Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
2.
Biomaterials ; 302: 122297, 2023 11.
Article in English | MEDLINE | ID: mdl-37666102

ABSTRACT

The dysfunction of tumor infiltrating lymphocytes (TILs) directly correlates with out of control of tumor growth and metastasis. New approaches and insightful clarity for rescuing TILs dysfunction are urgently needed. Here, we design two heterogenous antigens based on MHC-I epitope and MHC-II epitope from tumor, and assemble heterogenous antigens by electrostatic interactions and π-π stacking into heteroantigen-assembled nanovaccine (HANV). HANV not only significantly increases the abundance of CD8+ and CD4+ TILs, but also elicits stronger polyfunctionality of CD8+ and CD4+ TILs in vivo. Enhanced polyfunctionality of CD8+ and CD4+ TILs positively correlate to suppression of tumor growth and metastasis in melanoma-bearing mouse models. We also validate that nucleotide-binding oligomerization domain-containing protein 2 (NOD2) dominantly enhances anti-tumor capacity of TILs in a temporal immunoregulation manner. This work presents a new insight in developing HANV as a rational strategy to shape TILs polyfunctionality for tumor growth and metastasis.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Melanoma , Animals , Mice , Lymphocytes, Tumor-Infiltrating/pathology , Melanoma/pathology , Epitopes , Antigens, Heterophile , CD8-Positive T-Lymphocytes
3.
RSC Adv ; 12(5): 2668-2674, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35425335

ABSTRACT

Glutathione (GSH), an abundant non-protein thiol, plays a crucial role in numerous biotic processes. Herein, a mitochondria-targeted near-infrared GSH probe (JGP) was synthesized, which displayed desired properties with high specificity and sensitivity, appreciable water solubility, and rapid response time. In the presence of GSH, nearly a 13-fold fluorescence emission growth appeared at 730 nm and the solvent color changed from blue to cyan. The sensing mechanism of JGP and GSH was confirmed by a high-resolution mass spectroscopy analysis. Moreover, good cell penetration enabled JGP to be successfully used for imaging biological samples such as HeLa cells, C. elegans, and especially rat brain slices. Imaging experiments showed that JGP could monitor the GSH concentration changes with a dose-dependent direct ratio in all the tested samples. The successful application of JGP in brain imaging indicates that JGP is a suitable GSH optical probe, which may have wide application value in fields of brain imaging. It also lays a theoretical and practical foundation for the further application of fluorescent probes in brain sciences.

4.
Nano Today ; 38: 101139, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33758593

ABSTRACT

Effective vaccines are vital to fight against the COVID-19 global pandemic. As a critical component of a subunit vaccine, the adjuvant is responsible for strengthening the antigen-induced immune responses. Here, we present a new nanovaccine that comprising the Receptor-Binding Domain (RBD) of spike protein and the manganese nanoadjuvant (MnARK), which induces humoral and cellular responses. Notably, even at a 5-fold lower antigen dose and with fewer injections, the MnARK vaccine immunized mice showed stronger neutralizing abilities against the infection of the pseudovirus (~270-fold) and live coronavirus (>8-fold) in vitro than that of Alum-adsorbed RBD vaccine (Alu-RBD). Furthermore, we found that the effective co-delivery of RBD antigen and MnARK to lymph nodes (LNs) elicited an increased cellular internalization and the activation of immune cells, including DCs, CD4+ and CD8+ T lymphocytes. Our findings highlight the importance of MnARK adjuvant in the design of novel coronavirus vaccines and provide a rationale strategy to design protective vaccines through promoting cellular internalization and the activation of immune-related pathways.

