Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Water Res ; 257: 121654, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38701552

ABSTRACT

Volatile fatty acids (VFAs) derived from arrested anaerobic digestion (AD) can be recovered as a valuable commodity for value-added synthesis. However, separating VFAs from digestate with complex constituents and a high-water content is an energy-prohibitive process. This study developed an innovative technology to overcome this barrier by integrating deep eutectic solvents (DESs) with an omniphobic membrane into a membrane contactor for efficient extraction of anhydrous VFAs with low energy consumption. A kinetic model was developed to elucidate the mechanistic differences between this novel omniphobic membrane-enabled DES extraction and the previous hydrophobic membrane-enabled NaOH extraction. Experimental results and mechanistic modeling suggested that VFA extraction by the DES is a reversible adsorption process facilitating subsequent VFA separation via anhydrous distillation. High vapor pressure of shorter-chain VFAs and low Nernst distribution coefficients of longer-chain VFAs contributed to DES-driven extraction, which could enable continuous and in-situ recovery and conversion of VFAs from AD streams.


Subject(s)
Fatty Acids, Volatile , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Deep Eutectic Solvents/chemistry , Solvents/chemistry , Kinetics , Anaerobiosis
2.
Water Res ; 252: 121239, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38335753

ABSTRACT

Limited mineralization of organic phosphorus to phosphate during the anaerobic digestion process poses a significant challenge in the development of cost-effective nutrient recovery strategies from anaerobically digested poultry wastewater (ADPW). This study investigated the influence of organic acids on phosphorus solubilization from ADPW, followed by its recycling in the form of struvite using a bubble column electrolytic reactor (BCER) without adding chemicals. The impact of seeding on the efficiency of PO43- and NH3-N recovery as well as the size distribution of recovered precipitates from the acid pre-treated ADPW was also evaluated. Pre-treatment of the ADPW with oxalic acid achieved complete solubilization of phosphorus, reaching ∼100% extraction efficiency at pH 2.5. The maximum removal efficiency of phosphate and ammonia-nitrogen from the ADPW were 88.9% and 90.1%, respectively, while the addition of 5 and 10 g/L struvite seed to the BCER increased PO43- removal efficiency by 9.6% and 11.5%, respectively. The value of the kinetic rate constant, k, increased from 0.0176 min-1 (unseeded) to 0.0198 min-1, 0.0307 min-1, and 0.0375 min-1 with the seed loading rate of 2, 5, and 10 g/L, respectively. Concurrently, the average particle size rose from 75.3 µm (unseeded) to 82.1 µm, 125.7 µm, and 148.9 µm, respectively. Results from XRD, FTIR, EDS, and dissolved chemical analysis revealed that the solid product obtained from the recovery process was a multi-nutrient fertilizer consisting of 94.7% struvite with negligible levels of heavy metals.


Subject(s)
Poultry , Wastewater , Animals , Struvite , Phosphates/analysis , Phosphorus/analysis , Organic Chemicals , Nutrients/analysis , Chemical Precipitation
3.
Microorganisms ; 11(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37764172

ABSTRACT

Aerobic granulation is an emerging process in wastewater treatment that has the potential to accelerate sedimentation of the microbial biomass during secondary treatment. Aerobic granulation has been difficult to achieve in the continuous flow reactors (CFRs) used in modern wastewater treatment plants. Recent research has demonstrated that the alternation of nutrient-abundant (feast) and nutrient-limiting (famine) conditions is able to promote aerobic granulation in a CFR. In this study, we conducted a metagenomic analysis with the objective of characterizing the bacterial composition of the granular biomass developed in three simulated plug flow reactors (PFRs) with different feast-to-famine ratios. Phylogenetic analyses revealed a clear distinction between the bacterial composition of aerobic granules in the pilot simulated PFRs as compared with conventional activated sludge. Larger and denser granules, showing improved sedimentation properties, were observed in the PFR with the longest famine time and were characterized by a greater proportion of bacteria producing abundant extracellular polymeric substances (EPS). Functional metagenomic analysis based on KEGG pathways indicated that the large and dense aerobic granules in the PFR with the longest famine time showed increased functionalities related to secretion systems and quorum sensing, which are characteristics of bacteria in biofilms and aerobic granules. This study contributes to a further understanding of the relationship between aerobic granule morphology and the bacterial composition of the granular biomass.

