Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Hortic Res ; 11(2): uhad274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344651

ABSTRACT

The completion of the first telomere-to-telomere (T2T) genome assembly of Penthorum chinense Pursh (PC), a prominent medicinal plant in China, represents a significant achievement. This assembly spans a length of 257.5 Mb and consists of nine chromosomes. PC's notably smaller genome size in Saxifragales, compared to that of Paeonia ostii, can be attributed to the low abundance of transposable elements. By utilizing single-copy genes from 30 species, including 28 other Superrosids species, we successfully resolved a previously debated Superrosids phylogeny. Our findings unveiled Saxifragales as the sister group to the core rosids, with both being the sister group to Vitales. Utilizing previously characterized cytochrome P450 (CYP) genes, we predicted the compound classes that most CYP genes of PC are involved in synthesizing, providing insight into PC's potential metabolic diversity. Metabolomic and transcriptomic data revealed that the richest sources of the three most noteworthy medicinal components in PC are young leaves and flowers. We also observed higher activity of upstream genes in the flavonoid synthesis pathway in these plant parts. Additionally, through weighted gene co-expression network analysis, we identified gene regulatory networks associated with the three medicinal components. Overall, these findings deepen our understanding of PC, opening new avenues for further research and exploration.

2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769121

ABSTRACT

The processes of sugarcane tillering and ratooning, which directly affect the yield of plant cane and ratoon, are of vital importance to the population establishment and the effective stalk number per unit area. In the present study, the phenotypic data of 285 F1 progenies from a cross of sugarcane varieties YT93-159 × ROC22 were collected in eight environments, which consisted of plant cane and ratoon cultivated in three different ecological sites. The broad sense heritability (H2) of the tillering and the ratoon sprouting was 0.64 and 0.63, respectively, indicating that they were middle to middle-high heritable traits, and there is a significantly positive correlation between the two traits. Furthermore, a total of 26 quantitative trait loci (QTLs) related to the tillering ability and 11 QTLs associated with the ratooning ability were mapped on two high-quality genetic maps derived from a 100K SNP chip, and their phenotypic variance explained (PVE) ranged from 4.27-25.70% and 6.20-13.54%, respectively. Among them, four consistent QTLs of qPCTR-R9, qPCTR-Y28, qPCTR-Y60/qRSR-Y60 and PCTR-Y8-1/qRSR-Y8 were mapped in two environments, of which, qPCTR-Y8-1/qRSR-Y8 had the PVEs of 11.90% in the plant cane and 7.88% in the ratoon. Furthermore, a total of 25 candidate genes were identified in the interval of the above four consistent QTLs and four major QTLs of qPCTR-Y8-1, qPCTR-Y8-2, qRSR-R51 and qRSR-Y43-2, with the PVEs from 11.73-25.70%. All these genes were associated with tillering, including eight transcription factors (TFs), while 15 of them were associated with ratooning, of which there were five TFs. These QTLs and genes can provide a scientific reference for genetic improvement of tillering and ratooning traits in sugarcane.


Subject(s)
Quantitative Trait Loci , Saccharum , Quantitative Trait Loci/genetics , Chromosome Mapping , Saccharum/genetics , Genetic Markers , Phenotype , Genetic Linkage
3.
Front Plant Sci ; 14: 1107314, 2023.
Article in English | MEDLINE | ID: mdl-36818882

