Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
ACS Omega ; 9(19): 21494-21509, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38764638

ABSTRACT

Crocetin is a promising phyto-based molecule to treat Alzheimer's disease (AD). The chemical structure of crocetin is incongruent with various standard structural features of CNS drugs. As poor pharmacokinetic behavior is the major hurdle for any candidate to become a drug, we elucidated its druggable characteristics by implementing in silico, in vitro, and in vivo approaches, as limited ADME/PK information is available. Results demonstrate several attributes of crocetin based on rules of drug-likeness, lipophilicity, pKa, P-gp inhibitory activity, plasma stability, RBC partitioning, metabolic stability, CYP inhibitory action, blood-brain barrier (BBB) permeability, oral bioavailability, and pharmacokinetic interaction with marketed anti-Alzheimer's drugs (memantine, donepezil, galantamine, and rivastigmine). However, aqueous solubility, chemical stability, plasma protein binding, and P-gp induction are some concerns associated with this molecule that should be taken into consideration during its further development. Overall results indicate favorable ADME/PK behavior and potential druggable candidature of crocetin.

2.
Int J Pharm ; 651: 123786, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38185339

ABSTRACT

Andrographolide (AD) is a potent natural product with a wide range of pharmacological activities. However, it has low oral bioavailability due to poor solubility and dissolution rate. Solid dispersion (SD) is a promising technique to improve the solubility and dissolution rate of such molecules. In this study, SD formulation of AD was prepared using Kollidon-SR (KSR) and Poloxamer-407 (P-407) as carriers. SD was prepared using the solvent evaporation method and evaluated for the modulation of solubility of AD. The developed SD formulation was characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Further, dissolution rate, yield, drug content, stability, flowability, and pharmacokinetic profile of SD were evaluated. The compatibility of SD with the Caco-2 cells and its impact on the P-glycoprotein (P-gp) mediated efflux was also investigated. Furthermore, carrageenan-induced paw edema, and adjuvant-induced arthritic model were used to evaluate the efficacy of SD. The results showed that SD3 (AD + KSR + P-407, 1:6:8) exhibited the highest solubility and dissolution rate, and significantly improved pharmacokinetic profile compared to native AD. SD3 was found to be stable during storage and displayed excellent yield, drug content, and flowability. This formulation was found to be compatible with the Caco-2 cells and retarded the efflux of P-gp substrate. SD3 also demonstrated substantially better efficacy than native AD in terms of paw edema inhibition (carrageenan-induced paw edema, Wistar rats), and overall improvement of disease condition (in terms of paw edema, arthritic score, AST, ALT, cytokines, radiological changes, and histopathology) in arthritic Wistar rats. In conclusion, SD3 exhibited improved solubility, dissolution rate, pharmacokinetic profile, and pharmacological activity than native AD.


Subject(s)
Diterpenes , Polymers , Surface-Active Agents , Rats , Humans , Animals , Solubility , Rats, Wistar , Delayed-Action Preparations , Caco-2 Cells , Carrageenan , X-Ray Diffraction , Poloxamer , Edema , Calorimetry, Differential Scanning , Spectroscopy, Fourier Transform Infrared/methods
3.
Mol Pharm ; 20(9): 4597-4610, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37527414

ABSTRACT

The pharmacokinetic alteration of an antimicrobial medication leading to sub-therapeutic plasma level can aid in the emergence of resistance, a global threat nowadays. In this context, molnupiravir (prodrug of EIDD-1931) is the most efficacious orally against corona virus disease (COVID-19). In addition to drug-drug interaction, the pharmacokinetics of a drug can significantly vary during any disease state, leading to disease-drug interaction. However, no information is available for such a recently approved drug. Therefore, we aimed to explore the oral pharmacokinetics of EIDD-1931 in seven chemically induced disease states individually compared to the normal state using various rat models. Induction of any disease situation was confirmed by the disease specific study(s) prior to pharmacokinetic investigations. Compared to the normal state, substantially lowered plasma exposure (0.47- and 0.63-fold) with notably enhanced clearance (2.00- and 1.56-fold) of EIDD-1931 was observed in rats of ethanol-induced gastric injury and carbon tetrachloride-induced liver injury states. Conversely, paclitaxel-induced neuropathic pain and cisplatin-induced kidney injury states exhibited opposite outcomes on oral exposure (1.43- and 1.50-fold) and clearance (0.69- and 0.65-fold) of EIDD-1931. Although the highest plasma concentration (2.26-fold) markedly augmented in the doxorubicin-induced cardiac injury state, streptozocin-induced diabetes and lipopolysaccharide-induced lung injury state did not substantially influence the pharmacokinetics of EIDD-1931. Exploring the possible phenomenon behind the reduced or boosted plasma exposure of EIDD-1931, results suggest the need for dose adjustment in respective diseased conditions in order to achieve desired efficacy during oral therapy of EIDD-1931.