4.
Water Res X ; 19: 100186, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37332326

ABSTRACT

This study removes two technical constraints for transitioning full-scale activated sludge infrastructure to continuous flow, aerobic granular sludge (AGS) facilities. The first of these is the loss of treatment capacity as a result of the rapid washout of flocculent sludge inventory and in turn the potential loss of nitrification during initial AGS reactor startup. The second is the physical selector design which currently is limited to either the complex sequencing batch reactor selection or sidestream hydrocyclones. Briefly, real wastewater data collected from this study suggested that by increasing the surface overflow rate (SOR) of an upflow clarifier to 10 m h - 1, the clarifier can be taken advantage of as a physical selector to separate flocculant sludge from AGS. Redirecting the physical selector underflow and overflow sludge to the feast and famine zones of a treatment train, respectively, can create a biological selection that not only promotes AGS formation but also safeguards the effluent quality throughout the AGS reactor startup period. This study provides a novel concept for economically implementing continuous flow AGS within existing full-scale, continuous flow treatment trains.

5.
Water Environ Res ; 94(10): e10793, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36184901

ABSTRACT

Anaerobic digestion stabilizes municipal sludge through total solids reduction and biogas production. It is generally accepted that hydrolysis accounts for the rate-limiting step of municipal sludge anaerobic digestion, impacting the overall rates of solids reduction and methane production. Technically, the sludge hydrolysis rate can be enhanced by the application of thermal hydrolysis pretreatment (THP) and is also affected by the total solids concentration, temperature, and solids retention time used in the anaerobic digestion. This study systematically analyzed and compared ways to take these four factors into the consideration of modern anaerobic digestion system for achieving the maximum solid reduction. Results showed that thermophilic anaerobic digestion was superior to mesophilic anaerobic digestion in terms of solids reduction but vice versa in terms of the methane production when integrated with THP. This difference has to do with the intermediate product accumulation and inhibition when hydrolysis outpaced methanogenesis in THP-enhanced thermophilic anaerobic digestion, which can be mitigated by adjusting the solids retention time. PRACTITIONER POINTS: THP followed by TAD offers the greatest solids reduction rate. THP followed by MAD offered the greatest methane production rate. FAN inhibition appears to be an ultimate limiting factor constraining the methane production rate. In situ ammonia removal technique should be developed to further unblock the rate-limiting step.


Subject(s)
Biofuels , Sewage , Ammonia , Anaerobiosis , Bioreactors , Methane
6.
Environ Sci Ecotechnol ; 9: 100146, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36157854

ABSTRACT

Bacteria are key denitrifiers in the reduction of nitrate (NO3 --N), which is a contaminant in wastewater treatment plants (WWTPs). They can also produce carbon dioxide (CO2) and nitrous oxide (N2O). In this study, the autotrophic hydrogen-oxidizing bacterium Rhodoblastus sp. TH20 was isolated for sustainable treatment of NO3 --N in wastewater. Efficient removal of NO3 --N and recovery of biomass nitrogen were achieved. Up to 99% of NO3 --N was removed without accumulation of nitrite and N2O, consuming CO2 of 3.25 mol for each mole of NO3 --N removed. The overall removal rate of NO3 --N reached 1.1 mg L-1 h-1 with a biomass content of approximately 0.71 g L-1 within 72 h. TH20 participated in NO3 --N assimilation and aerobic denitrification. Results from 15N-labeled-nitrate test indicated that removed NO3 --N was assimilated into organic nitrogen, showing an assimilation efficiency of 58%. Seventeen amino acids were detected, accounting for 43% of the biomass. Nitrogen loss through aerobic denitrification was only approximately 42% of total nitrogen. This study suggests that TH20 can be applied in WWTP facilities for water purification and production of valuable biomass to mitigate CO2 and N2O emissions.

7.
Water Environ Res ; 94(6): e10743, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35670377

ABSTRACT

Urban agriculture provides a promising, comprehensive solution to water, energy, and food scarcity challenges resulting from the population growth, urbanization, and the accelerating effects of anthropogenic climate change. Their close access to consumers, profitable business models, and important roles in educational, social, and physical entertainment benefit both developing and developed nations. In this sense, Urban Water Resource Reclamation Facilities (WRRFs) can play a pivotal role in the sustainable implementation of urban agriculture. Reclaimed water as a recovered resource has less supply variability and in certain cases can be of higher quality than other water sources used in agriculture. Another recovered resource, namely, biosolids, as byproduct from wastewater treatment can be put to beneficial use as fertilizers, soil amendments, and construction material additives. The renewable electricity, heat, CO2 , and bioplastics produced from WRRFs can also serve as essential resources in support of urban agriculture operation with enhanced sustainability. In short, this review exhibits a holistic picture of the state-of-the-art of urban agriculture in which WRRFs can potentially play a pivotal role. PRACTITIONER POINTS: Reclaimed water can be of higher quality than other sources used in urban agriculture. Biosolids can be put to beneficial use as fertilizers, soil amendments, and construction material additives. The renewable electricity, heat, CO2 , and bioplastics produced can also serve as essential resources in support of urban agriculture.