5.
J Immunother Cancer ; 8(2)2020 07.
Article in English | MEDLINE | ID: mdl-32719094

ABSTRACT

BACKGROUND: The immune response within the tumor microenvironment plays a key role in tumorigenesis and determines the clinical outcomes of head and neck squamous cell carcinoma (HNSCC). However, to date, a paucity of robust, reliable immune-related biomarkers has been identified that are capable of estimating prognosis in HNSCC patients. METHODS: High-throughput RNA sequencing was performed in tumors and matched adjacent tissues from five HNSCC patients, and the immune signatures expression of 730 immune-related transcripts selected from the nCounter PanCancer Immune Profiling Panel were assessed. Survival analyzes were performed in a training cohort, consisting of 416 HNSCC cases, retrieved from The Cancer Genome Atlas (TCGA) database. A prognostic signature was built, using elastic net-penalized Cox regression and backward, stepwise Cox regression analyzes. The outcomes were validated by an independent cohort of 115 HNSCC patients, using tissue microarrays and immunohistochemistry staining. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was also used to estimate the relative fractions of 22 immune-cell types and their correlations coefficients with prognostic biomarkers. RESULTS: Collectively, 248 immune-related genes were differentially expressed in paired tumors and normal tissues using RNA sequencing. After process screening in the training TCGA cohort, four immune-related genes (PVR, TNFRSF12A, IL21R, and SOCS1) were significantly associated with overall survival (OS). Integrating these genes with Path_N stage, a multiplex model was built and suggested better performance in determining 5 years OS (receiver operating characteristic (ROC) analysis, area under the curve (AUC)=0.709) than others. Further protein-based validation was conducted in 115 HNSCC patients. Similarly, high expression of PVR and TNFRSF12A were associated with poor OS (Kaplan-Meier p=0.017 and 0.0032), while high expression of IL21R and SOCS1 indicated favorable OS (Kaplan-Meier p<0.0001 and =0.0018). The integrated model with Path_N stage still demonstrated efficacy in OS evaluation (Kaplan-Meier p<0.0001, ROC AUC=0.893). Besides, the four prognostic genes were significantly correlated with activated CD8+ T cells, CD4+ T cells, follicular helper T cells and regulatory T cells, implying the possible involvement of these genes in the immunoregulation and development of HNSCC. CONCLUSIONS: The well-established model encompassing both immune-related biomarkers and clinicopathological factor might serve as a promising tool for the prognostic prediction of HNSCC.


Subject(s)
Biomarkers, Tumor/genetics , Genomics/methods , Immunotherapy/methods , Squamous Cell Carcinoma of Head and Neck/genetics , Adult , Female , Humans , Male , Middle Aged , Prognosis , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Microenvironment
6.
Gastric Cancer ; 23(6): 988-1002, 2020 11.
Article in English | MEDLINE | ID: mdl-32617693

ABSTRACT

BACKGROUND: Fibroblast growth factor receptor 1 (FGFR1) is frequently dysregulated in various tumors. FGFR inhibitors have shown promising therapeutic value in several preclinical models. However, tumors resistant to FGFR inhibitors have emerged, compromising therapeutic outcomes by demonstrating markedly aggressive metastatic progression; however, the underlying signaling mechanism of resistance remains unknown. METHODS: We established FGFR inhibitor-resistant cell models using two gastric cancer (GC) cell lines, MGC-803 and BGC-823. RNA-seq was performed to determine the continuous cellular transcriptome changes between parental and resistant cells. We explored the mechanism of resistance to FGFR inhibitor, using a subcutaneous tumor model and GC patient-derived tumor organotypic culture. RESULTS: We observed that FGFR1 was highly expressed in GC and FGFR1 inhibitor-resistant cell lines, demonstrating elevated levels of autophagic activity. These resistant cells were characterized by epithelial-mesenchymal transition (EMT) required to facilitate metastatic outgrowth. In drug-resistant cells, the FGFR1 inhibitor regulated GC cell autophagy via AMPK/mTOR signal activation, which could be blocked using either pharmacological inhibitors or essential gene knockdown. Furthermore, TGF-ß-activated kinase 1 (TAK1) amplification and metabolic restrictions led to AMPK pathway activation and autophagy. In vitro and in vivo results demonstrated that the FGFR inhibitor AZD4547 and TAK1 inhibitor NG25 synergistically inhibited proliferation and autophagy in AZD4547-resistant cell lines and patient-derived GC organotypic cultures. CONCLUSIONS: We elucidated the molecular mechanisms underlying primary resistance to FGFR1 inhibitors in GC, and revealed that the inhibition of FGFR1 and TAK1 signaling could present a potential novel therapeutic strategy for FGFR1 inhibitor-resistant GC patients.


Subject(s)
Adenocarcinoma/drug therapy , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Stomach Neoplasms/drug therapy , AMP-Activated Protein Kinases/metabolism , Animals , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Benzamides/pharmacology , Cell Culture Techniques , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Inbred BALB C , Piperazines/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL