Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.710
1.
Cell Commun Signal ; 22(1): 301, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822356

BACKGROUND: Intrauterine adhesion (IUA) is one of the most severe causes of infertility in women of childbearing age with injured endometrium secondary to uterine performance. Stem cell therapy is effective in treating damaged endometrium. The current reports mainly focus on the therapeutic effects of stem cells through paracrine or transdifferentiation, respectively. This study investigates whether paracrine or transdifferentiation occurs preferentially in treating IUA. METHODS: Human amniotic mesenchymal stem cells (hAMSCs) and transformed human endometrial stromal cells (THESCs) induced by transforming growth factor beta (TGF-ß1) were co-cultured in vitro. The mRNA and protein expression levels of Fibronectin (FN), Collagen I, Cytokeratin19 (CK19), E-cadherin (E-cad) and Vimentin were detected by Quantitative real-time polymerase chain reaction (qPCR), Western blotting (WB) and Immunohistochemical staining (IHC). The Sprague-Dawley (SD) rats were used to establish the IUA model. hAMSCs, hAMSCs-conditional medium (hAMSCs-CM), and GFP-labeled hAMSCs were injected into intrauterine, respectively. The fibrotic area of the endometrium was evaluated by Masson staining. The number of endometrium glands was detected by hematoxylin and eosin (H&E). GFP-labeled hAMSCs were traced by immunofluorescence (IF). hAMSCs, combined with PPCNg (hAMSCs/PPCNg), were injected into the vagina, which was compared with intrauterine injection. RESULTS: qPCR and WB revealed that FN and Collagen I levels in IUA-THESCs decreased significantly after co-culturing with hAMSCs. Moreover, CK19, E-cad, and Vimentin expressions in hAMSCs showed no significant difference after co-culture for 2 days. 6 days after co-culture, CK19, E-cad and Vimentin expressions in hAMSCs were significantly changed. Histological assays showed increased endometrial glands and a remarkable decrease in the fibrotic area in the hAMSCs and hAMSCs-CM groups. However, these changes were not statistically different between the two groups. In vivo, fluorescence imaging revealed that GFP-hAMSCs were localized in the endometrial stroma and gradually underwent apoptosis. The effect of hAMSCs by vaginal injection was comparable to that by intrauterine injection assessed by H&E staining, MASSON staining and IHC. CONCLUSIONS: Our data demonstrated that hAMSCs promoted endometrial repair via paracrine, preferentially than transdifferentiation.


IUA is the crucial cause of infertility in women of childbearing age, and no satisfactory treatment measures have been found in the clinic. hAMSCs can effectively treat intrauterine adhesions through paracrine and transdifferentiation mechanisms. This study confirmed in vitro and in vivo that amniotic mesenchymal stem cells preferentially inhibited endometrial fibrosis and promoted epithelial repair through paracrine, thus effectively treating intrauterine adhesions. The level of fibrosis marker proteins in IUA-THESCs decreased significantly after co-culturing with hAMSCs for 2 days in vitro. However, the level of epithelial marker proteins in hAMSCs increased significantly, requiring at least 6 days of co-culture. hAMSCs-CM had the same efficacy as hAMSCs in inhibiting fibrosis and promoting endometrial repair in IUA rats, supporting the idea that hAMSCs promoted endometrial remodeling through paracrine in vivo. In addition, GFP-labeled hAMSCs continuously colonized the endometrial stroma instead of the epithelium and gradually underwent apoptosis. These findings prove that hAMSCs ameliorate endometrial fibrosis of IUA via paracrine, preferentially than transdifferentiation, providing the latest insights into the precision treatment of IUA with hAMSCs and a theoretical basis for promoting the "cell-free therapy" of MSCs.