8.
Water Environ Res ; 93(10): 1808-1818, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33991150

ABSTRACT

Abnormally high-odor detection threshold (DT) values were detected for biosolids produced at one of the water resource recovery facilities (WRRFs) of Washington Suburban Sanitary Commission. As an inexpensive countermeasure, aeration of thickened sludge holding tanks (SHTs) was tested as a solution for mitigating the subsequent biosolids odor emission. Experimental results indicated that the extremely low-oxidation reduction potential (ORP) in the SHTs and the fermentation of high-rate-activated sludge were primarily contributors to the odor emission from the dewatered cake. Two rounds of bench-scale experiments on different days confirmed that aerating the sludge in holding tanks reduced peak emission concentrations of sulfurous odorous compounds such as hydrogen sulfide (H2 S), methanethiol (MT), and dimethyl sulfide (DMS) from 203, 110, and 20 mg m-3  g-1 dry to 119, 70, and 14 mg m-3  g-1 dry, respectively. Further preliminary full-scale validation study showed that even a slight ORP improvement from -180 mV to -162 mV reduced the peak H2 S concentration from 87 to 48 mg m-3  g-1 dry and decreased the biosolids DT value from 4266 to 1862. It was concluded that lifting ORP in SHTs through aeration can be used by utilities as a simple means for biosolids odor control. PRACTITIONER POINTS: Anaerobic storage of high-rate active sludge was the main reason for the excessive biosolids odor. Aeration of sludge holding tanks can effectively reduce biosolids odor. A slight oxidation reduction potential improvement substantially reduced biosolids odor.


Subject(s)
Odorants , Sewage , Biosolids , Odorants/analysis , Sulfur Compounds , Waste Disposal, Fluid
9.
Bioelectrochemistry ; 140: 107753, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33631415

ABSTRACT

For immobilization and signal amplification of the probes, it is feasible and promising by using porous nanomaterials as nanocarriers. Herein, a novel label-free electrochemical immmunosensor was efficiently designed for ultrasensitive detection of procalcitonin (PCT). The immunosensor was prepared by using porous silica-coated gold nanorods (Au NRs@m-SiO2) to load electroactive dye thionine (Thi) on the electrode surface. Apart from the improved electrical conductivity, the porous feature highly increased the loading amount of Thi to boost the detection signals, while the good biocompatibility and protective microenvironment are beneficial to the largely improved stability for the target. For quantification of PCT, the developed immunosensor exhibited a good linear relationship in the antigen concentration range of 0.001-100 ng mL-1 with an ultra-low limit of detection (LOD, 0.39 pg mL-1, S/N = 3). Moreover, the built platform was successfully applied to such assay in human serum samples. The research provides some valuable guidelines for clinical screening and diagnosis of other biomarkers.


Subject(s)
Gold/chemistry , Nanotubes/chemistry , Procalcitonin/blood , Silicon Dioxide/chemistry , Antibodies, Immobilized/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Humans , Immunoassay/methods , Limit of Detection , Nanotubes/ultrastructure , Porosity
10.
Aging (Albany NY) ; 13(4): 5539-5552, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33589575

ABSTRACT

RNA-binding proteins (RBPs) have been reported to be associated with the occurrence and progression of multiple cancers, but the role in gastric adenocarcinoma remains poorly understood. The present study aims to uncover potential RBPs associated with the survival of gastric adenocarcinoma, as well as corresponding biologic properties and signaling pathways of these RBPs. RNA sequencing and clinical data of GC were obtained from The Cancer Genome Atlas (n=373) and the Gene Expression Omnibus (GSE84437, n=433) database. Tumor samples in TCGA were randomly divided into the training and internal testing group by R software. A total of 238 DERBPs were selected for univariate and multivariate Cox regression analyses. Five pivotal RBP genes (RNASE2, METTL1, ANG, YBX2 and LARP6) were screened out and were used to construct a new prognostic model. Survival relevance and prediction accuracy of model were tested via Kaplan-Meier (K-M) curves and receiver operating characteristic (ROC) curves in internal and external testing groups. Further analysis has also showed that this model could serve as an independent prognosis-related parameter. A prognostic nomogram has been eventually developed, and presents a good performance of prediction.


Subject(s)
Adenocarcinoma/metabolism , Nomograms , RNA-Binding Proteins/metabolism , Stomach Neoplasms/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/mortality , Humans , Protein Interaction Maps , RNA-Binding Proteins/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/mortality
11.
Sci Total Environ ; 758: 144155, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33316597

ABSTRACT

Plug flow reactors (PFRs) approximated by the connection of multiple completely stirred tank reactors (CSTRs) in series were used to achieve continuous flow aerobic granulation in real domestic wastewater. This study revealed, possibly for the first time, that the morphology and characteristics of aerobic granular sludge transformed in the course of a mixed liquor flow through a PFR. The feast zone, located at the front end of the PFR, can quickly develop filamentous structure on the surface of aerobic granular sludge which later disappeared in the famine zone at the back end of the PFR. Detention time from the front to the back end of the PFR was only 6.5 h. During this period the observed sludge morphological change led to sludge settleability fluctuation as much as 66% in zone settling velocity, 16% in specific gravity, and 40% in settled sludge volume. Further analysis revealed these types of sludge morphologies and characteristics were closely related to the specific substrate removal rate profiles of the PFR, i.e., the feast zone might have encouraged filamentous bacteria to extend outward into the bulk solution for soluble substrate, and the famine zone appeared to play an essential role in solidifying the structure of granular sludge structure prior to subjecting it to the gravity selection pressure. It can be inferred from this study that the lack of a famine zone in aerobic granulation reactors can loosen the granule structure and in turn deteriorate granule settleability. For a PFR, a famine zone following the feast zone is essential for maintaining the structural integrity of aerobic granular sludge in a continuous flow wastewater treatment system.


Subject(s)
Sewage , Wastewater , Aerobiosis , Bioreactors , Waste Disposal, Fluid
12.
Sci Total Environ ; 750: 141467, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32853933

ABSTRACT

Plug flow reactors (PFRs) made of multiple completely stirred tank reactors (CSTRs) in series were used to cultivate aerobic granules in real domestic wastewater. Theoretically, changing the number of CSTR chambers in series will change the nature of plug flow, and thus alter the pattern of the feast/famine condition and impact the aerobic granulation progress. Therefore, PFRs were operated in 4-, 6-, and 8-chamber mode under the same gravity selection pressure (a critical settling velocity of 9.75 m h-1) and hydraulic retention time (6.5 h) until steady states were reached to evaluate the effect of the feast/famine condition on continuous flow aerobic granulation. The sludge particle size, circularity, settleability, specific gravity, zone settling velocity, and extracellular polymeric substance contents were analyzed to evaluate the role that a feast/famine regime plays in aerobic granulation. It was found that aerobic granulation failed whenever the feast/famine ratio was greater than 0.5. The results support a conclusion that the feast/famine condition is likely a prerequisite for continuous flow aerobic granulation.


Subject(s)
Bioreactors , Waste Disposal, Fluid , Aerobiosis , Extracellular Polymeric Substance Matrix , Sewage
13.
Front Cell Dev Biol ; 9: 795874, 2021.
Article in English | MEDLINE | ID: mdl-35047506

ABSTRACT

The development of various therapeutic interventions, particularly immune checkpoint inhibitor therapy, have effectively induced tumor remission for patients with advanced lung cancer. However, few cancer patients can obtain significant and long-lasting therapeutic effects for the limitation of immunological nonresponse and resistance. For this case, it's urgent to identify new biomarkers and develop therapeutic targets for future immunotherapy. Over the past decades, tumor microenvironment (TME)-related long non-coding RNAs (lncRNAs) have gradually become well known to us. A large number of existing studies have indicated that TME-related lncRNAs are one of the major factors to realize precise diagnosis and treatment of lung cancer. Herein, this paper discusses the roles of lncRNAs in TME, and the potential application of lncRNAs as biomarkers or therapeutic targets for immunotherapy in lung cancer.