Subject(s)
COVID-19 , Rats , Animals , Cytidine , Hydroxylamines
4.
Chem Biol Interact ; 382: 110605, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37419298

ABSTRACT

In spite of unprecedented advances in modern cancer therapy, there is still a dearth of targeted therapy to circumvent triple-negative breast cancer (TNBC). Paclitaxel is the front-line therapy against TNBC, but the main constraints of its treatment are dose-related adverse effects and emerging chemoresistance. In this context, glabridin (phytoconstituent from Glycyrrhiza glabra) is reported to hit multiple signalling pathways at the in-vitro level, but hardly any information is known at the in-vivo level. We aimed here to elucidate glabridin potential with an underlying mechanism in combination with a low dose of paclitaxel using a highly aggressive mouse mammary carcinoma model. Glabridin potentiated the anti-metastatic efficacy of paclitaxel by substantially curtailing tumor burden and diminishing lung nodule formation. Moreover, glabridin remarkably attenuated epithelial-mesenchymal transition (EMT) traits of hostile cancer cells via up-regulating (E-cadherin & occludin) and down-regulating (Vimentin & Zeb1) vital EMT markers. Besides, glabridin amplified apoptotic induction effect of paclitaxel in tumor tissue by declining or elevating pro-apoptotic (Procaspase-9 or Cleaved Caspase-9 & Bax) and reducing anti-apoptotic (Bcl-2) markers. Additionally, concomitant treatment of glabridin and paclitaxel predominantly lessened CYP2J2 expression with marked lowering of epoxyeicosatrienoic acid (EET)'s levels in tumor tissue to reinforce the anti-tumor impact. Simultaneous administration of glabridin with paclitaxel notably enhanced plasma exposure and delayed clearance of paclitaxel, which was mainly arbitrated by CYP2C8-mediated slowdown of paclitaxel metabolism in the liver. The fact of intense CYP2C8 inhibitory action of glabridin was also ascertained using human liver microsomes. Concisely, glabridin plays a dual role in boosting anti-metastatic activity by augmenting paclitaxel exposure via CYP2C8 inhibition-mediated delaying paclitaxel metabolism and limiting tumorigenesis via CYP2J2 inhibition-mediated restricting EETs level. Considering the safety, reported protective efficacy, and the current study results of boosted anti-metastatic effects, further investigations are warranted as a promising neoadjuvant therapy for crux paclitaxel chemoresistance and cancer recurrence.


Subject(s)
Paclitaxel , Triple Negative Breast Neoplasms , Mice , Animals , Humans , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Cytochrome P-450 CYP2J2 , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Cytochrome P-450 CYP2C8 , Eicosanoids , Liver , Cell Line, Tumor
5.
Chem Biol Interact ; 366: 110109, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35995259

ABSTRACT

Despite substantial breakthroughs in cancer research, there is hardly any specific therapy available to date that can alleviate triple-negative breast cancer (TNBC). Paclitaxel is the first-line chemotherapy option, but its treatment is often associated with early discontinuation of therapy due to the development of resistance and/or precipitation of severe side effects. In the quest to establish a suitable combination therapy with a low dose of paclitaxel, we explored rottlerin (a pure and characterized phytoconstituent from Mallotus philippensis) because of its multifaceted pharmacological actions against cancer. The study was performed to assess the therapeutic effects of rottlerin (5-20 mg/kg) with a low dose of paclitaxel (5 mg/kg) using a highly aggressive mouse mammary carcinoma model. Rottlerin augmented the paclitaxel effect by reducing tumor burden as well as metastatic lung nodules formation. Rottlerin in combination with paclitaxel remarkably altered the expression of vital epithelial-mesenchymal transition (EMT) markers such as E-cadherin, Snail 1, & Vimentin and thus improved the anti-metastatic efficacy of paclitaxel. Significant attenuation of anti-apoptotic protein (Bcl-2) along with amplification of pro-apoptotic (cleaved PARP) marker confers that rottlerin could ameliorate the pro-apoptotic potential of paclitaxel. In this study, a rational combination of rottlerin and paclitaxel treatment curtailed CYP2J2 expression and epoxyeicosatrienoic acids (EETs) levels, responsible for restrain tumor growth and metastasis. Additionally, rottlerin lessened paclitaxel treatment-mediated hematological alterations and prevented paclitaxel treatment-linked key serum biochemical changes related to organ toxicities. These rottlerin treatment-mediated protective changes are closely associated with the lower paclitaxel accumulation in the corresponding tissues. Rottlerin caused significant pharmacokinetic interaction with paclitaxel to boost the plasma level of paclitaxel in a typical mouse model and possibly helpful towards the use of a low dose of paclitaxel in combination. Overall, it can be stated that rottlerin has significant potential to augment the anti-metastatic efficacy of paclitaxel via impeding EMT activation along with attenuating its treatment-associated toxicological alterations. Hence, rottlerin has significant potential to explore further as a suitable neoadjuvant therapy with paclitaxel against TNBC.