Amnion , Cell Transdifferentiation , Endometrium , Mesenchymal Stem Cells , Paracrine Communication , Rats, Sprague-Dawley , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Endometrium/cytology , Endometrium/metabolism , Animals , Amnion/cytology , Amnion/metabolism , Rats , Mesenchymal Stem Cell Transplantation/methods , Coculture Techniques , Tissue Adhesions/pathology , Tissue Adhesions/metabolism
2.
Biomacromolecules ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38832927

This study presents a comprehensive characterization of the viscoelastic and structural properties of bovine submaxillary mucin (BSM), which is widely used as a commercial source to conduct mucus-related research. We conducted concentration studies of BSM and examined the effects of various additives, NaCl, CaCl2, MgCl2, lysozyme, and DNA, on its rheological behavior. A notable connection between BSM concentration and viscoelastic properties was observed, particularly under varying ionic conditions. The rheological spectra could be well described by a fractional Kelvin-Voigt model with a minimum of model parameters. A detailed proteomics analysis provided insight into the protein, especially mucin composition within BSM, showing MUC19 as the main component. Cryo-scanning electron microscopy enabled the visualization of the porous BSM network structure. These investigations give us a more profound comprehension of the BSM properties, especially those pertaining to viscoelasticity, and how they are influenced by concentration and environmental conditions, aspects relevant to the field of mucus research.

3.
World J Diabetes ; 15(5): 923-934, 2024 May 15.
Article En | MEDLINE | ID: mdl-38766441

BACKGROUND: Diabetes foot is one of the most serious complications of diabetes and an important cause of death and disability, traditional treatment has poor efficacy and there is an urgent need to develop a practical treatment method. AIM: To investigate whether Huangma Ding or autologous platelet-rich gel (APG) treatment would benefit diabetic lower extremity arterial disease (LEAD) patients with foot ulcers. METHODS: A total of 155 diabetic LEAD patients with foot ulcers were enrolled and divided into three groups: Group A (62 patients; basal treatment), Group B (38 patients; basal treatment and APG), and Group C (55 patients; basal treatment and Huangma Ding). All patients underwent routine follow-up visits for six months. After follow-up, we calculated the changes in all variables from baseline and determined the differences between groups and the relationships between parameters. RESULTS: The infection status of the three groups before treatment was the same. Procalcitonin (PCT) improved after APG and Huangma Ding treatment more than after traditional treatment and was significantly greater in Group C than in Group B. Logistic regression analysis revealed that PCT was positively correlated with total amputation, primary amputation, and minor amputation rates. The ankle-brachial pressure and the transcutaneous oxygen pressure in Groups B and C were greater than those in Group A. The major amputation rate, minor amputation rate, and total amputation times in Groups B and C were lower than those in Group A. CONCLUSION: Our research indicated that diabetic foot ulcers (DFUs) lead to major amputation, minor amputation, and total amputation through local infection and poor microcirculation and macrocirculation. Huangma Ding and APG were effective attreating DFUs. The clinical efficacy of Huangma Ding was better than that of autologous platelet gel, which may be related to the better control of local infection by Huangma Ding. This finding suggested that in patients with DFUs combined with coinfection, controlling infection is as important as improving circulation.

4.
J Alzheimers Dis ; 2024 May 24.
Article En | MEDLINE | ID: mdl-38820018

Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by brain network dysfunction. Few studies have investigated whether the functional connections between executive control networks (ECN) and other brain regions can predict the therapeutic effect of repetitive transcranial magnetic stimulation (rTMS). Objective: The purpose of this study is to examine the relationship between the functional connectivity (FC) within ECN networks and the efficacy of rTMS. Methods: We recruited AD patients for rTMS treatment. We established an ECN using baseline period fMRI data and conducted an analysis of the ECN's FC throughout the brain. Concurrently, the support vector regression (SVR) method was employed to project post-rTMS cognitive scores, utilizing the connectional attributes of the ECN as predictive markers. Results: The average age of the patients was 66.86±8.44 years, with 8 males and 13 females. Significant improvement on most cognitive measures. We use ECN connectivity and brain region functions in baseline patients as features for SVR model training and fitting. The SVR model could demonstrate significant predictability for changes in Montreal Cognitive Assessment scores among AD patients after rTMS treatment. The brain regions that contributed most to the prediction of the model (the top 10% of weights) were located in the medial temporal lobe, middle temporal gyrus, frontal lobe, parietal lobe and occipital lobe. Conclusions: The stronger the antagonism between ECN and parieto-occipital lobe function, the better the prediction of cognitive improvement; the stronger the synergy between ECN and fronto-temporal lobe function, the better the prediction of cognitive improvement.