ABSTRACT

Mosaic viral diseases affect sugarcane productivity worldwide. Mining disease resistance-associated molecular markers or genes is a key component of disease resistance breeding programs. In the present study, 285 F1 progeny were produced from a cross between Yuetang 93-159, a moderately resistant variety, and ROC22, a highly susceptible variety. The mosaic disease symptoms of these progenies, with ROC22 as the control, were surveyed by natural infection under 11 different environmental conditions in the field and by artificial infections with a mixed sugarcane mosaic virus (SCMV) and sorghum mosaic virus (SrMV) inoculum. Analysis of consolidated survey data enabled the identification of 29 immune, 55 highly resistant, 70 moderately resistant, 62 susceptible, and 40 highly susceptible progenies. The disease response data and a high-quality SNP genetic map were used in quantitative trait locus (QTL) mapping. The results showed that the correlation coefficients (0.26~0.91) between mosaic disease resistance and test environments were significant (p< 0.001), and that mosaic disease resistance was a highly heritable quantitative trait (H2 = 0.85). Seven mosaic resistance QTLs were located to the SNP genetic map, each QTL accounted for 3.57% ~ 17.10% of the phenotypic variation explained (PVE). Furthermore, 110 pathogen response genes and 69 transcription factors were identified in the QTLs interval. The expression levels of nine genes (Soffic.07G0015370-1P, Soffic.09G0015410-2T, Soffic.09G0016460-1T, Soffic.09G0016460-1P, Soffic.09G0017080-3C, Soffic.09G0018730-3P, Soffic.09G0018730-3C, Soffic.09G0019920-3C and Soffic.03G0019710-2C) were significantly different between resistant and susceptible progenies, indicating their key roles in sugarcane resistance to SCMV and SrMV infection. The seven QTLs and nine genes can provide a certain scientific reference to help sugarcane breeders develop varieties resistant to mosaic diseases.

4.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36555141

ABSTRACT

Sugarcane brown stripe (SBS), caused by the fungal pathogen Helminthosporium stenospilum, is one of the most serious threats to sugarcane production. However, its outbreaks and epidemics require suitable climatic conditions, resulting in the inefficient improvement of the SBS resistance by phenotype selection. The sugarcane F1 population of SBS-resistant YT93-159 × SBS-susceptible ROC22 was used for constructing the bulks. Bulked segregant RNA-seq (BSR-seq) was then performed on the parents YT93-159 (T01) and ROC22 (T02), and the opposite bulks of 30 SBS-susceptible individuals mixed bulk (T03) and 30 SBS-resistant individuals mixed bulk (T04) collected from 287 F1 individuals. A total of 170.00 Gb of clean data containing 297,921 SNPs and 70,426 genes were obtained. Differentially expressed genes (DEGs) analysis suggested that 7787 and 5911 DEGs were identified in the parents (T01 vs. T02) and two mixed bulks (T03 vs. T04), respectively. In addition, 25,363 high-quality and credible SNPs were obtained using the genome analysis toolkit GATK for SNP calling. Subsequently, six candidate regions with a total length of 8.72 Mb, which were located in the chromosomes 4B and 7C of sugarcane wild species Saccharum spontaneum, were identified, and 279 genes associated with SBS-resistance were annotated by ED algorithm and ΔSNP-index. Furthermore, the expression profiles of candidate genes were verified by quantitative real-time PCR (qRT-PCR) analysis, and the results showed that eight genes (LRR-RLK, DHAR1, WRKY7, RLK1, BLH4, AK3, CRK34, and NDA2) and seven genes (WRKY31, CIPK2, CKA1, CDPK6, PFK4, CBL2, and PR2) of the 20 tested genes were significantly up-regulated in YT93-159 and ROC22, respectively. Finally, a potential molecular mechanism of sugarcane response to H. stenospilum infection is illustrate that the activations of ROS signaling, MAPK cascade signaling, Ca2+ signaling, ABA signaling, and the ASA-GSH cycle jointly promote the SBS resistance in sugarcane. This study provides abundant gene resources for the SBS resistance breeding in sugarcane.


Subject(s)
Saccharum , RNA-Seq , Saccharum/metabolism , Plant Breeding , Base Sequence , Signal Transduction , Gene Expression Regulation, Plant
5.
J Fungi (Basel) ; 8(10)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36294653

ABSTRACT

The sexual morph Leptosphaeria taiwanensis Yen and Chi and its asexual morph Stagonospora tainanensis W. H. Hsieh is an important necrotrophic fungal phytopathogen, which causes sugarcane leaf blight, resulting in loss of cane tonnage and sucrose in susceptible sugarcane varieties. Decoding the genome and understanding of the basis of virulence is vitally important for devising effective disease control strategies. Here, we present a 38.25-Mb high-quality genome assembly of S. tainanensis strain StFZ01, denovo assembled with 10.19 Gb Nanopore sequencing long reads (~267×) and 3.82 Gb Illumina short reads (~100×). The genome assembly consists of 12 contigs with N50 of 2.86 Mb of which 5 belong to the telomere to telomere (T2T) chromosome. It contains 13.20% repeat sequences, 12,543 proteins, and 12,206 protein-coding genes with the BUSCO completeness 99.18% at fungi (n = 758) and 99.87% at ascomycota (n = 1706), indicating the high accuracy and completeness of our gene annotations. The virulence analysis in silico revealed the presence of 2379 PHIs, 599 CAZys, 248 membrane transport proteins, 191 cytochrome P450 enzymes, 609 putative secreted proteins, and 333 effectors in the StFZ01 genome. The genomic resources presented here will not only be helpful for development of specific molecular marker and diagnosis technique, population genetics, molecular taxonomy, and disease managements, it can also provide a significant precise genomic reference for investigating the ascomycetous genome, the necrotrophic lifestyle, and pathogenicity in the future.