14.
Water Environ Res ; 94(1): e1684, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35083816

ABSTRACT

Although aluminum- and iron-based chemicals have been broadly used as the two most common types of coagulants for wastewater treatment, their impacts on the performance of downstream sludge management can be quite different and have not been well understood. This work reviewed and analyzed their similarities and differences in the context of the anaerobic digestion performance, dewaterability of digested sludge, and odor emission from dewatered biosolids. In short, iron-based coagulants tend to show less negative impact than aluminum-based coagulants. This can be attributed to the reduction of ferric to ferrous ions in the course of anaerobic digestion, which leads to a suite of changes in protein bioavailability, alkalinity and hydrogen sulfide levels, and in turn the sludge dewaterability and odor potential. Whether these observations still hold true in the context of thermally hydrolyzed sludge management remains to be studied. PRACTITIONER POINTS: The impacts of aluminum-/iron-based coagulant addition on municipal sludge anaerobic digestibility, dewaterability, and odor emission are reviewed. Iron-based coagulants show less negative impact on the sludge digestibility than aluminum-based coagulants. Conclusions may aid practitioners in selecting coagulants in practice and better understanding the mechanisms behind the phenomena.

15.
Water Environ Res ; 93(3): 421-432, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32816336

ABSTRACT

Free ammonia (FA) inhibition has been taken advantage as a strategy to suppress the growth of nitrite-oxidizing bacteria (NOB) in aerobic granules stabilized in a continuous upflow airlift reactor to achieve partial nitritation. However, after nearly 18 months of continuous exposure of aerobic granules to FA in the reactor, the FA inhibition of NOB was proven ineffective, and the partial nitritation gradually shifted to partial nitrification even though the long-term granule structural stability remained excellent under the continuous-flow mode. The extent of NOB resistance to FA inhibition was quantified based on the kinetic response of NOB to various FA concentrations in the form of an uncompetitive inhibition coefficient. It was confirmed that the NOB immobilized in larger granules under longer term exposure to FA tend to become more resistant to FA. Thereby, it was concluded that NOB can develop strong resistance to FA after continuous exposure, and thus, FA inhibition is not a reliable strategy to achieve partial nitritation in mainstream wastewater treatment. PRACTITIONER POINTS: Nitrifying aerobic granules can remain structurally stable in continuous-flow bioreactors. NOB developed free ammonia resistance after 6-month continuous exposure. Larger aerobic granules tended to develop stronger free ammonia resistance. Free ammonia inhibition is not a reliable strategy for mainstream anammox.


Subject(s)
Nitrites , Sewage , Ammonia , Bacteria , Bioreactors , Nitrification , Nitrogen/analysis , Oxidation-Reduction
16.
Environ Int ; 138: 105629, 2020 05.
Article in English | MEDLINE | ID: mdl-32179317

ABSTRACT

Thermal hydrolysis pretreatment (THP) has been considered as an advanced approach to enhance the performance of anaerobic digestion treating municipal sludge. However, several drawbacks were also identified with THP including the formation of brown and ultraviolet-quenching compounds that contain recalcitrant dissolved organic nitrogen (rDON). Melanoidins produced from the Maillard reaction between reducing sugar and amino group have been regarded as a representative of such compounds. This review presented the state-of-the-art understanding of the mechanism of melanoidin formation derived from the research of sludge THP, food processing, and model Maillard reaction systems. Special attentions were paid to factors affecting melanoidin formation and their implications to the control of rDON in the sludge THP process. These factors include reactant availability, heating temperature and time, pH, and the presence of metallic ions. It was concluded that efforts need to be focused on elucidating the extent of the Maillard reaction in sludge THP. This paper aims to provide a mechanistic recommendation on the research and control of the THP-resulted rDON in municipal wastewater treatment plants.


Subject(s)
Nitrogen , Sewage , Anaerobiosis , Hydrolysis , Waste Disposal, Fluid , Wastewater
17.
Water Environ Res ; 92(3): 320-330, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31077620

ABSTRACT

Cerium chloride (CeCl3 ), being a superior orthophosphate (OP) precipitant, was found to be able to significantly improve sludge dewaterability in terms of sludge cake dryness and capillary suction time. In order to offer insights into the mechanism behind OP removal associated dewaterability improvement, the change in sludge specific resistance to filtration (SRF), compressibility (K), and bound water contents (Ub ) in response to CeCl3 and CePO4 addition at the two cationic polymer doses was mathematically simulated. Results showed that 29.8 g/kg dry solid CePO4 addition was able to decrease the SRF by 52%, decrease the Ub by 42%, and reduce the K by 18%. Importantly, CeCl3 addition of equal cerium molarity showed even higher SRF and Ub reductions by 67% and 54%, respectively, but the same K reduction. A new theory depicting how the OP has outcompeted negatively charged sludge particles for cationic polymers is put forward in this study to interpret the effect of OP removal on sludge dewaterability improvement. PRACTITIONER POINTS: Efficient orthophosphate (OP) removal and sludge dewaterability improvement were achieved with CeCl3 addition. Both CePO4 precipitate and OP removal contributed to the improved dewaterability. Competition between OP and sludge particles for cationic polymers was explained.