Subject(s)
Paclitaxel , Triple Negative Breast Neoplasms , Acetophenones , Animals , Apoptosis Regulatory Proteins , Benzopyrans , Cadherins/metabolism , Cell Line, Tumor , Disease Models, Animal , Epithelial-Mesenchymal Transition , Humans , Mice , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-bcl-2 , Triple Negative Breast Neoplasms/metabolism , Vimentin/metabolism
6.
Toxicol Appl Pharmacol ; 449: 116113, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35691369

ABSTRACT

Hydroxyurea (HU) is the key drug to treat Sickle cell anemia (SCA). However, its treatment is associated with the liability of myelosuppression. The present study aimed to investigate the potential of epicatechin as a supplementation therapy for the symptomatic management of SCA under HU therapy. A panel of experiments were performed at first to observe epicatechin's effect on sickling and hemolytic behaviour using SCA patient's blood (ex vivo). Thereafter, the effect of HU in the presence or absence of epicatechin was investigated on cytokine inhibition in rat splenocytes (ex vivo) as well as alterations in hematological parameters and kidney function tests in rats (in vivo). Then, any effect of epicatechin on pharmacokinetic modulation of HU in rats was elucidated along with the underlying mechanism using a battery of in vitro and in vivo models. Epicatechin exhibited potent action on anti-sickling, polymerization inhibition, and erythrocyte membrane stability. It did not show any inherent hemolytic activity and reduced TNF-α level during concomitant administration with HU. Based on hematological changes in rats, epicatechin treatment aided to the beneficial effect of HU and prevented the treatment-linked disadvantageous effects of HU like neutropenia. The plasma exposure of HU was significantly augmented in rats upon simultaneous oral administration of epicatechin with HU. Down-regulation of Oatp1b2 and catalase possibly contributed to the pharmacokinetic interaction of HU. Epicatechin is found to be a promising candidate and should be explored at a reduced dose level of HU towards offsetting the dose-dependent myelosuppressive effect of HU under the frame of supplementation therapy in SCA.


Subject(s)
Anemia, Sickle Cell , Catechin , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/drug therapy , Animals , Catechin/pharmacology , Catechin/therapeutic use , Cytokines , Erythrocyte Membrane , Hydroxyurea/pharmacokinetics , Hydroxyurea/toxicity , Rats
7.
Cytokine ; 148: 155688, 2021 12.
Article in English | MEDLINE | ID: mdl-34455232

ABSTRACT

Arthritis, a primary autoimmune disorder having a global incidence of 2.03% person/year, is presently being treated by many commercially available drugs that treat symptomatically or improve the disease's clinical state; however, all the therapies pose varying amount of side effects. Therefore, it has become a fundamental need to search for therapeutics that offer better efficacy and safety profile, and the natural or nature-derived products are known for their outstanding performance in this arena. OA-DHZ, known to possess anti-inflammatory and analgesic properties, when explored for its efficacy against arthritis in adjuvant-induced arthritis (AIA) model, was found to inhibit paw edema by 34% and TNF-α, IL-6, and IL-1ß by 67%, 39%, and 45% respectively when compared to diseased control. It was also able to reduce the inflamed spleen size by 45% and successfully normalized biochemical and hematological changes that followed arthritis. In vitro studies revealed that the underlying mechanism for inhibiting arthritis progression might be due to NF-κB /MAPK pathway modulation. OA-DHZ also showed selective inhibition of COX-2 in vitro while showing gastroprotective effects when evaluated for ulcerogenic and antiulcer potential in vivo. In contrast to the results obtained from in vivo experimentation, there is a disparity in the pharmacokinetic profile of OA-DHZ, where it showed low oral exposure and high clearance rate. OA-DHZ being antiarthritic acting via NF-κB /MAPK/ COX inhibition while showing gastroprotective effects, can be a suitable candidate to be in the drug pipeline and further exploration.


