Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
3.
NPJ Regen Med ; 8(1): 40, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528116

ABSTRACT

A network of co-hepato/pancreatic stem/progenitors exists in pigs and humans in Brunner's Glands in the submucosa of the duodenum, in peribiliary glands (PBGs) of intrahepatic and extrahepatic biliary trees, and in pancreatic duct glands (PDGs) of intrapancreatic biliary trees, collectively supporting hepatic and pancreatic regeneration postnatally. The network is found in humans postnatally throughout life and, so far, has been demonstrated in pigs postnatally at least through to young adulthood. These stem/progenitors in vivo in pigs are in highest numbers in Brunner's Glands and in PDGs nearest the duodenum, and in humans are in Brunner's Glands and in PBGs in the hepato/pancreatic common duct, a duct missing postnatally in pigs. Elsewhere in PDGs in pigs and in all PDGs in humans are only committed unipotent or bipotent progenitors. Stem/progenitors have genetic signatures in liver/pancreas-related RNA-seq data based on correlation, hierarchical clustering, differential gene expression and principal component analyses (PCA). Gene expression includes representative traits of pluripotency genes (SOX2, OCT4), endodermal transcription factors (e.g. SOX9, SOX17, PDX1), other stem cell traits (e.g. NCAM, CD44, sodium iodide symporter or NIS), and proliferation biomarkers (Ki67). Hepato/pancreatic multipotentiality was demonstrated by the stem/progenitors' responses under distinct ex vivo conditions or in vivo when patch grafted as organoids onto the liver versus the pancreas. Therefore, pigs are logical hosts for translational/preclinical studies for cell therapies with these stem/progenitors for hepatic and pancreatic dysfunctions.

4.
Matrix Biol ; 121: 194-216, 2023 08.
Article in English | MEDLINE | ID: mdl-37402431

ABSTRACT

Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.


Subject(s)
Carcinoma , Sulfates , Child , Humans , Paracrine Communication , Heparitin Sulfate/metabolism , Oligosaccharides/pharmacology , Oligosaccharides/metabolism
5.
Biomaterials ; 288: 121647, 2022 09.
Article in English | MEDLINE | ID: mdl-36030102

ABSTRACT

Patch grafting, a novel strategy for transplantation of stem/progenitor organoids into porcine livers, has been found successful also for organoid transplantation into other normal or diseased solid organs in pigs and mice. Each organoid contained ∼100 cells comprised of biliary tree stem cells (BTSCs), co-hepato/pancreatic stem/progenitors, and partnered with early lineage stage mesenchymal cells (ELSMCs), angioblasts and precursors to endothelia and stellate cells. Patch grafting enabled transplantation into livers or pancreases of ≥108th (pigs) or ≥106th-7th (mice) organoids/patch. Graft conditions fostered expression of multiple matrix-metalloproteinases (MMPs), especially secretory isoforms, resulting in transient loss of the organ's matrix-dictated histological features, including organ capsules, and correlated with rapid integration within a week of organoids throughout the organs and without emboli or ectopic cell distribution. Secondarily, within another week, there was clearance of graft biomaterials, followed by muted expression of MMPs, restoration of matrix-dictated histology, and maturation of donor cells to functional adult fates. The ability of patch grafts of organoids to rescue hosts from genetic-based disease states was demonstrated with grafts of BTSC/ELSMC organoids on livers, able to rescue NRG/FAH-KO mice from type I tyrosinemia, a disease caused by absence of fumaryl acetoacetate hydrolase. With the same grafts, if on pancreas, they were able to rescue NRG/Akita mice from type I diabetes, caused by a mutation in the insulin 2 gene. The potential of patch grafting for cell therapies for solid organs now requires translational studies to enable its adaptation and uses for clinical programs.


Subject(s)
Biliary Tract , Organoids , Animals , Liver , Mice , Organoids/metabolism , Pancreas/metabolism , Stem Cells/metabolism , Swine
6.
Biomaterials ; 277: 121067, 2021 10.
Article in English | MEDLINE | ID: mdl-34517276

ABSTRACT

Epithelial cell therapies have been at an impasse because of inefficient methods of transplantation to solid organs. Patch grafting strategies were established enabling transplantation of ≥107th organoids/patch of porcine GFP+ biliary tree stem/progenitors into livers of wild type hosts. Grafts consisted of organoids embedded in soft (~100 Pa) hyaluronan hydrogels, both prepared in serum-free Kubota's Medium; placed against target sites; covered with a silk backing impregnated with more rigid hyaluronan hydrogels (~700 Pa); and use of the backing to tether grafts with sutures or glue to target sites. Hyaluronan coatings (~200-300 Pa) onto the serosal surface of the graft served to minimize adhesions with neighboring organs. The organ's clearance of hyaluronans enabled restoration of tissue-specific paracrine and systemic signaling, resulting in return of normal hepatic histology, with donor parenchymal cells uniformly integrated amidst host cells and that had differentiated to mature hepatocytes and cholangiocytes. Grafts containing donor mature hepatocytes, partnered with endothelia, and in the same graft biomaterials as for stem/progenitor organoids, did not engraft. Engraftment occurred if porcine liver-derived mesenchymal stem cells (MSCs) were co-transplanted with donor mature cells. RNA-seq analyses revealed that engraftment correlated with expression of matrix-metalloproteinases (MMPs), especially secreted isoforms that were found expressed strongly by organoids, less so by MSCs, and minimally, if at all, by adult cells. Engraftment with patch grafting strategies occurred without evidence of emboli or ectopic cell distribution. It was successful with stem/progenitor organoids or with cells with a source(s) of secreted MMP isoforms and offers significant potential for enabling cell therapies for solid organs.


Subject(s)
Liver , Organoids , Animals , Cell Differentiation , Hepatocytes , Stem Cells , Swine
7.
Front Cell Dev Biol ; 9: 670059, 2021.
Article in English | MEDLINE | ID: mdl-34141708

ABSTRACT

BACKGROUND: Functions of miRNAs involved in tumorigenesis are well reported, yet, their roles in normal cell lineage commitment remain ambiguous. Here, we investigated a specific "transcription factor (TF)-miRNA-Target" regulatory network during the lineage maturation of biliary tree stem cells (BTSCs) into adult hepatocytes (hAHeps). METHOD: Bioinformatic analysis was conducted based on our RNA-seq and microRNA-seq datasets with four human hepatic-lineage cell lines, including hBTSCs, hepatic stem cells (hHpSCs), hepatoblasts (hHBs), and hAHeps. Short time-series expression miner (STEM) analysis was performed to reveal the time-dependent dynamically changed miRNAs and mRNAs. GO and KEGG analyses were applied to reveal the potential function of key miRNAs and mRNAs. Then, the miRDB, miRTarBase, TargetScan, miRWalk, and DIANA-microT-CDS databases were adopted to predict the potential targets of miRNAs while the TransmiR v2.0 database was used to obtain the experimentally supported TFs that regulate miRNAs. The TCGA, Kaplan-Meier Plotter, and human protein atlas (HPA) databases and more than 10 sequencing data, including bulk RNA-seq, microRNA-seq, and scRNA-seq data related to hepatic development or lineage reprogramming, were obtained from both our or other published studies for validation. RESULTS: STEM analysis showed that during the maturation from hBTSCs to hAHeps, 52 miRNAs were downwardly expressed and 928 mRNA were upwardly expressed. Enrichment analyses revealed that those 52 miRNAs acted as pluripotency regulators for stem cells and participated in various novel signaling pathways, including PI3K/AKT, MAPK, and etc., while 928 mRNAs played important roles in liver-functional metabolism. With an extensive sorting of those key miRNAs and mRNAs based on the target prediction results, 23 genes were obtained which not only functioned as the targets of 17 miRNAs but were considered critical for the hepatic lineage commitment. A "TF-miRNA-Target" regulatory network for hepatic lineage commitment was therefore established and had been well validated by various datasets. The network revealed that the PI3K/AKT pathway was gradually suppressed during the hepatic commitment. CONCLUSION: A total of 17 miRNAs act as suppressors during hepatic maturation mainly by regulating 23 targets and modulating the PI3K/AKT signaling pathway. The regulatory network uncovers possible signatures and guidelines enabling us to identify or obtain the functional hepatocytes for future study.

