie growth, Sb uptake and speciation, antioxidant responses, and ionomic profiling in ramie under 10 mg/L of SbIII or antimonate (SbV) stresses. Results revealed that the addition of 0.5 µM Se significantly increased shoot biomass by 75.73% under SbIII stress but showed minimal effects on shoot and root length in both SbIII and SbV treatments. Under SbIII stress, 2 µM Se significantly enhanced Sb concentrations by 48.42% in roots and 62.88% in leaves. In the case of SbV exposure, 10 µM Se increased Sb content in roots by 42.57%, and 1 µM Se led to a 91.74% increase in leaves. The speciation analysis suggested that Se promoted the oxidation of SbIII to less toxic SbV to mitigate Sb toxicity. Additionally, Se addition effectively minimized the excess reactive oxygen species produced by Sb exposure, with the lowest malondialdehyde (MDA) content at 0.5 µM Se under SbIII and 2 µM Se under SbV, by activating antioxidant enzymes including superoxide dismutase, catalase, peroxidase, and glutathione peroxidase. Ionomic analysis revealed that Se helped in maintaining the homeostasis of certain nutrient elements, including magnesium, potassium (K), calcium (Ca), iron (Fe), and copper (Cu) in the SbIII-treated roots and K and manganese (Mg) in the SbV-treated roots. The results suggest that low concentrations of Se can be employed to enhance the phytoremediation of Sb-contaminated soils using ramie.


Boehmeria , Selenium , Antioxidants/pharmacology , Antimony , Selenium/pharmacology , Boehmeria/physiology , Plant Roots/chemistry
2.
Environ Pollut ; 346: 123536, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38365079

The increasing demand for trichloroisocyanuric acid (TCCA) in swimming pool disinfection highlights the need to evaluate its applicability in terms of disinfection by-product (DBP) formation. Nevertheless, there is limited understanding of DBP formation and control during TCCA disinfection, particularly concerning the effects of various management parameters. This study aimed to fill this knowledge gap by comprehensively investigating DBP formation during TCCA chlorination, with a particular focus on assessing the contribution and interaction of influencing factors using Box-Behnken Design and response surface methodology. Results indicated that the concentrations of trichloroacetaldehyde, chloroform, dichloroacetic acid, trichloroacetic acid, and dichloroacetonitrile produced by TCCA disinfectant were 42.5%, 74.0%, 48.1%, 94.7% and 42.6% of those by the conventional sodium hypochlorite disinfectant, respectively. Temperature exhibited the most significant impact on chloroform formation (49%), while pH played a major role in trichloroacetaldehyde formation (44%). pH2 emerged as the primary contributor to dichloroacetic acid (90%) and trichloroacetic acid (93%) formation. The optimum water quality conditions were determined based on the minimum total DBPs (pH = 7.32, Temperature = 23.7 °C, [Cl-] = 437 mg/L). Chlorine dosage and contact time exhibited greater influence than precursor concentration on chloroform, dichloroacetonitrile, trichloroacetaldehyde, trichloroacetic acid, and total DBPs. Although the interaction between water quality parameters was weak, the interaction between disinfection operating parameters demonstrated substantial effects on DBP formation (8.56-19.06%). Furthermore, the DBP predictive models during TCCA disinfection were provided for the first time, which provides valuable insights for DBP control and early warning programs.


Acetonitriles , Chloral Hydrate/analogs & derivatives , Disinfectants , Swimming Pools , Triazines , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Chloroform , Trichloroacetic Acid , Trihalomethanes/analysis , Chlorine , Halogenation , Water Purification/methods , Water Pollutants, Chemical/analysis
3.
Toxics ; 11(10)2023 Oct 14.
Article En | MEDLINE | ID: mdl-37888710