6.
Int J Mol Sci ; 23(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36076957

ABSTRACT

The dehydration-responsive element-binding protein (DREB) is a subgroup member of the AP2/ERF family and actively participates in the response of plants to abiotic stress. Although DREB genes have been studied in a variety of plant species, there are few reports of DREB genes in sugarcane (Saccharum spp.). In this study, a novel full-length cDNA sequence of the ScDREB2B-1 gene was cloned from the Saccharum hybrid ROC22, whose encoding protein contained only one AP2-conserved domain and was clustered into the DREB (A-2) subgroup. The diverse promoter elements in the ScDREB2B-1 gene and the accumulated transcripts of its homologous gene (SsAP2/ERF-107) in S. spontaneum under drought stress suggest that the ScDREB2B-1 gene may play a role in drought response. In addition, reverse transcription quantitative PCR analysis showed that the expression level of the ScDREB2B-1 gene was upregulated in the root and leaf of ROC22 under polyethylene glycol, sodium chloride and abscisic acid (ABA) treatments. The yeast two-hybrid experiment demonstrated that ScDREB2B-1 had transcriptional self-activation activity. Compared with wild-type plants, the overexpression of the ScDREB2B-1 gene improved the drought tolerance of the transgenic Nicotiana benthamiana by activating the ABA pathway to enhance the expression of the ABA-responsive gene (NbNCED) and ABA content, regulate the intracellular reactive oxygen species (ROS) level (enhance the transcripts of ROS synthase-related gene NbRbohB and the activities of catalase, peroxidase and superoxide dismutase) and increase the relative water content, proline content and expression level of osmotic stress-related genes (NbERD and NbLEA). Collectively, our data indicate that ScDREB2B-1 is a stress-inducible and ABA-responsive transcription factor gene that responds to drought stress by regulating ABA signaling, ROS levels and stress-related gene expression. This study contributes to a better understanding of the biological function of ScDREB2B-1, which could serve as a foundation for future resistance breeding in sugarcane.


Subject(s)
Droughts , Saccharum , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Gene Expression , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Reactive Oxygen Species/metabolism , Saccharum/genetics , Saccharum/metabolism , Stress, Physiological/genetics , Nicotiana/metabolism
7.
Theor Appl Genet ; 135(2): 623-636, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34775519

ABSTRACT

KEY MESSAGE: An autopolyploid-suitable polyBSA-seq strategy was developed for screening candidate genetic markers linked to leaf blight resistance in sugarcane. Due to the complex genome architecture, the quantitative trait loci mappings and linkage marker selections for agronomic traits of autopolyploid crops were mainly limited to the time-consuming and cost intensive construction of genetic maps. To map resistance-linked markers for sugarcane leaf blight (SLB) caused by Stagonospora tainanensis, the autopolyploid-suitable bulk-segregant analysis based on the sequencing (polyBSA-seq) strategy was successfully applied for the first time. Resistant- and susceptible-bulks (R- and S-bulks) constructed from the extreme-phenotypic sugarcane F1 lines of YT93-159 × ROC22 were deep sequenced with 195.0 × for bulks and 74.4 × for parents. Informative single-dose variants (ISDVs) present as one copy in one parent and null in the other parent were detected based on the genome sequence of LA Purple, an autooctoploid Saccharum officinarum, to screen candidate linkage markers (CLMs). The proportion of the number of short reads harboring ISDVs in the total short reads covering a given genomic position was defined as ISDV index and the ISDVs with indices met the threshold set in this study (0.04-0.14) were selected as CLMs. In total, three resistance- and one susceptibility-related CLMs for SLB resistance were identified by the polyBSA-seq. Among them, two markers on chromosome 10 were less than 300 Kb apart. Furthermore, the RNA-seq was used to calculate the expression level of genes within 1.0 Mb from the aforementioned four CLMs, which demonstrated that twelve genes were differentially expressed between resistant and susceptible clones, including a receptor-like kinase and an ethylene-responsive transcription factor. This is the first reported polyBSA-seq in autopolyploid sugarcane, which specifically tailored for the fast selection of the CLMs and causal genes associated with important agronomic traits.