Subject(s)
Arthritis/drug therapy , Cyclooxygenase Inhibitors/therapeutic use , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Protective Agents/therapeutic use , Stomach/pathology , Styrenes/therapeutic use , Administration, Oral , Animals , Arthritis/blood , Arthritis/pathology , Cyclooxygenase Inhibitors/pharmacology , Cytokines/metabolism , Enzyme Activation/drug effects , Female , Inflammation/complications , Inflammation/drug therapy , Inflammation/pathology , Inflammation Mediators/metabolism , Lipopolysaccharides , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Macrophages/pathology , Mice , Protective Agents/pharmacology , Protein Transport/drug effects , RAW 264.7 Cells , Rats, Wistar , Spleen/drug effects , Spleen/pathology , Stomach Ulcer/complications , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Styrenes/administration & dosage , Styrenes/pharmacokinetics , Styrenes/pharmacology , Weight Loss/drug effects
8.
ACS Omega ; 6(10): 6934-6941, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33748607

ABSTRACT

Bedaquiline (TMC-207) is a key anti-tubercular drug to fight against multidrug resistance tuberculosis. Little information is available till date on the impact of any disease state toward its pharmacokinetic behavior. The present research work aimed to investigate the effect of renal impairment and diabetes mellitus on the oral pharmacokinetics of bedaquiline in the rat model. Renal impairment and diabetes mellitus were induced in the Wistar rat model separately using cisplatin and streptozotocin, respectively, and thereafter, an oral pharmacokinetic study of bedaquiline was carried out in the individual disease models as well as in the normal rat model. Pharmacokinetic parameters of bedaquiline were not altered markedly in cisplatin-induced renal-impaired rats compared to normal rats except an area under the curve (AUC) for plasma concentration of bedaquiline in the experimental time frame (AUC0-t ) reduced to 3477 ± 228 from 4984 ± 1174 ng h/mL, respectively. Maximum plasma concentrations of bedaquiline (259 ± 77 ng/mL), AUC0-t (3112 ± 1046 ng h/mL), and AUC0-∞ (3673 ± 1493 ng h/mL) were significantly reduced along with an increase in the clearance of bedaquiline (3.1 ± 1.1 L/h/kg) in the case of streptozotocin-induced diabetic rats compared to respective pharmacokinetic parameters of bedaquiline (482 ± 170 ng/mL, 4984 ± 1174 ng h/mL, and 6137 ± 1542 ng h/mL) in the normal rats. Preclinical findings suggest that dose adjustment of bedaquiline is required in the diabetes mellitus condition to prevent the therapeutic failure of bedaquiline treatment, but clinical exploration is needed to establish the fact. It is the first report for the consequence of renal impairment and diabetes mellitus on the pharmacokinetics of bedaquiline in the preclinical model.

9.
Xenobiotica ; 51(6): 625-635, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33539218

ABSTRACT

CYP2E1 is directly or indirectly involved in the metabolism of ethanol and endogenous fatty acids but it plays a major role in the bio-activation of toxic substances that produce reactive metabolites leading to hepatotoxicity. Therefore, identification of CYP2E1 inhibitor from bioflavonoids class having useful pharmacological properties has dual benefit regarding avoidance of severe food-drug/nutraceutical-drug interaction and scope to develop a phytotherapeutics through an intended pharmacokinetic interaction.In the present study, we aimed to identify CYP2E1 inhibitor from experimental bioflavonoids which are unexplored for CYP2E1 inhibition till date using in-silico, in-vitro and in-vivo approaches.Results of in-vitro CYP2E1 inhibitory studies using CYP2E1-mediated chlorzoxazone 6-hydroxylation in human liver microsomes showed that glabridin have the highest potential than fisetin, epicatechin, nobiletin, and chrysin to inhibit CYP2E1 enzyme. Mechanistic investigations indicate that glabridin is a competitive CYP2E1 inhibitor. Molecular docking study results demonstrate that glabridin strongly interacted with the active site of human CYP2E1 enzyme. Pharmacokinetics of a CYP2E1 substrate in mice model indicates a significant alteration of chlorzoxazone and 6-hydroxychlorzoxazone plasma levels in the presence of glabridin. Further studies are needed to confirm the results at clinical level.Overall, glabridin is found to be a potential CYP2E1 inhibitor.