Subject(s)
Cerium , Water Purification , Filtration , Phosphates , Sewage , Water
18.
Water Environ Res ; 92(3): 331-337, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31132196

ABSTRACT

High concentration of orthophosphate ion (OP) in anaerobically digested sludge can lead to struvite crystallization, deterioration of sludge dewaterability, and elevated mainstream OP loading through centrate recirculation. The Upper Occoquan Service Authority (UOSA) has observed seasonally high OP levels in its dewatering blend tank, which was found in this study to be a consequence of unwanted biological phosphorus accumulation during the intensified winter denitrification operation and the subsequent OP release in the course of anaerobic digestion. In order to control the nuisance struvite scaling issues, a bench study was conducted and cerium chloride (CeCl3 ) was dosed as an effective OP precipitant. The results of this study demonstrated that CeCl3 dosing showed higher OP removal efficiency than other commonly used OP precipitants. In addition, bench-scale simulations indicated sludge dewaterability improvements which were used to predict lower polymer and dewatering energy demands at the full scale. The economic analysis conducted in this case study showed that the seasonal dosing of CeCl3 at UOSA has the potential to provide a net annual saving of US $47,000. PRACTITIONER POINTS: Biological phosphorus accumulation during the intensified denitrification operation caused seasonally high sludge OP and struvite scaling issues at UOSA. CeCl3 was evaluated as an effective OP precipitant for struvite control and dewaterability improvement when aluminum and iron were determined to be unfavorable. Seasonal dosing of CeCl3 at UOSA projected a net annual saving of US $47,000.


Subject(s)
Cerium , Sewage , Phosphates , Struvite , Waste Disposal, Fluid
19.
Int J Colorectal Dis ; 35(1): 29-34, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31758247

ABSTRACT

OBJECTIVE: The evaluation of GI-pill gastrointestinal electronic capsule for colonic transit test in patients with slow transit constipation (STC) was studied. MATERIALS AND METHODS: STC patients (n = 162) were randomly divided into experimental group (n = 84, orally taken GI-pill gastrointestinal electronic capsule and X-ray granule capsule) and control group (n = 78, orally taken X-ray granule capsule). Comparison of the time in colonic transit test between the two groups was conducted. The data of GI-pill gastrointestinal electronic capsule in vivo time, time of capsule passing through the colon, the number of high amplitude propagating contractions (HAPCs), and physiological response ratio were analyzed. RESULTS: There were no significant differences in the whole colonic transit test time, right colonic transit time, left colonic transit time, and rectosigmoid colonic transit time between experimental group and control group (p > 0.05). All patients had no abdominal pain, nausea, vomiting, black stool, difficulty in electronic capsule excretion, or any other discomfort during the test. CONCLUSION: GI-pill gastrointestinal electronic capsule can continuously evaluate the dynamic characteristics of digestive tract in STC patients and is consistent with X-ray granule capsule, which is meaningful to clinical application.


Subject(s)
Constipation/diagnosis , Constipation/physiopathology , Electronics , Gastrointestinal Transit/physiology , Adult , Aged , Capsules , Case-Control Studies , Constipation/diagnostic imaging , Female , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Monitoring, Physiologic , Pressure , Temperature , Time Factors , Young Adult
20.
Water Res ; 167: 115128, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31585383

ABSTRACT

In this study, a modeling framework was developed to simulate biologically active filtration (BAF) headloss buildup in response to organic removal and nitrification. This model considered not only the biofilm growth on the BAF media but also the particle deposition in the BAF bed. In addition, the model also took temperature effect into consideration. It was calibrated and validated with data collected from a pilot-scale study used for potable water reuse and a full-scale facility used for potable water treatment. The model prediction provided insights that biofilm growth rather than particle deposition primarily contributes to the headloss buildup. Therefore, biofilm control is essential for managing headloss buildup and reducing the backwash frequency. Model simulation indicated that the BAF performance in terms of pollutant removal per unit headloss is insensitive to the BAF bed depth but can be effectively improved by increasing the media size. The partial biofilm coverage of the media is confirmed in this study and was mathematically verified to be a prerequisite for the model fitness.


Subject(s)
Drinking Water , Water Purification , Biofilms , Bioreactors , Filtration , Nitrification
SELECTION OF CITATIONS
SEARCH DETAIL
...