Antimony (Sb) is a non-essential metalloid that can be taken up by plants from contaminated soils and thus enter the food chain and threaten human health. Boehmeria nivea L. (ramie) is a promising phytoremediation plant for Sb-polluted soils. However, the mechanisms of antimonite (SbIII) and antimonate (SbV) uptake by ramie remain unclear. In this study, a hydroponic system was established to investigate how different substances affect the uptake of SbIII or SbV by ramie, including an energy inhibitor (malonic acid), an aquaglyceroporin inhibitor (silver nitrate), an SbV analog (phosphate-PV), and SbIII analogs (arsenite-AsIII, glycerol, silicic acid-Si, and glucose). The results indicated that ramie primarily transported Sb by increasing the Sb concentration in the bleeding sap, rather than increasing the weight of the bleeding sap. After 16 h of Sb exposure, the absolute amount of transported Sb from the roots to the aboveground parts was 1.90 times higher under SbIII than under SbV. The addition of malonic acid significantly inhibited the uptake of SbV but had limited effects on SbIII, indicating that SbV uptake was energy dependent. PV addition significantly reduced SbV uptake, while the addition of AsIII, glycerol, and Si obviously inhibited SbIII uptake. This suggested that the uptake of SbV might be via low-affinity P transporters and SbIII might use aquaglyceroporins. These findings deepen the understanding of Sb uptake pathways in ramie, contribute to a better comprehension of Sb toxicity mechanisms in ramie, and establish a foundation for identifying the most effective Sb uptake pathways, which could further improve the efficiency of phytoremediation of Sb-polluted soils.

4.
Gels ; 9(6)2023 Jun 12.
Article En | MEDLINE | ID: mdl-37367149

This study focuses on the characteristics of fractured and vuggy high-temperature and high-salt reservoirs in the Tahe Oilfield. The Acrylamide/2-acrylamide-2-methylpropanesulfonic copolymer salt was selected as a polymer; the hydroquinone and hexamethylene tetramine was selected as the crosslinking agent with a ratio of 1:1; the nanoparticle SiO2 was selected, and its dosage was optimized to 0.3%; Additionally, a novel nanoparticle coupling polymer gel was independently synthesized. The surface of the gel was a three-dimensional network structure, with grids arranged in pieces and interlaced with each other, and the structure was very stable. The SiO2 nanoparticles were attached to the gel skeleton, forming effective coupling and enhancing the strength of the gel skeleton. To solve the problem of complex gel preparation and transportation, the novel gel is compressed, pelletized, and dried into expanded particles through industrial granulation, and the disadvantage of the rapid expansion of expanded particles is optimized through physical film coating treatment. Finally, a novel nanoparticle coupling expanded granule plugging agent was developed. Evaluation of the performance of the novel nanoparticle coupling expanded granule plugging agent. With an increase in temperature and mineralization, the expansion multiplier of granules decreases; aged under high-temperature and high-salt conditions for 30 days, the expansion multiplier of granules can still reach 3.5 times, the toughness index is 1.61, and the long-term stability of the granules can be good; the water plugging rate of granules is 97.84%, which is superior to other widely used particle-based plugging agents.

5.
J Environ Manage ; 343: 118195, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37229860

Soil antimony (Sb) pollution is a global concern that threatens food security and human health. Boehmeria nivea L. (ramie) is a promising phytoremediation plant exhibiting high tolerance and enrichment capacity for Sb. To reveal the molecular mechanisms and thus enhance the ramie uptake, transport, and detoxification of Sb with practical strategies, a hydroponic experiment was conducted to compare the physiological and transcriptomic responses of ramie towards antimonite (Sb(Ⅲ)) and antimonate (Sb(Ⅴ)). Phenotypic results showed that Sb(Ⅲ) had a stronger inhibitory effect on the growth of ramie. Root Sb content under Sb(Ⅲ) was 2.43 times higher than that in Sb(Ⅴ) treatment. Based on the ribonucleic acid sequencing (RNA-Seq) technique, 3915 and 999 significant differentially expressed genes (DEGs) were identified under Sb(Ⅲ) and Sb(Ⅴ), respectively. Transcriptomic analysis revealed that ramie showed different adaptation strategies to Sb(Ⅲ) and Sb(V). Key DEGs and their involved pathways such as catalytic activity, carbohydrate metabolisms, phenylpropanoid biosynthesis, and cell wall modification were identified to perform crucial roles in Sb tolerance and detoxification. Two heavy metal-associated domain-type genes, six heavy metal-associated isoprenylated plant proteins, and nine ABC transporters showed possible roles in the transport and detoxification of Sb. The significant upregulation of NRAMP5 and three NIPs suggested their roles in the transport of Sb(V). This study is the basis for future research to identify the exact genes and biological processes that can effectively enhance Sb accumulation or improve plant tolerance to Sb, thereby promoting the phytoremediation of Sb-polluted soils.