Subject(s)
Cytochrome P-450 CYP2E1 , Isoflavones , Chlorzoxazone , Isoflavones/pharmacology , Microsomes, Liver , Molecular Docking Simulation , Phenols
10.
Tuberculosis (Edinb) ; 124: 101958, 2020 09.
Article in English | MEDLINE | ID: mdl-32791471

ABSTRACT

One of the significant challenges to treat tuberculosis is the phenotypic resistance adapted by the latent or dormant Mycobacterium tuberculosis (M. tuberculosis) cells against most of the available drugs. Different in-vitro assay such as oxygen depletion model and nutrient starvation models have contributed to unravelling the pathogen phenotypic resistance but are too cumbersome for application to high-throughput screening (HTS) assays. In this context, non-replicating streptomycin-starved 18b (SS18b) mutant strain of M. tuberculosis provided a simple and reproducible model. This model mimics latent tuberculosis and is best suited for screening medicinally appropriate libraries. Using SS18b strain in a resazurin reduction microplate assay (REMA), high-throughput screening of ChemDiv library constituting of 30,000 compounds resulted in the identification of 470 active compounds. Clustering and scaffolding based medicinal chemistry analysis characterized these hits into 15 scaffolds. Seven most potent compounds exhibiting an MIC ≤ 1 µg/ml against SS18b were non-toxic in HepG2 cell line (selective Index ≥ 160). Our screening revealed seven novel compounds exhibiting activity against the non-replicating form of M tuberculosis. 8002-7516 was the most promising compound showing intracellular killing and could be optimized to develop a lead drug candidate.


Subject(s)
Antitubercular Agents/pharmacology , High-Throughput Screening Assays , Latent Tuberculosis/drug therapy , Mycobacterium tuberculosis/drug effects , Small Molecule Libraries , Antitubercular Agents/toxicity , Cell Survival/drug effects , Genotype , Hep G2 Cells , Humans , Latent Tuberculosis/microbiology , Macrophages/drug effects , Macrophages/microbiology , Microbial Sensitivity Tests , Microbial Viability , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development
11.
Article in English | MEDLINE | ID: mdl-32862024

ABSTRACT

Hydroxyurea (HU) is the first-ever approved drug by the United States Food and Drug Administration (USFDA) for the management of sickle cell anemia (SCA). However, its treatment is associated with severe liabilities like myelosuppression. Therefore, the aim of the present investigation was to identify phytotherapeutics through assessment of the pharmacokinetic interaction of HU with dietary bioflavonoids followed by elucidation of the same phytoconstituents for their ability to protect HU-induced toxicity in hematological profile. In this direction, we developed a sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to estimate HU in rat plasma at first and then validated as per USFDA guidelines as there is no such precedent in the literature. A simple plasma protein precipitation method was employed for plasma sample processing. The separation was achieved in gradient mode using Syncronis HILIC column (100 × 4.6 mm, 3 µm) with a mobile phase composition of water containing 0.1% (v/v) formic acid and acetonitrile. Ionization was carried out in positive heated-electrospray ionization (H-ESI) mode. Detection was done in selected reaction monitoring (SRM) mode with m/z 77.1 > 44.4 and m/z 75.1 > 58.2 for HU and methylurea (internal standard), respectively. All the validation parameters were within the acceptable criteria. This bioanalytical method was found to be useful in assessing the preclinical pharmacokinetic interaction of HU. Concomitant administration of chrysin or quercetin with HU in rats significantly enhanced the oral exposure of HU. Lowering of total red blood cells (RBC) and hemoglobin (Hb) level by HU in rats was significantly improved in the presence of chrysin, quercetin, and naringenin. Overall, both chrysin and quercetin showed potential to be a promising phytotherapeutics for concomitant therapy with HU to combat its dose-dependent side effects.


Subject(s)
Chromatography, High Pressure Liquid/methods , Hydroxyurea/blood , Hydroxyurea/pharmacokinetics , Tandem Mass Spectrometry/methods , Animals , Drug Interactions , Flavonoids/blood , Flavonoids/pharmacokinetics , Hydroxyurea/chemistry , Linear Models , Male , Rats , Rats, Wistar , Reproducibility of Results , Sensitivity and Specificity
12.
Xenobiotica ; 50(11): 1332-1340, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32432967

ABSTRACT

Diclofenac is an extensively used nonsteroidal anti-inflammatory drug, but gastrointestinal liabilities and cardiovascular complications take the shine away from such a widely prescribed drug. On the other hand, rutin, a dietary bioflavonoid, has quite a few pharmacological attributes to improve the efficacy and reduce the dose-related toxicities of diclofenac through the intended food-drug/herb-drug interaction. The aim of the present research work was to investigate the role of rutin on pharmacokinetic modulation and the consequent efficacy of diclofenac. At first, pharmacodynamics and pharmacokinetics of diclofenac as alone and in the presence of rutin were investigated orally in a rat model. Then, mechanistic studies were performed to explain the effect of rutin on improvement in oral exposure as well as the efficacy of diclofenac using a battery of in-vitro/in-situ/in-vivo studies. Results displayed that rutin enhanced efficacy as well as oral bioavailability of diclofenac in rats. A marked increase in permeability of diclofenac by rutin was displayed that is linked to inhibition of Breast Cancer Resistance Protein (BCRP) transporters. There was no significant effect of rutin on the modulation of intestinal transit, CYP2C9 inhibition in human liver microsomes, and CYP2C9/CYP2C11 expression in rat liver tissues to boost the oral exposure of diclofenac. Rutin is found to be an inhibitor for BCRP transporters and can act as an oral bioavailability enhancer for a drug like diclofenac.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Diclofenac/pharmacokinetics , Rutin/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Animals , Drug Interactions , Rats
13.
J Agric Food Chem ; 68(5): 1257-1265, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31927919