8.
Nat Microbiol ; 4(7): 1096-1104, 2019 07.
Article in English | MEDLINE | ID: mdl-30988429

ABSTRACT

Current models of cell-intrinsic immunity to RNA viruses centre on virus-triggered inducible antiviral responses initiated by RIG-I-like receptors or Toll-like receptors that sense pathogen-associated molecular patterns, and signal downstream through interferon regulatory factors (IRFs), transcription factors that induce synthesis of type I and type III interferons1. RNA viruses have evolved sophisticated strategies to disrupt these signalling pathways and evade elimination by cells, attesting to their importance2. Less attention has been paid to how IRFs maintain basal levels of protection against viruses. Here, we depleted antiviral factors linked to RIG-I-like receptor and Toll-like receptor signalling to map critical host pathways restricting positive-strand RNA virus replication in immortalized hepatocytes and identified an unexpected role for IRF1. We show that constitutively expressed IRF1 acts independently of mitochondrial antiviral signalling (MAVS) protein, IRF3 and signal transducer and activator of transcription 1 (STAT1)-dependent signalling to provide intrinsic antiviral protection in actinomycin D-treated cells. IRF1 localizes to the nucleus, where it maintains the basal transcription of a suite of antiviral genes that protect against multiple pathogenic RNA viruses, including hepatitis A and C viruses, dengue virus and Zika virus. Our findings reveal an unappreciated layer of hepatocyte-intrinsic immunity to these positive-strand RNA viruses and identify previously unrecognized antiviral effector genes.


Subject(s)
Gene Expression , Hepatocytes/immunology , Immunity, Innate/genetics , Interferon Regulatory Factor-1/genetics , RNA Viruses/physiology , Animals , Cell Nucleus/metabolism , Cells, Cultured , Feces/virology , Gene Expression Profiling , Gene Expression Regulation , Gene Knockout Techniques , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Interferon Regulatory Factor-1/metabolism , Kinetics , Liver/virology , Mice , RNA, Small Interfering , Signal Transduction/genetics , Virus Replication
9.
Cell Mol Gastroenterol Hepatol ; 7(4): 803-817, 2019.
Article in English | MEDLINE | ID: mdl-30763770

ABSTRACT

BACKGROUND & AIMS: Fibrolamellar carcinoma (FLC) is a rare liver cancer that primarily affects adolescents and young adults. It is characterized by a heterozygous approximately 400-kb deletion on chromosome 19 that results in a unique fusion between DnaJ heat shock protein family member B1 (DNAJB1) and the alpha catalytic subunit of protein kinase A (PRKACA). The role of microRNAs (miRNAs) in FLC remains unclear. We identified dysregulated miRNAs in FLC and investigated whether dysregulation of 1 key miRNA contributes to FLC pathogenesis. METHODS: We analyzed small RNA sequencing (smRNA-seq) data from The Cancer Genome Atlas to identify dysregulated miRNAs in primary FLC tumors and validated the findings in 3 independent FLC cohorts. smRNA-seq also was performed on a FLC patient-derived xenograft model as well as purified cell populations of the liver to determine whether key miRNA changes were tumor cell-intrinsic. We then used clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (Cas9) technology and transposon-mediated gene transfer in mice to determine if the presence of DNAJB1-PRKACA is sufficient to suppress miR-375 expression. Finally, we established a new FLC cell line and performed colony formation and scratch wound assays to determine the functional consequences of miR-375 overexpression. RESULTS: We identified miR-375 as the most dysregulated miRNA in primary FLC tumors (27-fold down-regulation; P = .009). miR-375 expression also was decreased significantly in a FLC patient-derived xenograft model compared to 4 different cell populations of the liver. Introduction of DNAJB1-PRKACA by clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 engineering and transposon-mediated somatic gene transfer in mice was sufficient to induce significant loss of miR-375 expression (P < .05). Overexpression of miR-375 in FLC cells inhibited Hippo signaling pathway proteins, including yes-associated protein 1 and connective tissue growth factor, and suppressed cell proliferation and migration (P < .05). CONCLUSIONS: We identified miR-375 as the most down-regulated miRNA in FLC tumors and showed that overexpression of miR-375 mitigated tumor cell growth and invasive potential. These findings open a potentially new molecular therapeutic approach. Further studies are necessary to determine how DNAJB1-PRKACA suppresses miR-375 expression and whether miR-375 has additional important targets in this tumor. Transcript profiling: GEO accession numbers: GSE114974 and GSE125602.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/metabolism , Animals , Cell Proliferation , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Female , Gene Expression Regulation, Neoplastic , HSP40 Heat-Shock Proteins/metabolism , Humans , Liver/pathology , Mice, Inbred C57BL , MicroRNAs/genetics , Neoplasm Invasiveness , Signal Transduction , Xenograft Model Antitumor Assays
10.
Nat Biomed Eng ; 2(6): 443-452, 2018 06.
Article in English | MEDLINE | ID: mdl-31011191

