Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965385

ABSTRACT

Biochemical crosstalk between two or more histone modifications is often observed in epigenetic enzyme regulation, but its functional significance in cells has been difficult to discern. Previous enzymatic studies revealed that Lys14 acetylation of histone H3 can inhibit Lys4 demethylation by lysine-specific demethylase 1 (LSD1). In the present study, we engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation. K562 cells with the Y391K LSD1 CRISPR knockin show decreased expression of a set of genes associated with cellular adhesion and myeloid leukocyte activation. Chromatin profiling revealed that the cis-regulatory regions of these silenced genes display a higher level of H3 Lys14 acetylation, and edited K562 cells show diminished H3 mono-methyl Lys4 near these silenced genes, consistent with a role for enhanced LSD1 demethylase activity. These findings illuminate the functional consequences of disconnecting histone modification crosstalk for a key epigenetic enzyme.

2.
Mol Cell ; 84(12): 2238-2254.e11, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38870936

ABSTRACT

Transcriptional coregulators and transcription factors (TFs) contain intrinsically disordered regions (IDRs) that are critical for their association and function in gene regulation. More recently, IDRs have been shown to promote multivalent protein-protein interactions between coregulators and TFs to drive their association into condensates. By contrast, here we demonstrate how the IDR of the corepressor LSD1 excludes TF association, acting as a dynamic conformational switch that tunes repression of active cis-regulatory elements. Hydrogen-deuterium exchange shows that the LSD1 IDR interconverts between transient open and closed conformational states, the latter of which inhibits partitioning of the protein's structured domains with TF condensates. This autoinhibitory switch controls leukemic differentiation by modulating repression of active cis-regulatory elements bound by LSD1 and master hematopoietic TFs. Together, these studies unveil alternative mechanisms by which disordered regions and their dynamic crosstalk with structured regions can shape coregulator-TF interactions to control cis-regulatory landscapes and cell fate.


Subject(s)
Enhancer Elements, Genetic , Histone Demethylases , Histone Demethylases/metabolism , Histone Demethylases/genetics , Humans , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , Animals , Protein Binding , Mice , Cell Differentiation , Gene Silencing
3.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798619

ABSTRACT

UM171 is a potent small molecule agonist of ex vivo human hematopoietic stem cell (HSC) self-renewal, a process that is tightly controlled by epigenetic regulation. By co-opting KBTBD4, a substrate receptor of the CULLIN3-RING E3 ubiquitin ligase complex, UM171 promotes the degradation of members of the CoREST transcriptional corepressor complex, thereby limiting HSC attrition. However, the direct target and mechanism of action of UM171 remain unclear. Here, we reveal that UM171 acts as a molecular glue to induce high-affinity interactions between KBTBD4 and HDAC1 to promote the degradation of select HDAC1/2 corepressor complexes. Through proteomics and chemical inhibitor studies, we discover that the principal target of UM171 is HDAC1/2. Cryo-electron microscopy (cryo-EM) analysis of dimeric KBTBD4 bound to UM171 and the LSD1-HDAC1-CoREST complex unveils an unexpected asymmetric assembly, in which a single UM171 molecule enables a pair of KBTBD4 KELCH-repeat propeller domains to recruit HDAC1 by clamping on its catalytic domain. One of the KBTBD4 propellers partially masks the rim of the HDAC1 active site pocket, which is exploited by UM171 to extend the E3-neo-substrate interface. The other propeller cooperatively strengthens HDAC1 binding via a separate and distinct interface. The overall neomorphic interaction is further buttressed by an endogenous cofactor of HDAC1-CoREST, inositol hexakisphosphate, which makes direct contacts with KBTBD4 and acts as a second molecular glue. The functional relevance of the quaternary complex interaction surfaces defined by cryo-EM is demonstrated by in situ base editor scanning of KBTBD4 and HDAC1. By delineating the direct target of UM171 and its mechanism of action, our results reveal how the cooperativity offered by a large dimeric CRL E3 family can be leveraged by a small molecule degrader and establish for the first time a dual molecular glue paradigm.

4.
Nat Chem Biol ; 19(9): 1105-1115, 2023 09.
Article in English | MEDLINE | ID: mdl-36973442

ABSTRACT

Drug addiction, a phenomenon where cancer cells paradoxically depend on continuous drug treatment for survival, has uncovered cell signaling mechanisms and cancer codependencies. Here we discover mutations that confer drug addiction to inhibitors of the transcriptional repressor polycomb repressive complex 2 (PRC2) in diffuse large B-cell lymphoma. Drug addiction is mediated by hypermorphic mutations in the CXC domain of the catalytic subunit EZH2, which maintain H3K27me3 levels even in the presence of PRC2 inhibitors. Discontinuation of inhibitor treatment leads to overspreading of H3K27me3, surpassing a repressive methylation ceiling compatible with lymphoma cell survival. Exploiting this vulnerability, we show that inhibition of SETD2 similarly induces the spread of H3K27me3 and blocks lymphoma growth. Collectively, our findings demonstrate that constraints on chromatin landscapes can yield biphasic dependencies in epigenetic signaling in cancer cells. More broadly, we highlight how approaches to identify drug addiction mutations can be leveraged to discover cancer vulnerabilities.