ABSTRACT

Bedaquiline (TMC-207) is a recently approved drug for the treatment of multidrug-resistant tuberculosis (MDR-TB). Moreover, there is a present and growing concern for natural-product-mediated drug interaction, as these are inadvertently taken by patients as a dietary supplement, food additive, and medicine. In the present study, we investigated the impact of 20 plant-based natural products, typically phenolics, on in vivo oral bedaquiline pharmacokinetics, as previous studies are lacking. Three natural phenolics were identified that can significantly enhance the oral exposure of bedaquiline upon coadministration. We further investigated the possible role of all of the phytochemicals on in vitro P-glycoprotein (P-gp) induction and inhibition and CYP3A4 inhibition in a single platform as bedaquiline is the substrate for both P-gp and CYP3A4. In conclusion, curcumin, CC-I (3',5-dihydroxyflavone-7-O-ß-d-galacturonide-4'-O-ß-d-glucopyranoside), and 6-gingerol should not be coadministered with bedaquiline to avoid untoward drug interactions and, subsequently, its dose-dependent adverse effects.


Subject(s)
Antitubercular Agents/pharmacokinetics , Diarylquinolines/pharmacokinetics , Dietary Supplements/adverse effects , Food-Drug Interactions , Phenols/adverse effects , Plant Extracts/adverse effects , Tuberculosis, Multidrug-Resistant/drug therapy , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Antitubercular Agents/administration & dosage , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Diarylquinolines/administration & dosage , Dietary Supplements/analysis , Female , Humans , Phenols/administration & dosage , Plant Extracts/administration & dosage , Rats , Rats, Wistar , Tuberculosis, Multidrug-Resistant/genetics , Tuberculosis, Multidrug-Resistant/metabolism
15.
Bioorg Chem ; 89: 103022, 2019 08.
Article in English | MEDLINE | ID: mdl-31181491

ABSTRACT

Our previous discovery of series of pyrazolopyrimidinone based PDE5 inhibitors led to find potent leads but with low aqueous solubility and poor bioavailability, and low selectivity. Now, a new series of same pyrazolopyrimidinone scaffold is designed, synthesized and evaluated for its PDE5 inhibitory potential. In this study, some of the molecules are found more potent and selective PDE5 inhibitors in vitro than sildenafil. The studies revealed that compound 5 is 20 fold selective to PDE5 against PDE6. As PDE6 enzyme is involved in the phototransduction pathway in the retina and creates distortion problem, the selectivity for PDE5 specifically against PDE6 enzyme is preferred for any development candidate and in present study, compound 5 has been found to be devoid of this liability of selectivity issue. Moreover, compound 5 has shown excellent in vivo efficacy in conscious rabbit model, it's almost comparable to sildenafil. The preclinical pharmacology including pharmacokinetic and physicochemical parameter studies were also performed for compound 5, it was found to have good PK properties and other physicochemical parameters. The development of these selective PDE5 inhibitors can further lead to draw strategies for the novel preclinical and/or clinical candidates based on pyrazolopyrimidinone scaffold.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Drug Design , Phosphodiesterase 5 Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidinones/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred BALB C , Molecular Structure , Penile Erection/drug effects , Penis/drug effects , Penis/pathology , Phosphodiesterase 5 Inhibitors/administration & dosage , Phosphodiesterase 5 Inhibitors/chemical synthesis , Pyrazoles/administration & dosage , Pyrazoles/chemical synthesis , Pyrimidinones/administration & dosage , Pyrimidinones/chemical synthesis , Rabbits , Structure-Activity Relationship
16.
Article in English | MEDLINE | ID: mdl-30851617