ABSTRACT

Metastatic disease remains the primary cause of mortality in cancer patients. Yet the number of available in vitro models to study metastasis is limited by challenges in the recapitulation of the metastatic microenvironment in vitro, and by difficulties in maintaining colonized-tissue specificity in the expansion and maintenance of metastatic cells. Here, we show that decellularized scaffolds that retain tissue-specific extracellular-matrix components and bound signalling molecules enable, when seeded with colorectal cancer cells, the spontaneous formation of three-dimensional cell colonies that histologically, molecularly and phenotypically resemble in vivo metastases. Lung and liver metastases obtained by culturing colorectal cancer cells on, respectively, lung and liver decellularized scaffolds retained their tissue-specific tropism when injected in mice. We also found that the engineered metastases contained signet ring cells, which has not previously been observed ex vivo. A culture system with tissue-specific decellularized scaffolds represents a simple and powerful approach for the study of organ-specific cancer metastases.


Subject(s)
Cell Culture Techniques/methods , Colorectal Neoplasms , Neoplasm Metastasis , Tissue Scaffolds , Caco-2 Cells , Colorectal Neoplasms/pathology , Colorectal Neoplasms/physiopathology , HT29 Cells , Humans , Neoplasm Metastasis/pathology , Neoplasm Metastasis/physiopathology , Tumor Cells, Cultured
11.
Nat Immunol ; 18(12): 1299-1309, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28967880

ABSTRACT

NLRX1 is unique among the nucleotide-binding-domain and leucine-rich-repeat (NLR) proteins in its mitochondrial localization and ability to negatively regulate antiviral innate immunity dependent on the adaptors MAVS and STING. However, some studies have suggested a positive regulatory role for NLRX1 in inducing antiviral responses. We found that NLRX1 exerted opposing regulatory effects on viral activation of the transcription factors IRF1 and IRF3, which might potentially explain such contradictory results. Whereas NLRX1 suppressed MAVS-mediated activation of IRF3, it conversely facilitated virus-induced increases in IRF1 expression and thereby enhanced control of viral infection. NLRX1 had a minimal effect on the transcription of IRF1 mediated by the transcription factor NF-kB and regulated the abundance of IRF1 post-transcriptionally by preventing translational shutdown mediated by the double-stranded RNA (dsRNA)-activated kinase PKR and thereby allowed virus-induced increases in the abundance of IRF1 protein.