5.
bioRxiv ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38798624

The Leishmania life cycle alternates between promastigotes, found in the sandfly, and amastigotes, found in mammals. When an infected sandfly bites a host, promastigotes are engulfed by phagocytes (i.e., neutrophils, dendritic cells, and macrophages) to establish infection. When these phagocytes die or break down, amastigotes must be re-internalized to survive within the acidic phagolysosome and establish disease. To define host kinase regulators of Leishmania promastigote and amastigote uptake and survival within macrophages, we performed an image-based kinase regression screen using a panel of 38 kinase inhibitors with unique and overlapping kinase targets. We also targeted inert beads to complement receptor 3 (CR3) or Fcγ receptors (FcR) as controls by coating them with complement/C3bi or IgG respectively. Through this approach, we identified several host kinases that regulate receptor-mediated phagocytosis and/or the uptake of L. amazonensis. Findings included kinases previously implicated in Leishmania uptake (such as SRC family kinases (SFK), Abl family kinases (ABL1/c-Abl, ABL2/Arg), and spleen tyrosine kinase (SYK)); we also uncovered many novel kinases. These methods also predicted kinases necessary for promastigotes to convert to amastigotes or for amastigotes to survive within macrophages. Overall, our results suggest that the concerted action of multiple interconnected networks of host kinases are needed over the course of Leishmania infection, and that the kinases required for the parasite's life cycle substantially differ depending on which receptors are bound and the life cycle stage that is internalized. In addition, using our screen, we identified kinases that preferentially regulate the uptake of parasites over beads, indicating that the methods required for Leishmania to be internalized by macrophages differ significantly from generalized phagocytic mechanisms. Our findings are intended to be used as a hypothesis generation resource for the broader scientific community studying the roles of kinases in host-pathogen interactions.

6.
Crit Care ; 28(1): 172, 2024 05 22.
Article En | MEDLINE | ID: mdl-38778416

INTRODUCTION: Traumatic brain injury (TBI) is a major cause of neurodisability worldwide, with notably high disability rates among moderately severe TBI cases. Extensive previous research emphasizes the critical need for early initiation of rehabilitation interventions for these cases. However, the optimal timing and methodology of early mobilization in TBI remain to be conclusively determined. Therefore, we explored the impact of early progressive mobilization (EPM) protocols on the functional outcomes of ICU-admitted patients with moderate to severe TBI. METHODS: This randomized controlled trial was conducted at a trauma ICU of a medical center; 65 patients were randomly assigned to either the EPM group or the early progressive upright positioning (EPUP) group. The EPM group received early out-of-bed mobilization therapy within seven days after injury, while the EPUP group underwent early in-bed upright position rehabilitation. The primary outcome was the Perme ICU Mobility Score and secondary outcomes included Functional Independence Measure motor domain (FIM-motor) score, phase angle (PhA), skeletal muscle index (SMI), the length of stay in the intensive care unit (ICU), and duration of ventilation. RESULTS: Among 65 randomized patients, 33 were assigned to EPM and 32 to EPUP group. The EPM group significantly outperformed the EPUP group in the Perme ICU Mobility and FIM-motor scores, with a notably shorter ICU stay by 5.9 days (p < 0.001) and ventilation duration by 6.7 days (p = 0.001). However, no significant differences were observed in PhAs. CONCLUSION: The early progressive out-of-bed mobilization protocol can enhance mobility and functional outcomes and shorten ICU stay and ventilation duration of patients with moderate-to-severe TBI. Our study's results support further investigation of EPM through larger, randomized clinical trials. Clinical trial registration ClinicalTrials.gov NCT04810273 . Registered 13 March 2021.