Subject(s)
Saccharum , Chromosome Mapping , Genetic Linkage , Genetic Markers , Phenotype , Saccharum/genetics
8.
Biology (Basel) ; 10(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681151

ABSTRACT

Sugarcane is an important sugar crop and it can be subjected to ratooning for several years. The advantages of ratooning include quality improvement, efficiency enhancement, and reduced costs and energy use. The genotype, environment, cultivation management, and harvesting technology affect the productivity and longevity of ratoon cane, with the genetic basis being the most critical factor. However, the majority of research has been focused on only limited genotypes, and a few studies have evaluated up to 100 sugarcane germplasm resources. They mainly focus on the comparison among different genotypes or among plant cane, different selection strategies for the first and second ratoon crops, together with screening indicators for the selection of stronger ratooning ability. In this paper, previous studies are reviewed in order to analyze the importance of sugarcane ratooning, the indicative traits used to evaluate ratooning ability, the major factors influencing the productivity and longevity of ratooning, the genetic basis of variation in ratooning ability, and the underlying mechanisms. Furthermore, the shortcomings of the existing research on sugarcane ratooning are highlighted. We then discuss the focus of future ratoon sugarcane research and the technical methods that will shorten the selection cycle and increase the genetic gain of ratooning ability, particularly the development of linked markers. This review is expected to provide a reference for understanding the mechanisms underlying the formation of ratooning ability and for breeding sugarcane varieties with a strong ratooning ability.

9.
Curr Issues Mol Biol ; 43(3): 1632-1651, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34698114

ABSTRACT

The leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family is the largest family of the receptor-like protein kinases (RLKs) superfamily in higher plants, which is involved in regulating the plant growth and development, stress responses, signal transduction and so on. However, no comprehensive analyses of LRR-RLKs have been reported in sugarcane. Here, we performed a comprehensive analysis of the LRR-RLK gene family in sugarcane ancestor species Saccharum spontaneum. A total of 437 LRR-RLK genes were identified and categorized into 14 groups based on a maximum likelihood phylogenetic tree. The chromosome location showed an uneven distribution on all 32 chromosomes in sugarcane. Subsequently, the exon-intron organization structure and conserved motif arrangement were relatively conserved among the same groups or subgroups and between Arabidopsis and S. spontaneum genomes. Furthermore, the promoter sequences analyses showed that sugarcane LRR-RLK genes (SsLRR-RLKs) were strongly regulated by various environmental stimuli, phytohormonal factors and transcription factors (TFs). Eventually, the expression profiles of SsLRR-RLK genes at different stresses were analyzed based on RNA-seq data, suggesting their potential roles in the regulation of sugarcane responses to diverse abiotic and biotic stress. Overall, the findings provide insight into the potential functional roles and lay the foundation for further functional study.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Leucine-Rich Repeat Proteins/genetics , Protein-Tyrosine Kinases/genetics , Saccharum/genetics , Saccharum/metabolism , Stress, Physiological , Chromosome Mapping , Computational Biology/methods , Evolution, Molecular , Gene Expression Profiling , Gene Ontology , Genome-Wide Association Study , Genomics/methods , Multigene Family , Phylogeny , Regulatory Sequences, Nucleic Acid , Saccharum/classification
10.
Microorganisms ; 9(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576879

ABSTRACT

Mosaic is one of the most important sugarcane diseases, caused by single or compound infection of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and/or Sugarcane streak mosaic virus (SCSMV). The compound infection of mosaic has become increasingly serious in the last few years. The disease directly affects the photosynthesis and growth of sugarcane, leading to a significant decrease in cane yield and sucrose content, and thus serious economic losses. This review covers four aspects of sugarcane mosaic disease management: first, the current situation of sugarcane mosaic disease and its epidemic characteristics; second, the pathogenicity and genetic diversity of the three viruses; third, the identification methods of mosaic and its pathogen species; and fourth, the prevention and control measures for sugarcane mosaic disease and potential future research focus. The review is expected to provide scientific literature and guidance for the effective prevention and control of mosaic through resistance breeding in sugarcane.