Subject(s)
Hepacivirus/immunology , Hepatitis C/immunology , Immunity, Innate/immunology , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-3/immunology , Mitochondrial Proteins/immunology , Adaptor Proteins, Signal Transducing/immunology , Animals , Cells, Cultured , Enzyme Activation/immunology , HEK293 Cells , Hepatitis C/virology , Hepatocytes/immunology , Hepatocytes/virology , Humans , Interferon Regulatory Factor-1/metabolism , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , NF-kappa B/metabolism , RNA, Viral/genetics , Sendai virus/immunology , eIF-2 Kinase/metabolism
12.
Sci Rep ; 7: 44653, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28304380

ABSTRACT

Fibrolamellar carcinoma (FLC) is a unique liver cancer primarily affecting young adults and characterized by a fusion event between DNAJB1 and PRKACA. By analyzing RNA-sequencing data from The Cancer Genome Atlas (TCGA) for >9,100 tumors across ~30 cancer types, we show that the DNAJB1-PRKACA fusion is specific to FLCs. We demonstrate that FLC tumors (n = 6) exhibit distinct messenger RNA (mRNA) and long intergenic non-coding RNA (lincRNA) profiles compared to hepatocellular carcinoma (n = 263) and cholangiocarcinoma (n = 36), the two most common liver cancers. We also identify a set of mRNAs (n = 16) and lincRNAs (n = 4), including LINC00473, that distinguish FLC from ~25 other liver and non-liver cancer types. We confirm this unique FLC signature by analysis of two independent FLC cohorts (n = 20 and 34). Lastly, we validate the overexpression of one specific gene in the FLC signature, carbonic anhydrase XII (CA12), at the protein level by western blot and immunohistochemistry. Both the mRNA and lincRNA signatures support a major role for protein kinase A (PKA) signaling in shaping the FLC gene expression landscape, and present novel candidate FLC oncogenes that merit further investigation.


Subject(s)
Carcinoma, Hepatocellular/genetics , Genes, Neoplasm , Genome, Human , RNA, Long Noncoding/genetics , Carcinoma, Hepatocellular/pathology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Up-Regulation/genetics
13.
Nat Commun ; 6: 8070, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26437858

ABSTRACT

The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells--newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Mutant Chimeric Proteins/genetics , Neoplastic Stem Cells/metabolism , RNA, Messenger/metabolism , Adolescent , Adult , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , Female , Flow Cytometry , Gene Expression Profiling , HSP40 Heat-Shock Proteins/genetics , Humans , Immunohistochemistry , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Nude , Mice, SCID , Microscopy, Electron, Transmission , Middle Aged , Neoplasm Transplantation , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA , Spheroids, Cellular , Tumor Cells, Cultured , Young Adult
14.
Hepatology ; 62(3): 829-40, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25953724

ABSTRACT

UNLABELLED: Therapies that target cancer stem cells (CSCs) hold promise in eliminating cancer burden. However, normal stem cells are likely to be targeted owing to their similarities to CSCs. It is established that epithelial cell adhesion molecule (EpCAM) is a biomarker for normal hepatic stem cells (HpSCs), and EpCAM(+) AFP(+) hepatocellular carcinoma (HCC) cells have enriched hepatic CSCs. We sought to determine whether specific microRNAs (miRNAs) exist in hepatic CSCs that are not expressed in normal HpSCs. We performed a pair-wise comparison of the miRNA transcriptome of EpCAM(+) and corresponding EpCAM(-) cells isolated from two primary HCC specimens, as well as from two fetal livers and three healthy adult liver donors by small RNA deep sequencing. We found that miR-150, miR-155, and miR-223 were preferentially highly expressed in EpCAM(+) HCC cells, which was further validated. Their gene surrogates, identified using miRNA and messenger RNA profiling in a cohort of 292 HCC patients, were associated with patient prognosis. We further demonstrated that miR-155 was highly expressed in EpCAM(+) HCC cells, compared to corresponding EpCAM(-) HCC cells, fetal livers with enriched normal hepatic progenitors, and normal adult livers with enriched mature hepatocytes. Suppressing miR-155 resulted in a decreased EpCAM(+) fraction in HCC cells and reduced HCC cell colony formation, migration, and invasion in vitro. The reduced levels of identified miR-155 targets predicted the shortened overall survival and time to recurrence of HCC patients. CONCLUSION: miR-155 is highly elevated in EpCAM(+) HCC cells and might serve as a molecular target to eradicate the EpCAM(+) CSC population in human HCCs.


Subject(s)
Antigens, Neoplasm/genetics , Carcinoma, Hepatocellular/genetics , Cell Adhesion Molecules/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , MicroRNAs/genetics , Neoplastic Stem Cells/metabolism , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Epithelial Cell Adhesion Molecule , Humans , Kaplan-Meier Estimate , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Neoplastic Stem Cells/pathology , Reference Values , Signal Transduction , Survival Rate , Up-Regulation/genetics
15.
Hepatology ; 61(2): 548-60, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25284723

ABSTRACT

UNLABELLED: Rodent cancer bioassays indicate that the aryl hydrocarbon receptor (AHR) agonist, 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD), causes increases in both hepatocytic and cholangiocytic tumors. Effects of AHR activation have been evaluated on rodent hepatic stem cells (rHpSCs) versus their descendants, hepatoblasts (rHBs), two lineage stages of multipotent, hepatic precursors with overlapping but also distinct phenotypic traits. This was made possible by defining the first successful culture conditions for ex vivo maintenance of rHpScs consisting of a substratum of hyaluronans and Kubota's medium (KM), a serum-free medium designed for endodermal stem/progenitor cells. Supplementation of KM with leukemia inhibitory factor elicited lineage restriction to rHBs. Cultures were treated with various AHR agonists including TCDD, 6-formylindolo-[3,2-b]carbazole (FICZ), and 3-3'-diindolylmethane (DIM) and then analyzed with a combination of immunocytochemistry, gene expression, and high-content image analysis. The AHR agonists increased proliferation of rHpSCs at concentrations producing a persistent AHR activation as indicated by induction of Cyp1a1. By contrast, treatment with TCDD resulted in a rapid loss of viability of rHBs, even though the culture conditions, in the absence of the agonists, were permissive for survival and expansion of rHBs. The effects were not observed with FICZ and at lower concentrations of DIM. CONCLUSION: Our findings are consistent with a lineage-dependent mode of action for AHR agonists in rodent liver tumorigenesis through selective expansion of rHpSCs in combination with a toxicity-induced loss of viability of rHBs. These lineage-dependent effects correlate with increased frequency of liver tumors.


Subject(s)
Liver Neoplasms/chemically induced , Polychlorinated Dibenzodioxins/toxicity , Receptors, Aryl Hydrocarbon/agonists , Stem Cells/drug effects , Animals , Carcinogenesis , Cell Lineage , Cells, Cultured , Hyaluronic Acid , Leukemia Inhibitory Factor , Rats, Sprague-Dawley
16.
Nat Med ; 20(8): 927-35, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25064127

ABSTRACT

Oxidative tissue injury often accompanies viral infection, yet there is little understanding of how it influences virus replication. We show that multiple hepatitis C virus (HCV) genotypes are exquisitely sensitive to oxidative membrane damage, a property distinguishing them from other pathogenic RNA viruses. Lipid peroxidation, regulated in part through sphingosine kinase-2, severely restricts HCV replication in Huh-7 cells and primary human hepatoblasts. Endogenous oxidative membrane damage lowers the 50% effective concentration of direct-acting antivirals in vitro, suggesting critical regulation of the conformation of the NS3-4A protease and the NS5B polymerase, membrane-bound HCV replicase components. Resistance to lipid peroxidation maps genetically to transmembrane and membrane-proximal residues within these proteins and is essential for robust replication in cell culture, as exemplified by the atypical JFH1 strain of HCV. Thus, the typical, wild-type HCV replicase is uniquely regulated by lipid peroxidation, providing a mechanism for attenuating replication in stressed tissue and possibly facilitating long-term viral persistence.


Subject(s)
Hepacivirus/enzymology , Lipid Peroxidation , Oxidative Stress , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , Adaptor Proteins, Signal Transducing/genetics , Antiviral Agents/pharmacology , Cell Line , Cell Membrane/pathology , Hepacivirus/drug effects , Hepacivirus/genetics , Hepatitis C/drug therapy , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , RNA Interference , RNA, Small Interfering/genetics , Viral Nonstructural Proteins/genetics
17.
Stem Cells ; 31(9): 1966-79, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23847135

ABSTRACT

Peribiliary glands (PBGs) in bile duct walls, and pancreatic duct glands (PDGs) associated with pancreatic ducts, in humans of all ages, contain a continuous, ramifying network of cells in overlapping maturational lineages. We show that proximal (PBGs)-to-distal (PDGs) maturational lineages start near the duodenum with cells expressing markers of pluripotency (NANOG, OCT4, and SOX2), proliferation (Ki67), self-replication (SALL4), and early hepato-pancreatic commitment (SOX9, SOX17, PDX1, and LGR5), transitioning to PDG cells with no expression of pluripotency or self-replication markers, maintenance of pancreatic genes (PDX1), and expression of markers of pancreatic endocrine maturation (NGN3, MUC6, and insulin). Radial-axis lineages start in PBGs near the ducts' fibromuscular layers with stem cells and end at the ducts' lumens with cells devoid of stem cell traits and positive for pancreatic endocrine genes. Biliary tree-derived cells behaved as stem cells in culture under expansion conditions, culture plastic and serum-free Kubota's Medium, proliferating for months as undifferentiated cells, whereas pancreas-derived cells underwent only approximately 8-10 divisions, then partially differentiated towards an islet fate. Biliary tree-derived cells proved precursors of pancreas' committed progenitors. Both could be driven by three-dimensional conditions, islet-derived matrix components and a serum-free, hormonally defined medium for an islet fate (HDM-P), to form spheroids with ultrastructural, electrophysiological and functional characteristics of neoislets, including glucose regulatability. Implantation of these neoislets into epididymal fat pads of immunocompromised mice, chemically rendered diabetic, resulted in secretion of human C-peptide, regulatable by glucose, and able to alleviate hyperglycemia in hosts. The biliary tree-derived stem cells and their connections to pancreatic committed progenitors constitute a biological framework for life-long pancreatic organogenesis.


Subject(s)
Biliary Tract/cytology , Cell Lineage , Organogenesis , Pancreas/cytology , Pancreas/growth & development , Stem Cells/cytology , Adult , Animals , Antigens, Neoplasm/metabolism , Biomarkers/metabolism , Cell Adhesion Molecules/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/therapy , Electrophysiological Phenomena , Epithelial Cell Adhesion Molecule , Gene Expression Regulation , Humans , Hyperglycemia/therapy , Islets of Langerhans/cytology , Islets of Langerhans/physiology , Islets of Langerhans/ultrastructure , Islets of Langerhans Transplantation , Mice , Organogenesis/genetics , Pancreatic Ducts/cytology , Phenotype , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Spheroids, Cellular/ultrastructure , Stem Cell Niche/genetics , Stem Cells/metabolism
18.
Hepatology ; 57(2): 775-84, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22996260

ABSTRACT

Cell therapies are potential alternatives to organ transplantation for liver failure or dysfunction but are compromised by inefficient engraftment, cell dispersal to ectopic sites, and emboli formation. Grafting strategies have been devised for transplantation of human hepatic stem cells (hHpSCs) embedded into a mix of soluble signals and extracellular matrix biomaterials (hyaluronans, type III collagen, laminin) found in stem cell niches. The hHpSCs maintain a stable stem cell phenotype under the graft conditions. The grafts were transplanted into the livers of immunocompromised murine hosts with and without carbon tetrachloride treatment to assess the effects of quiescent versus injured liver conditions. Grafted cells remained localized to the livers, resulting in a larger bolus of engrafted cells in the host livers under quiescent conditions and with potential for more rapid expansion under injured liver conditions. By contrast, transplantation by direct injection or via a vascular route resulted in inefficient engraftment and cell dispersal to ectopic sites. Transplantation by grafting is proposed as a preferred strategy for cell therapies for solid organs such as the liver.


Subject(s)
Liver/surgery , Stem Cell Transplantation/methods , Animals , Carbon Tetrachloride Poisoning/surgery , Cells, Cultured , Humans , Hyaluronic Acid/metabolism , Hyaluronic Acid/therapeutic use , Liver/cytology , Mice
19.
Hepatology ; 57(4): 1469-83, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23175232

ABSTRACT

UNLABELLED: Liver cancers, including hepatocellular carcinomas (HCCs), cholangiocarcinomas (CCs), and fibrolamellar HCCs (FL-HCCs) are among the most common cancers worldwide and are associated with a poor prognosis. Investigations of genes important in liver cancers have focused on Sal-like protein 4 (SALL4), a member of a family of zinc finger transcription factors. It is a regulator of embryogenesis, organogenesis, pluripotency, can elicit reprogramming of somatic cells, and is a marker of stem cells. We found it expressed in normal murine hepatoblasts, normal human hepatic stem cells, hepatoblasts and biliary tree stem cells, but not in mature parenchymal cells of liver or biliary tree. It was strongly expressed in surgical specimens of human HCCs, CCs, a combined hepatocellular and cholangiocarcinoma, a FL-HCC, and in derivative, transplantable tumor lines in immune-compromised hosts. Bioinformatics analyses indicated that elevated expression of SALL4 in tumors is associated with poor survival of HCC patients. Experimental manipulation of SALL4's expression results in changes in proliferation versus differentiation in human HCC cell lines in vitro and in vivo in immune-compromised hosts. Virus-mediated gene transfer of SALL4 was used for gain- and loss-of-function analyses in the cell lines. Significant growth inhibition in vitro and in vivo, accompanied by an increase in differentiation occurred with down-regulation of SALL4. Overexpression of SALL4 resulted in increased cell proliferation in vitro, correlating with an increase in expression of cytokeratin19 (CK19), epithelial cell adhesion molecules (EpCAM), and adenosine triphosphate (ATP)-binding cassette-G2 (ABCG2). CONCLUSION: SALL4's expression is an indicator of stem cells, a prognostic marker in liver cancers, correlates with cell and tumor growth, with resistance to 5-FU, and its suppression results in differentiation and slowed tumor growth. SALL4 is a novel therapeutic target for liver cancers.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/metabolism , DNA-Binding Proteins/metabolism , Liver Neoplasms/metabolism , Transcription Factors/metabolism , Animals , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Cyclin D1/metabolism , Cyclin D2/metabolism , Humans , In Vitro Techniques , Liver/metabolism , Liver/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Male , Mice , Mice, SCID , Prognosis , Transplantation, Heterologous
20.
Cell Transplant ; 21(10): 2257-66, 2012.
Article in English | MEDLINE | ID: mdl-22472355

ABSTRACT

The supply of human hepatic stem cells (hHpSCs) and other hepatic progenitors has been constrained by the limited availability of liver tissues from surgical resections, the rejected organs from organ donation programs, and the need to use cells immediately. To facilitate accessibility to these precious tissue resources, we have established an effective method for serum-free cryopreservation of the cells, allowing them to be stockpiled and stored for use as an off-the-shelf product for experimental or clinical programs. The method involves use of buffers, some serum-free, designed for cryopreservation and further supplemented with hyaluronans (HA) that preserve adhesion mechanisms facilitating postthaw culturing of the cells and preservation of functions. Multiple cryopreservation buffers were found to yield high viabilities (80-90%) of cells on thawing of the progenitor cells. Serum-free CS10 supplemented with 0.05% hyaluronan proved the most effective, both in terms of viabilities of cells on thawing and in yielding cell attachment and formation of expanding colonies of cells that stably maintain the stem/progenitor cell phenotype. Buffers to which 0.05 or 0.1% HAs were added showed cells postthaw to be phenotypically stable as stem/progenitors, as well as having a high efficiency of attachment and expansion in culture. Success correlated with improved expression of adhesion molecules, particularly CD44, the hyaluronan receptor, E-cadherin, ß4 integrin in hHpSCs, and ß1 integrins in hepatoblasts. The improved methods in cryopreservation offer more efficient strategies for stem cell banking in both research and potential therapy applications.


Subject(s)
Cryopreservation/methods , Hyaluronic Acid , Liver/cytology , Stem Cells/cytology , Buffers , Cell Adhesion/drug effects , Cell Culture Techniques/methods , Hepatocytes/cytology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...