Subject(s)
Lymphoma , Neoplasms , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Histones/metabolism , Lymphoma/genetics , Methylation , Neoplasms/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism
5.
Nat Commun ; 14(1): 448, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707513

ABSTRACT

Chromatin regulators are frequently mutated in human cancer and are attractive drug targets. They include diverse proteins that share functional domains and assemble into related multi-subunit complexes. To investigate functional relationships among these regulators, here we apply combinatorial CRISPR knockouts (KOs) to test over 35,000 gene-gene pairings in leukemia cells, using a library of over 300,000 constructs. Top pairs that demonstrate either compensatory non-lethal interactions or synergistic lethality enrich for paralogs and targets that occupy the same protein complex. The screen highlights protein complex dependencies not apparent in single KO screens, for example MCM histone exchange, the nucleosome remodeling and deacetylase (NuRD) complex, and HBO1 (KAT7) complex. We explore two approaches to NuRD complex inactivation. Paralog and non-paralog combinations of the KAT7 complex emerge as synergistic lethal and specifically nominate the ING5 PHD domain as a potential therapeutic target when paired with other KAT7 complex member losses. These findings highlight the power of combinatorial screening to provide mechanistic insight and identify therapeutic targets within redundant networks.


Subject(s)
Chromatin , Leukemia , Humans , Chromatin/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Chromatin Assembly and Disassembly , Leukemia/drug therapy , Leukemia/genetics , Histone Acetyltransferases/metabolism
6.
Nat Chem Biol ; 15(5): 529-539, 2019 05.
Article in English | MEDLINE | ID: mdl-30992567

ABSTRACT

Understanding the mechanism of small molecules is a critical challenge in chemical biology and drug discovery. Medicinal chemistry is essential for elucidating drug mechanism, enabling variation of small molecule structure to gain structure-activity relationships (SARs). However, the development of complementary approaches that systematically vary target protein structure could provide equally informative SARs for investigating drug mechanism and protein function. Here we explore the ability of CRISPR-Cas9 mutagenesis to profile the interactions between lysine-specific histone demethylase 1 (LSD1) and chemical inhibitors in the context of acute myeloid leukemia (AML). Through this approach, termed CRISPR-suppressor scanning, we elucidate drug mechanism of action by showing that LSD1 enzyme activity is not required for AML survival and that LSD1 inhibitors instead function by disrupting interactions between LSD1 and the transcription factor GFI1B on chromatin. Our studies clarify how LSD1 inhibitors mechanistically operate in AML and demonstrate how CRISPR-suppressor scanning can uncover novel aspects of target biology.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Leukemia, Myeloid, Acute/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Models, Molecular , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Repressor Proteins/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
7.
Angew Chem Int Ed Engl ; 58(16): 5387-5391, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30802354

ABSTRACT

Cycloheximide (CHX) is an inhibitor of eukaryotic translation elongation that has played an essential role in the study of protein synthesis. Despite its ubiquity, few studies have been directed towards accessing synthetic CHX derivatives, even though such efforts may lead to protein synthesis inhibitors with improved or alternate properties. Described here is the total synthesis of CHX and analogues, and the establishment of structure-activity relationships (SAR) responsible for translation inhibition. The SAR studies aided the design of more potent compounds, one of which irreversibly blocks ribosomal elongation, preserves polysome profiles, and may be a broadly useful tool for investigating protein synthesis.


Subject(s)
Biological Products/pharmacology , Cycloheximide/pharmacology , Eukaryotic Cells/drug effects , Ribosomes/drug effects , Biological Products/chemical synthesis , Biological Products/chemistry , Cycloheximide/chemical synthesis , Cycloheximide/chemistry , Dose-Response Relationship, Drug , Eukaryotic Cells/metabolism , Molecular Conformation , Protein Biosynthesis/drug effects , Ribosomes/metabolism , Structure-Activity Relationship
8.
Sci Adv ; 3(8): eaao4774, 2017 08.
Article in English | MEDLINE | ID: mdl-28875174

ABSTRACT

We recently developed base editing, the programmable conversion of target C:G base pairs to T:A without inducing double-stranded DNA breaks (DSBs) or requiring homology-directed repair using engineered fusions of Cas9 variants and cytidine deaminases. Over the past year, the third-generation base editor (BE3) and related technologies have been successfully used by many researchers in a wide range of organisms. The product distribution of base editing-the frequency with which the target C:G is converted to mixtures of undesired by-products, along with the desired T:A product-varies in a target site-dependent manner. We characterize determinants of base editing outcomes in human cells and establish that the formation of undesired products is dependent on uracil N-glycosylase (UNG) and is more likely to occur at target sites containing only a single C within the base editing activity window. We engineered CDA1-BE3 and AID-BE3, which use cytidine deaminase homologs that increase base editing efficiency for some sequences. On the basis of these observations, we engineered fourth-generation base editors (BE4 and SaBE4) that increase the efficiency of C:G to T:A base editing by approximately 50%, while halving the frequency of undesired by-products compared to BE3. Fusing BE3, BE4, SaBE3, or SaBE4 to Gam, a bacteriophage Mu protein that binds DSBs greatly reduces indel formation during base editing, in most cases to below 1.5%, and further improves product purity. BE4, SaBE4, BE4-Gam, and SaBE4-Gam represent the state of the art in C:G-to-T:A base editing, and we recommend their use in future efforts.


Subject(s)
Bacteriophage mu/physiology , Base Pairing , DNA Repair , DNA-Binding Proteins/metabolism , Viral Proteins/metabolism , Cell Line , Enzyme Activation , Gene Frequency , Gene Order , Humans , INDEL Mutation , Uracil-DNA Glycosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...