11.
Plants (Basel) ; 10(2)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567504

ABSTRACT

Sugarcane is an important sugar and bioenergy ethanol crop, and the hyperploidy has led to stagnant progress in sugarcane genome decipherment, which also hindered the genome-wide analyses of versatile lectin receptor kinases (LecRKs). The published genome of Saccharum spontaneum, one of the two sugarcane ancestor species, enables us to study the characterization of LecRKs and their responses to sugarcane leaf blight (SLB) triggered by Stagonospora tainanensis. A total of 429 allelic and non-allelic LecRKs, which were classified into evolved independently three types according to signal domains and phylogeny, were identified based on the genome. Regarding those closely related LecRKs in the phylogenetic tree, their motifs and exon architectures of representative L- and G-types were similar or identical. LecRKs showed an unequal distribution on chromosomes and more G-type tandem repeats may come from the gene expansion. Comparing the differentially expressed LecRKs (DELs) in response to SLB in sugarcane hybrid and ancestor species S. spontaneum, we found that the DEL number in the shared gene sets was highly variable among each sugarcane accession, which indicated that the expression dynamics of LecRKs in response to SLB were quite different between hybrids and particularly between sugarcane hybrid and S. spontaneum. In addition, C-type LecRKs may participate in metabolic processes of plant-pathogen interaction, mainly including pathogenicity and plant resistance, indicating their putative roles in sugarcane responses to SLB infection. The present study provides a basic reference and global insight into the further study and utilization of LecRKs in plants.

12.
Front Plant Sci ; 12: 817875, 2021.
Article in English | MEDLINE | ID: mdl-35027918

ABSTRACT

Chlorophyll is the most important pigment for plant photosynthesis that plays an important role in crop growth and production. In this study, the chlorophyll content trait was explored to improve sugarcane yield. Two hundred and eighty-five F1 progenies from the cross YT93-159 × ROC22 with significantly different chlorophyll contents were included as test materials. The chlorophyll content of the +1 leaves during elongation phase was measured using a SPAD-502 meter through a three-crop cycle (plant cane, first ratoon, and second ratoon). Linkage analysis was conducted on a high-density genetic map constructed based on the sugarcane 100K SNP chip. In addition, Fv/Fm, plant height, stalk diameter, brix data were collected on plant cane during the elongation and maturation phases. The results showed that the +1 leaf SPAD values, which can be used as an important reference to evaluate the growth potential of sugarcane, were significantly and positively correlated with the Fv/Fm during elongation phase, as well as with plant height, stalk diameter, and brix during maturity phase (P < 0.01). The broad sense heritability (H 2) of the chlorophyll content trait was 0.66 for plant cane crop, 0.67 for first ratoon crop, and 0.73 for second ratoon crop, respectively, indicating that this trait was mainly controlled by genetic factors. Thirty-one quantitative trait loci (QTL) were detected by QTL mapping. Among them, a major QTL, qCC-R1, could account for 12.95% of phenotypic variation explained (PVE), and the other 30 minor QTLs explained 2.37-7.99% PVE. Twenty candidate genes related to chlorophyll content were identified in the QTLs plus a 200-Kb extension region within either sides, of which four were homologous genes involved in the chlorophyll synthesis process and the remaining 16 played a certain role in chlorophyll catabolic pathway, chloroplast organization, or photosynthesis. These results provide a theoretical reference for analyzing the genetic mechanism of chlorophyll synthesis and subsequent improvement of photosynthetic characteristics in sugarcane.