ABSTRACT

A continuous effort has been given to find out a new drug that is effective against tuberculosis (TB) from both susceptible and resistant strains of Mycobacterium tuberculosis. Bedaquiline represents a recently approved anti-TB drug, which has a unique mechanism of action to fight against multi drug resistance (MDR). Some severe side effects and drug-drug interactions are associated with the treatment of bedaquiline. Moreover, World Health Organisation (WHO) has also been provided guidelines in the year of 2013 for the use of bedaquiline and encourages additional investigation into it. Hence, the pharmacokinetics of bedaquiline upon coadministration with the drug has to be explored in the preclinical model and for which a liquid chromatography tandem mass spectrometry (LC-MS/MS) based bioanalytical method for quantitation of bedaquiline will be useful. A simple, sensitive and rapid LC-MS/MS method was developed, validated and successfully applied to drug interactions of bedaquiline upon coadministration with cytochrome P450 3A4 (CYP3A4) inducers/inhibitors orally in Wistar rats. Results reveal that ciprofloxacin and fluconazole have marked effect to hinder the pharmacokinetics of bedaquiline but isoniazid, verapamil and carbamazepine have no significant effect on bedaquiline pharmacokinetics. Overall, this new bioanalytical method for estimation of bedaquiline in rat plasma was found to be helpful to assess the pharmacokinetics of bedaquiline and very much useful for evaluation of preclinical drug-drug interaction before considering costly and perilous clinical exploration.


Subject(s)
Antitubercular Agents/pharmacokinetics , Chromatography, Liquid/methods , Diarylquinolines/pharmacokinetics , Tandem Mass Spectrometry/methods , Animals , Antitubercular Agents/blood , Antitubercular Agents/chemistry , Cytochrome P-450 CYP3A Inhibitors/blood , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Diarylquinolines/blood , Diarylquinolines/chemistry , Drug Interactions , Female , Linear Models , Rats , Rats, Wistar , Reproducibility of Results , Sensitivity and Specificity
17.
Phytother Res ; 32(10): 1967-1974, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29806225

ABSTRACT

Curcumin, a natural diarylheptanoid, is extensively used as a food additive or dietary supplement on the regular basis. It is known to have potential to encumber the drug transporters and hepatic drug metabolizing enzymes that lead to pharmacokinetic interactions with drug or food. Daclatasvir is a new orally acting drug for the treatment of chronic Hepatitis C Virus infections. This is a substrate of P-glycoprotein and CYP3A4 that are involved in the major pharmacokinetic interaction. Hence, the studies' aim is to assess for any possible pharmacokinetic interactions. Pharmacokinetic studies of daclatasvir in presence or absence of curcumin were carried out in Wistar rats following oral administration. Parallelly, the oral pharmacokinetics of daclatasvir was also determined in the presence of ketoconazole or quinidine. Studies revealed that plasma level of daclatasvir was not altered significantly during concomitant single dose administration of curcumin, whereas significantly decreased upon pretreatment for 7 days with curcumin at high dose level. Ketoconazole and quinidine markedly increase daclatasvir exposure following concomitant administration with daclatasvir. It can be concluded that dose adjustment is unlikely to be required for intermittent use of curcumin at low dose but cautious for chronic and concomitant use of curcumin at a high dose.


Subject(s)
Antiviral Agents/pharmacokinetics , Curcumin/pharmacology , Imidazoles/pharmacokinetics , Administration, Oral , Animals , Carbamates , Drug Interactions , Ketoconazole/pharmacology , Male , Pyrrolidines , Quinidine/pharmacology , Rats , Rats, Wistar , Valine/analogs & derivatives
18.
Pulm Pharmacol Ther ; 48: 151-160, 2018 02.
Article in English | MEDLINE | ID: mdl-29174840

ABSTRACT

Recent tuberculosis (TB) drug discovery programme involve continuous pursuit for new chemical entity (NCE) which can be not only effective against both susceptible and resistant strains of Mycobacterium tuberculosis (Mtb) but also safe and faster acting with the target, thereby shortening the prolonged TB treatments. We have identified a potential nitrofuranyl methyl piperazine derivative, IIIM-MCD-211 as new antitubercular agent with minimum inhibitory concentration (MIC) value of 0.0072 µM against H37Rv strain. Objective of the present study is to investigate physicochemical, pharmacokinetic, efficacy and toxicity profile using in-silico, in-vitro and in-vivo model in comprehensive manner to assess the likelihood of developing IIIM-MCD-211 as a clinical candidate. Results of computational prediction reveal that compound does not violate Lipinski's, Veber's and Jorgensen's rule linked with drug like properties and oral bioavailability. Experimentally, IIIM-MCD-211 exhibits excellent lipophilicity that is optimal for oral administration. IIIM-MCD-211 displays evidence of P-glycoprotein (P-gp) induction but no inhibition ability in rhodamine cell exclusion assay. IIIM-MCD-211 shows high permeability and plasma protein binding based on parallel artificial membrane permeability assay (PAMPA) and rapid equilibrium dialysis (RED) assay model, respectively. IIIM-MCD-211 has adequate metabolic stability in rat liver microsomes (RLM) and favourable pharmacokinetics with admirable correlation during dose escalation study in Swiss mice. IIIM-MCD-211 has capability to appear into highly perfusable tissues. IIIM-MCD-211 is able to actively prevent progression of TB infection in chronic infection mice model. IIIM-MCD-211 shows no substantial cytotoxicity in HepG2 cell line. In acute toxicity study, significant increase of total white blood cell (WBC) count in treatment group as compared to control group is observed. Overall, amenable preclinical data make IIIM-MCD-211 ideal candidate for further development of oral anti-TB agent.