Boehmeria , Metals, Heavy , Humans , Antimony/pharmacology , Transcriptome , Boehmeria/genetics , Boehmeria/metabolism
6.
J Hazard Mater ; 454: 131533, 2023 07 15.
Article En | MEDLINE | ID: mdl-37146331

The control of disinfection byproducts (DBPs) in swimming pools is of great significance due to the non-negligible toxicity and widespread existence of DBPs. However, the management of DBPs remains challenging as the removal and regulation of DBPs is a multifactorial phenomenon in pools. This study summarized recent studies on the removal and regulation of DBPs, and further proposed some research needs. Specifically, the removal of DBPs was divided into the direct removal of the generated DBPs and the indirect removal by inhibiting DBP formation. Inhibiting DBP formation seems to be the more effective and economically practical strategy, which can be achieved mainly by reducing precursors, improving disinfection technology, and optimizing water quality parameters. Alternative disinfection technologies to chlorine disinfection have attracted increasing attention, while their applicability in pools requires further investigation. The regulation of DBPs was discussed in terms of improving the standards on DBPs and their preccursors. The development of online monitoring technology for DBPs is essential for implementing the standard. Overall, this study makes a significant contribution to the control of DBPs in pool water by updating the latest research advances and providing detailed perspectives.


Disinfectants , Swimming Pools , Water Pollutants, Chemical , Water Purification , Disinfection , Disinfectants/analysis , Water Pollutants, Chemical/analysis , Water Quality , Chlorine , Halogenation
7.
Chemosphere ; 326: 138426, 2023 Jun.
Article En | MEDLINE | ID: mdl-36931400

Disinfection by-products (DBPs) remain an ongoing issue because of their widespread occurrence and toxicity. Boiling is the most popular household water treatment method and can effectively remove some DBPs. However, the transformation behavior of DBPs during boiling is still unclear, and the key contributors to toxicity have not been identified. In this study, the changes in the concentrations of DBPs in the single-DBP systems and the multi-DBP systems during boiling were monitored, and in-depth discussions on the removal and transformation of DBPs in both systems were carried out. The results showed that boiling was effective in removing volatile DBPs (over 90% for TCAL, TCAN, and DCAN, and over 60% for TCM), but ineffective for non-volatile DBPs (around 20% for TCAA and below 10% for DCAA and MCAA). By hydrolysis and decarboxylation, the transformation occurred among DBPs, i.e., 55% TCAL to TCM, followed by 23% DCAN to DCAA, 22% TCAN to TCAA, and 10% TCAA to TCM. The transformations were found to be significantly influenced by other co-existing DBPs. In multi-DBP systems, the transformations of DCAN to DCAA and TCAN to TCAA were both promoted, while the transformation of TCAN to TCAA was inhibited. Transformation and volatilization are the two processes responsible for DBP removal. Toxicity estimates indicated that boiling was effective in reducing the toxicity of DBPs and improving the safety of the water, despite the interconversion of DBPs in drinking water during boiling. This study emphasized the importance of studying the interconversion behaviors of DBPs in drinking water during boiling and provided practical information for end-use drinking water safety.


Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Disinfectants/analysis , Halogenation , Water Purification/methods , Water Pollutants, Chemical/analysis
8.
J Environ Manage ; 334: 117504, 2023 May 15.
Article En | MEDLINE | ID: mdl-36801690

Boehmeria nivea L. (ramie) is a promising phytoremediation plant for antimony (Sb)-contaminated soils. However, the uptake, tolerance, and detoxification mechanisms of ramie to Sb, which are the basis for finding efficient phytoremediation strategies, remain unclear. In the present study, ramie was exposed to 0, 1, 10, 50, 100, and 200 mg/L of antimonite (Sb(III)) or antimonate (Sb(V)) for 14 days in hydroponic culture. The Sb concentration, speciation, subcellular distribution, and antioxidant and ionomic responses in ramie were investigated. The results illustrated that ramie was more effective in the uptake of Sb(III) than Sb(V). Most of the Sb accumulated in ramie roots, with the highest level reaching 7883.58 mg/kg. Sb(V) was the predominant species in leaves, with 80.77-96.38% and 100% in the Sb(III) and Sb(V) treatments, respectively. Immobilization of Sb on the cell wall and leaf cytosol was the primary mechanism of accumulation. Superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) contributed significantly to root defense against Sb(III), while CAT and glutathione peroxidase (GPX) were the major antioxidants in leaves. CAT and POD played crucial roles in the defense against Sb(V). B, Ca, K, Mg, and Mn in Sb(V)-treated leaves and K and Cu in Sb(III)-treated leaves may be related to the biological processes of Sb toxicity mitigation. This study is the first to investigate the ionomic responses of plants toward Sb and could provide valuable information for the phytoremediation of Sb-polluted soils.


Antimony , Boehmeria , Boehmeria/physiology , Plant Roots/chemistry , Antioxidants , Peroxidase , Soil
9.
ISA Trans ; 131: 349-366, 2022 Dec.
Article En | MEDLINE | ID: mdl-35581025

This paper proposes a sample entropy (SampEn) based prescribed performance controller (SPPC) for the longitudinal control of a supersonic tailless aircraft subject to model uncertainty and nonlinearity. Considering that SampEn can evaluate the system's stability, a SampEn-based feedback adjust system (SFAS) is developed in this paper. With the help of SFAS, the SPPC could identify the dangerous chattering in the status signal that may lead the aircraft to lose control and make appropriate adjustments to feedback. Besides, the SPPC does not require any accurate model information and only needs to know the rough trend of dynamic functions. Although no adaptive or robust control mechanisms are introduced, the SPPC shows robustness against model uncertainty utilizing the nonlinear error feedback. Compared with traditional prescribed performance control (TPPC), the SPPC achieves better performance and safer flight. The whole control structure is developed through the backstepping technique, and the closed-loop stability is proved. At last, the advance of SPPC is verified via simulation using a high-fidelity tailless aircraft model, and the inner mechanisms of SPPC are further discussed.


Neural Networks, Computer , Nonlinear Dynamics , Algorithms , Feedback , Computer Simulation
10.
ISA Trans ; 79: 95-107, 2018 Aug.
Article En | MEDLINE | ID: mdl-29789154

An improved prescribed performance controller is proposed for the longitudinal model of an air-breathing hypersonic vehicle (AHV) subject to uncertain dynamics and input nonlinearity. Different from the traditional non-affine model requiring non-affine functions to be differentiable, this paper utilizes a semi-decomposed non-affine model with non-affine functions being locally semi-bounded and possibly in-differentiable. A new error transformation combined with novel prescribed performance functions is proposed to bypass complex deductions caused by conventional error constraint approaches and circumvent high frequency chattering in control inputs. On the basis of backstepping technique, the improved prescribed performance controller with low structural and computational complexity is designed. The methodology guarantees the altitude and velocity tracking error within transient and steady state performance envelopes and presents excellent robustness against uncertain dynamics and deadzone input nonlinearity. Simulation results demonstrate the efficacy of the proposed method.

...