Brain Injuries, Traumatic , Early Ambulation , Intensive Care Units , Humans , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/rehabilitation , Brain Injuries, Traumatic/therapy , Female , Male , Adult , Middle Aged , Early Ambulation/methods , Early Ambulation/statistics & numerical data , Early Ambulation/trends , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data
7.
Environ Res ; 256: 119237, 2024 May 27.
Article En | MEDLINE | ID: mdl-38810829

Ionizing radiation (IR) poses a significant threat to both the natural environment and biological health. Exposure to specific doses of ionizing radiation early in an organism's development can lead to developmental toxicity, particularly neurotoxicity. Through experimentation with Xenopus laevis (X. laevis), we examined the effects of radiation on early developmental stage. Our findings revealed that radiation led to developmental abnormalities and mortality in X. laevis embryos in a dose-dependent manner, disrupting redox homeostasis and inducing cell apoptosis. Additionally, radiation caused neurotoxic effects, resulting in abnormal behavior and neuron damage in the embryos. Further investigation into the underlying mechanisms of radiation-induced neurotoxicity indicated the potential involvement of the neuroactive ligand-receptor interaction pathway, which was supported by RNA-Seq analysis. Validation of gene expression associated with this pathway and analysis of neurotransmitter levels confirmed our hypothesis. In addition, we further validated the important role of this signaling pathway in radiation-induced neurotoxicity through edaravone rescue experiments. This research establishes a valuable model for radiation damage studying and provides some insight into radiation-induced neurotoxicity mechanisms.

8.
Mol Cell Proteomics ; : 100783, 2024 May 08.
Article En | MEDLINE | ID: mdl-38729610

High myopia is a leading cause of blindness worldwide, among which pathologic myopia, characterized by typical myopic macular degeneration, is the most detrimental. However, its pathogenesis remains largely unknown. Here, using an HuProt array, we first initiated a serological autoantibody profiling of high myopia and identified 18 potential autoantibodies, of which anti-LIMS1 autoantibody was validated by a customized focused microarray. Further subgroup analysis revealed its actual relevance to pathologic myopia, rather than simple high myopia without myopic macular degeneration. Mechanistically, anti-LIMS1 autoantibody predominantly belonged to IgG1/IgG2/IgG3 subclasses. Serum IgG obtained from patients with pathologic myopia could disrupt the barrier function of retinal pigment epithelial cells via cytoskeleton disorganization and tight junction component reduction, and also trigger a pro-inflammatory mediator cascade in retinal pigment epithelial cells, which were all attenuated by depletion of anti-LIMS1 autoantibody. Together, these data uncover a previously unrecognized autoimmune etiology of myopic macular degeneration in pathologic myopia.

9.
J Pain Res ; 17: 1737-1744, 2024.
Article En | MEDLINE | ID: mdl-38764607

Background: As the latest endoscopic spine surgery, percutaneous endoscopic interlaminar discectomy (PEID) and unilateral biportal endoscopic (UBE) discectomy have distinct technical characteristics. This study aimed to evaluate the clinical outcomes of PEID and UBE discectomy in the treatment of single-level lumbar disc herniation (LDH). Methods: Between February 2019 and April 2022, 115 patients with single-level LDH at L4-5 or L5-S1 received PEID or UBE discectomy. The patients were separated into two groups based on the surgical method used: Group 1 (the PEID group) (n = 60) and Group 2 (the UBE group) (n = 55). Various parameters, including operative time, hospitalization time, fluoroscopy frequency, total costs, complications, visual analogue scale (VAS), and Oswestry Disability Index (ODI), were evaluated and compared between the two groups. Results: There were no significant differences in the VAS and ODI scores in 12 months after the operation between two groups (P > 0.05). However, the VAS of lower back pain on the first day after the operation in Group 2 (2.53±0.89) was higher than that in Group 1 (2.19±0.74) (P < 0.05). There were no significant differences in the operation time and incidence of complications between two groups (P > 0.05). But total costs in Group 2 (43,121±4280) were significantly higher than those in Group 1 (30,069±3551) (P < 0.05). Conclusion: Both UBE and PEID procedures have similar efficacy in alleviating pain and improving functional ability in patients with LDH. However, UBE surgery results in higher costs than PEID surgery.