Subject(s)
Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/drug effects , Nitrofurans/therapeutic use , Piperazines/therapeutic use , Tuberculosis/drug therapy , Administration, Oral , Animals , Antitubercular Agents/administration & dosage , Antitubercular Agents/pharmacology , Antitubercular Agents/toxicity , Biological Availability , Computer Simulation , Disease Models, Animal , Disease Progression , Dose-Response Relationship, Drug , Drug Design , Female , Hep G2 Cells , Humans , Male , Mice , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Nitrofurans/administration & dosage , Nitrofurans/pharmacology , Nitrofurans/toxicity , Piperazines/administration & dosage , Piperazines/pharmacology , Piperazines/toxicity , Rats , Toxicity Tests, Acute
19.
J Pharm Biomed Anal ; 149: 387-393, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29175554

ABSTRACT

ZSTK474, a promising novel anticancer molecule derived from s-triazine, found to have antitumor activities against different cancer cell lines. However, neither LCMS method nor pharmacokinetics of ZSTK474 has been reported till now. A sensitive, simple, short and specific liquid chromatography tandem mass spectrometry (LCMS/MS) method was developed for the quantification of ZSTK474 in mouse plasma accordance with the US Food and Drug Administration guidelines. Extraction of drug molecule was carried out using protein precipitation. Chromatographic analyte separation was achieved on Atlantis dC18 (4.6×50mm, 3µm). Composition of isocratic mobile phase consists of 90% acetonitrile and 0.2% formic acid, at 0.7mL/min flow rate, having short 2.5min run time. Method development was validated and found to be linear over a dynamic range between 1.9-1000ng/mL; having a correlation coefficient (r 2)≥0.9978. The analyte was found to be stable under short and long term storage conditions. LCMS/MS method developed was validated and found to be selective, reproducible, precise and accurate to quantify ZSTK474 in plasma samples, and first time successfully applied to pharmacokinetic studies. Pharmacokinetic data showed fast absorption attaining Cmax at 0.25h and half life (t1/2) 5.18h after oral administration of ZSTK474 at 20mg/kg in mouse.


Subject(s)
Chromatography, High Pressure Liquid/methods , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacokinetics , Tandem Mass Spectrometry/methods , Triazines/pharmacokinetics , Animals , Chromatography, High Pressure Liquid/instrumentation , Female , Guidelines as Topic , Mice , Mice, Inbred BALB C , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/instrumentation , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/instrumentation , United States , United States Food and Drug Administration/standards
20.
Regul Toxicol Pharmacol ; 91: 216-225, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29108848

ABSTRACT

In spite of unprecedented advances in modern systems of medicine, there is necessity for exploration of traditional plant based secondary metabolites or their semisynthetic derivatives which may results in better therapeutic activity, low toxicity and favourable pharmacokinetics. In this context, computational model based predictions aid medicinal chemists in rational development of new chemical entity having unfavourable pharmacokinetic properties which is a major hurdle for its further development as a drug molecule. Para-coumaric acid (p-CA) and its derivatives found to be have promising antiinflammatory and analgesic activity. IS01957, a p-CA derivative has been identified as dual acting molecule against inflammation and nociception. Therefore, objective of the present study was to investigate pharmacokinetics, efficacy and safety profile based on in-silico, in-vitro and in-vivo model to assess drug likeliness. In the present study, it has excellent pharmacological action in different animal models for inflammation and nociception. Virtual pharmacokinetics related properties of IS01957 have resemblance between envision and experimentation with a few deviations. It has also acceptable safety pharmacological profile in various animal models for central nervous system (CNS), gastro intestinal tract (GIT)/digestive system and cardiovascular system (CVS). Finally, further development of IS01957 is required based on its attractive preclinical profiles.


Subject(s)
Inflammation/drug therapy , Nociception/drug effects , Propionates/pharmacology , Propionates/pharmacokinetics , Animals , Coumaric Acids , Drug Evaluation, Preclinical/methods , Female , Male , Mice , Mice, Inbred BALB C , Models, Animal , Propionates/adverse effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...