13.
Plant Cell Rep ; 39(12): 1785-1801, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33001313

ABSTRACT

KEY MESSAGE: An allene oxide cyclase gene which is involved in defense against biotic and abiotic stresses was cloned and characterized in sugarcane. Allene oxide cyclase (AOC), a key enzyme in jasmonate acid (JA) biosynthesis, affects the stereoisomerism and biological activity of JA molecules, and plays an important role in plant stress resistance. In this study, four SsAOC alleles (SsAOC1-SsAOC4), which shared similar gene structure and were located on Chr1A, Chr1B, Chr1C, and Chr1D, respectively, were mined from sugarcane wild species Saccharum spontaneum, and a homologous gene ScAOC1 (GenBank Accession Number: MK674849) was cloned from sugarcane hybrid variety Yacheng05-179 inoculated with Sporisorium scitamineum for 48 h. ScAOC1 and SsAOC1-SsAOC4 were alkaline, unstable, hydrophilic, and non-secretory proteins, which possess the same set of conserved motifs and were clustered into one group in the phylogenetic analysis. ScAOC1 was expressed in all sugarcane tissues, but with different levels. After infection by S. scitamineum, the transcripts of ScAOC1 were increased significantly both in the smut-susceptible (ROC22) and resistant (Yacheng05-179) varieties, but its transcripts were more accumulated and lasted for a longer period in the smut-resistant variety than in the smut-susceptible one. ScAOC1 was down-regulated under MeJA and NaCl treatments, but up-regulated under SA, ABA, PEG, and cold stresses. Transiently overexpressing ScAOC1 gene into Nicotiana benthamiana leaves regulated the responses of N. benthamiana to two pathogens Ralstonia solanacearum and Fusarium solani var. coeruleum. Furthermore, prokaryotic expression analysis showed overexpression of ScAOC1 in Escherichia coli BL21 could enhance its tolerance to NaCl, mannitol, and cold stimuli. These results indicated that ScAOC1 may play an active role in response to biotic and abiotic stresses in sugarcane.


Subject(s)
Intramolecular Oxidoreductases/genetics , Plant Proteins/genetics , Saccharum/physiology , Stress, Physiological/physiology , Chromosome Mapping , Cold-Shock Response , Escherichia coli/genetics , Evolution, Molecular , Fusarium/pathogenicity , Gene Expression Regulation, Plant , Intramolecular Oxidoreductases/chemistry , Intramolecular Oxidoreductases/metabolism , Mannitol/pharmacology , Multigene Family , Plant Growth Regulators/pharmacology , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Ralstonia solanacearum/pathogenicity , Regulatory Sequences, Nucleic Acid , Saccharum/drug effects , Saccharum/genetics , Sodium Chloride/pharmacology , Nicotiana/genetics , Nicotiana/microbiology
14.
BMC Genomics ; 18(1): 833, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29084515

ABSTRACT

BACKGROUND: Cold is a major abiotic stress limiting the production of tropical and subtropical crops in new production areas. Sugarcane (Saccharum spp.) originates from the tropics but is cultivated primarily in the sub-tropics where it frequently encounters cold stress. Besides regulating plant growth, miRNAs play an important role in environmental adaption. RESULTS: In this study, a total of 412 sugarcane miRNAs, including 261 known and 151 novel miRNAs, were obtained from 4 small RNA libraries through the Illumina sequencing method. Among them, 62 exhibited significant differential expression under cold stress, with 34 being upregulated and 28 being downregulated. The expression of 13 miRNAs and 12 corresponding targets was validated by RT-qPCR, with the majority being consistent with the sequencing data. GO and KEGG analysis indicated that these miRNAs were involved in stress-related biological pathways. To further investigate the involvement of these miRNAs in tolerance to abiotic stresses, sugarcane miR156 was selected for functional analysis. RT-qPCR revealed that miR156 levels increased in sugarcane during cold, salt and drought stress treatments. Nicotiana benthamiana plants transiently overexpressing miR156 exhibited better growth status, lower ROS levels, higher anthocyanin contents as well as the induction of some cold-responsive genes, suggesting its positive role in the plant cold stress response. CONCLUSIONS: This study provides a global view of the association of miRNA expression with the sugarcane response to cold stress. The findings have enriched the present miRNA resource and have made an attempt to verify the involvement of miR156 in plant response to cold stress.


Subject(s)
Cold Temperature , Environment , Gene Expression Regulation, Plant , Gene-Environment Interaction , MicroRNAs/genetics , Saccharum/physiology , Adaptation, Biological , Computational Biology/methods , Gene Expression Profiling/methods , RNA Interference , RNA, Messenger/genetics , Reproducibility of Results , Stress, Physiological , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...