10.
Surg Endosc ; 38(6): 3156-3166, 2024 Jun.
Article En | MEDLINE | ID: mdl-38627257

BACKGROUND: The role of minimally invasive surgery using robotics versus laparoscopy in resectable gastric cancer patients with a high body mass index (BMI) remains controversial. METHODS: A total of 482 gastric adenocarcinoma patients with BMI ≥ 25 kg/m2 who underwent minimally invasive radical gastrectomy between August 2016 and December 2019 were retrospectively analyzed, including 109 cases in the robotic gastrectomy (RG) group and 321 cases in the laparoscopic gastrectomy (LG) group. Propensity score matching (PSM) with a 1:1 ratio was performed, and the perioperative outcomes, lymph node dissection, and 3-year overall survival (OS) and disease-free survival (DFS) rates were compared. RESULTS: After PSM, 109 patients were included in each of the RG and LG groups, with balanced baseline characteristics. Compared with the LG group, the RG group had similar intraoperative estimated blood loss [median (IQR) 30 (20-50) vs. 35 (30-59) mL, median difference (95%CI) - 5 (- 10 to 0)], postoperative complications [13.8% vs. 18.3%, OR (95%CI) 0.71 (0.342 to 1.473)], postoperative recovery, total harvested lymph nodes [(34.25 ± 13.43 vs. 35.44 ± 14.12, mean difference (95%CI) - 1.19 (- 4.871 to 2.485)] and textbook outcomes [(81.7% vs. 76.1%, OR (95%CI) 1.39 (0.724 to 2.684)]. Among pathological stage II-III patients receiving chemotherapy, the initiation of adjuvant chemotherapy in the RG group was similar to that in the LG group [median (IQR): 28 (25.5-32.5) vs. 32 (27-38.5) days, median difference (95%CI) - 3 (- 6 to 0)]. The 3-year OS (RG vs. LG: 80.7% vs. 81.7%, HR = 1.048, 95%CI 0.591 to 1.857) and DFS (78% vs. 76.1%, HR = 0.996, 95%CI 0.584 to 1.698) were comparable between the two groups. CONCLUSION: RG conferred comparable lymph node dissection, postoperative recovery, and oncologic outcomes in a selected cohort of patients with BMI ≥ 25 kg/m2.


Gastrectomy , Laparoscopy , Propensity Score , Robotic Surgical Procedures , Stomach Neoplasms , Humans , Gastrectomy/methods , Male , Robotic Surgical Procedures/methods , Female , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Middle Aged , Retrospective Studies , Aged , Laparoscopy/methods , Overweight/complications , Adenocarcinoma/surgery , Adenocarcinoma/pathology , Lymph Node Excision/methods , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Disease-Free Survival
11.
Article En | MEDLINE | ID: mdl-38634834

A novel mesophilic, hydrogenotrophic methanogen, strain CWC-04T, was obtained from a sediment sample extracted from a gravity core retrieved at station 22 within the KP-9 area off the southwestern coast of Taiwan during the ORIII-1368 cruise in 2009. Cells of strain CWC-04T were rod-shaped, 1.4-2.9 µm long by 0.5-0.6 µm wide, and occurred singly. Strain CWC-04Tutilized formate, H2/CO2, 2-propanol/CO2 or 2-butanol/CO2 as catabolic substrates. The optimal growth conditions were 42 °C, 0.17 M NaCl and pH 5.35. The genomic DNA G+C content calculated from the genome sequence of strain CWC-04T was 46.19 mol%. Phylogenetic analysis of 16S rRNA gene revealed that strain CWC-04T is affiliated with the genus Methanocella. The 16S rRNA gene sequences similarities within strains Methanocella arvoryzae MRE50T, Methanocella paludicola SANAET and Methanocella conradii HZ254T were 93.7, 93.0 and 91.3 %, respectively. In addition, the optical density of CWC-04T culture dropped abruptly upon entering the late-log growth phase, with virus-like particles (150 nm in diameter) being observed on and around the cells. This observation suggests that strain CWC-04T harbours a lytic virus. Based on these phenotypic, phylogenetic and genomic results, we propose that strain CWC-04T represents a novel species of a novel genus in the family Methanocellaceae, for which the name Methanooceanicella nereidis gen. nov., sp. nov. is proposed. The type strain is CWC-04T (=BCRC AR10050T=NBRC 113165T).


Carbon Dioxide , Euryarchaeota , Base Composition , Phylogeny , RNA, Ribosomal, 16S/genetics , Taiwan , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Methane
12.
Front Cell Infect Microbiol ; 14: 1264525, 2024.
Article En | MEDLINE | ID: mdl-38585651

Introduction: Dengue is an arboviral disease causing severe illness in over 500,000 people each year. Currently, there is no way to constrain dengue in the clinic. Host kinase regulators of dengue virus (DENV) infection have the potential to be disrupted by existing therapeutics to prevent infection and/or disease progression. Methods: To evaluate kinase regulation of DENV infection, we performed kinase regression (KiR), a machine learning approach that predicts kinase regulators of infection using existing drug-target information and a small drug screen. We infected hepatocytes with DENV in vitro in the presence of a panel of 38 kinase inhibitors then quantified the effect of each inhibitor on infection rate. We employed elastic net regularization on these data to obtain predictions of which of 291 kinases are regulating DENV infection. Results: Thirty-six kinases were predicted to have a functional role. Intriguingly, seven of the predicted kinases - EPH receptor A4 (EPHA4), EPH receptor B3 (EPHB3), EPH receptor B4 (EPHB4), erb-b2 receptor tyrosine kinase 2 (ERBB2), fibroblast growth factor receptor 2 (FGFR2), Insulin like growth factor 1 receptor (IGF1R), and ret proto-oncogene (RET) - belong to the receptor tyrosine kinase (RTK) family, which are already therapeutic targets in the clinic. We demonstrate that predicted RTKs are expressed at higher levels in DENV infected cells. Knockdown of EPHB4, ERBB2, FGFR2, or IGF1R reduces DENV infection in hepatocytes. Finally, we observe differential temporal induction of ERBB2 and IGF1R following DENV infection, highlighting their unique roles in regulating DENV. Discussion: Collectively, our findings underscore the significance of multiple RTKs in DENV infection and advocate further exploration of RTK-oriented interventions against dengue.


Dengue Virus , Dengue , Humans , Dengue Virus/physiology , Receptor, EphA1 , Hepatocytes/metabolism , Tyrosine , Virus Replication
13.
Article En | MEDLINE | ID: mdl-38578884

Myocardial infarction refers to the ischemic necrosis of myocardium, characterized by a sharp reduction or interruption of blood flow in the coronary arteries due to the coronary artery occlusion, resulting in severe and prolonged ischemia in the corresponding myocardium and ultimately leading to ischemic necrosis of the myocardium. Given its high risk, it is considered as one of the most serious health threats today. In current clinical practice, multiple approaches have been explored to diminish myocardial oxygen consumption and alleviate symptoms, but notable success remains elusive. Accumulated clinical evidence has showed that the implantation of mesenchymal stem cell for treating myocardial infarction is both effective and safe. Nevertheless, there persists controversy and variability regarding the standardizing MSC transplantation protocols, optimizing dosage, and determining the most effective routes of administration. Addressing these remaining issues will pave the way of integration of MSCs as a feasible mainstream cardiac treatment.

14.
J Nanobiotechnology ; 22(1): 197, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38644475

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovial inflammation, causing substantial disability and reducing life quality. While macrophages are widely appreciated as a master regulator in the inflammatory response of RA, the precise mechanisms underlying the regulation of proliferation and inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS) remain elusive. Here, we provide extensive evidence to demonstrate that macrophage contributes to RA microenvironment remodeling by extracellular vesicles (sEVs) and downstream miR-100-5p/ mammalian target of rapamycin (mTOR) axis. RESULTS: We showed that bone marrow derived macrophage (BMDM) derived-sEVs (BMDM-sEVs) from collagen-induced arthritis (CIA) mice (cBMDM-sEVs) exhibited a notable increase in abundance compared with BMDM-sEVs from normal mice (nBMDM-sEVs). cBMDM-sEVs induced significant RA-FLS proliferation and potent inflammatory responses. Mechanistically, decreased levels of miR-100-5p were detected in cBMDM-sEVs compared with nBMDM-sEVs. miR-100-5p overexpression ameliorated RA-FLS proliferation and inflammation by targeting the mTOR pathway. Partial attenuation of the inflammatory effects induced by cBMDM-sEVs on RA-FLS was achieved through the introduction of an overexpression of miR-100-5p. CONCLUSIONS: Our work reveals the critical role of macrophages in exacerbating RA by facilitating the transfer of miR-100-5p-deficient sEVs to RA-FLS, and sheds light on novel disease mechanisms and provides potential therapeutic targets for RA interventions.


Arthritis, Rheumatoid , Macrophages , MicroRNAs , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Humans , Male , Mice , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Arthritis, Experimental/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Cell Proliferation , Extracellular Vesicles/metabolism , Inflammation/metabolism , Macrophages/metabolism , Mice, Inbred DBA , MicroRNAs/genetics , MicroRNAs/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology , Synoviocytes/metabolism , TOR Serine-Threonine Kinases/metabolism
15.
Pathogens ; 13(4)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38668298

A novel coagulase-negative Staphylococcus strain (H164T) was isolated from soymilk in Taiwan. Comparative sequence analysis of the 16S rRNA gene revealed that the H164T strain is a member of the genus Staphylococcus. We used multilocus sequence analysis (MLSA) and phylogenomic analyses to demonstrate that the novel strain was closely related to Staphylococcus gallinarum, Staphylococcus nepalensis, Staphylococcus cohnii, and Staphylococcus urealyuticus. The average nucleotide identity and digital DNA-DNA hybridization values between H164T and its closest relatives were <95% and <70%, respectively. The H164T strain could also be distinguished from its closest relatives by the fermentation of d-fructose, d-maltose, d-trehalose, and d-mannitol, as well as by the activities of α-glucosidase and alkaline phosphatase. The major cellular fatty acids were C15:0 iso and C15:0 anteiso, and the predominant menaquinones were MK-7 and MK-8, respectively. The major cellular fatty acids and predominant menaquinones were C15:0 iso and C15:0 anteiso and MK-7 and MK-8, respectively. In conclusion, this strain represents a novel species, named Staphylococcus hsinchuensis sp. nov., with the type strain H164T (=BCRC 81404T = NBRC 116174T).

16.
Life Sci Alliance ; 7(5)2024 May.
Article En | MEDLINE | ID: mdl-38467420

Kinases are key players in endothelial barrier regulation, yet their temporal function and regulatory phosphosignaling networks are incompletely understood. We developed a novel methodology, Temporally REsolved KInase Network Generation (TREKING), which combines a 28-kinase inhibitor screen with machine learning and network reconstruction to build time-resolved, functional phosphosignaling networks. We demonstrated the utility of TREKING for identifying pathways mediating barrier integrity after activation by thrombin with or without TNF preconditioning in brain endothelial cells. TREKING predicted over 100 kinases involved in barrier regulation and discerned complex condition-specific pathways. For instance, the MAPK-activated protein kinase 2 (MAPKAPK2/MK2) had early barrier-weakening activity in both inflammatory conditions but late barrier-strengthening activity exclusively with thrombin alone. Using temporal Western blotting, we confirmed that MAPKAPK2/MK2 was differentially phosphorylated under the two inflammatory conditions. We further showed with lentivirus-mediated knockdown of MAPK14/p38α and drug targeting the MAPK14/p38α-MAPKAPK2/MK2 complex that a MAP3K20/ZAK-MAPK14/p38α axis controlled the late activation of MAPKAPK2/MK2 in the thrombin-alone condition. Beyond the MAPKAPK2/MK2 switch, TREKING predicts extensive interconnected networks that control endothelial barrier dynamics.


Endothelial Cells , Mitogen-Activated Protein Kinase 14 , Endothelial Cells/metabolism , Thrombin/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Protein Kinase Inhibitors
17.
Regen Biomater ; 11: rbae020, 2024.
Article En | MEDLINE | ID: mdl-38529352

Posterior capsule opacification (PCO) remains the predominant complication following cataract surgery, significantly impairing visual function restoration. In this study, we developed a PCO model that closely mimics the anatomical structure of the crystalline lens capsule post-surgery. The model incorporated a threaded structure for accurate positioning and observation, allowing for opening and closing. Utilizing 3D printing technology, a stable external support system was created using resin material consisting of a rigid, hollow base and cover. To replicate the lens capsule structure, a thin hydrogel coating was applied to the resin scaffold. The biocompatibility and impact on cellular functionality of various hydrogel compositions were assessed through an array of staining techniques, including calcein-AM/PI staining, rhodamine staining, BODIPY-C11 staining and EdU staining in conjunction with transwell assays. Additionally, the PCO model was utilized to investigate the effects of eight drugs with anti-inflammatory and anti-proliferative properties, including 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), THZ1, sorbinil, 4-octyl itaconate (4-OI), xanthohumol, zebularine, rapamycin and caffeic acid phenethyl ester, on human lens epithelial cells (HLECs). Confocal microscopy facilitated comprehensive imaging of the PCO model. The results demonstrated that the GelMA 60 5% + PLMA 2% composite hydrogel exhibited superior biocompatibility and minimal lipid peroxidation levels among the tested hydrogels. Moreover, compared to using hydrogel as the material for 3D printing the entire model, applying surface hydrogel spin coating with parameters of 2000 rpm × 2 on the resin-based 3D printed base yielded a more uniform cell distribution and reduced apoptosis. Furthermore, rapamycin, 4-OI and AICAR demonstrated potent antiproliferative effects in the drug intervention study. Confocal microscopy imaging revealed a uniform distribution of HLECs along the anatomical structure of the crystalline lens capsule within the PCO model, showcasing robust cell viability and regular morphology. In conclusion, the PCO model provides a valuable experimental platform for studying PCO pathogenesis and exploring potential therapeutic interventions.

18.
BMC Infect Dis ; 24(1): 305, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38475712

PURPOSE: There is controversy concerning the relationship between Helicobacter pylori (H. pylori) infection and osteoporosis. This study is to examine the causal relationship between H. pylori infection and osteoporosis and to analyze the potential mechanism underlying the relationship. METHODS: The clinical data of H. pylori infection and bone mineral density from patients or physical examiner with good general condition in our hospital between September 2019 and September 2020 were retrospectively collected. The relationship between H. pylori infection and osteoporosis was compared and analyzed, using logistic regression to examine the potential mechanism underlying the association. To investigate the causal effects of H. pylori infection and osteoporosis, we conducted a two-sample bidirectional Mendelian randomization (MR) analysis. RESULTS: A total of 470 patients were positive for H. pylori, with a detection rate of 52.22%. It was found that age, SBP, FPG, DBP, ALB, LDL-C, hs-CRP, and OC were positively correlated with osteoporosis, while negative correlations were observed with BMI, LYM, ALB, TP, TG, HDL-C, SCr, UA, and VitD. After stratified analysis of sex and age, it was found that there was a significant correlation between H. pylori infection and osteoporosis. The levels of SBP, ALP, FPG, LDL-C, hs-CRP, and OC in both H. pylori-positive group and osteoporosis group were higher than those in the H. pylori-negative group while the levels of BMI, ALB, TP, HDL-C, SCr, UA, and VitD in the positive group were significantly lower than those in the negative group. Logistic regression analyses with gender and age showed that ALB, FPG, HDL-C, and VitD were common risk factors for osteoporosis and H. pylori infection. In the MR analysis, the IVW results found a positive effect of H. pylori infection on osteoporosis (OR = 1.0017, 95% CI: 1.0002-1.0033, P = 0.0217). Regarding the reverse direction analysis, there was insufficient evidence to prove the causal effects of osteoporosis on H. pylori infection. CONCLUSION: Our study provides evidence for causal effects of H. pylori infection on osteoporosis. H. pylori may affect osteoporosis through serum albumin, high-density lipoprotein, fasting blood glucose and vitamin D.


Helicobacter pylori , Osteoporosis , Humans , Retrospective Studies , C-Reactive Protein , Cholesterol, LDL , Mendelian Randomization Analysis , Genome-Wide Association Study
19.
Acta Pharmacol Sin ; 45(6): 1264-1275, 2024 Jun.
Article En | MEDLINE | ID: mdl-38438582

In addition to the classical resistance mechanisms, receptor tyrosine-protein kinase AXL is a main mechanism of resistance to third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) osimertinib in EGFR-mutated non-small cell lung cancer (NSCLC). Developing an effective AXL inhibitor is important to sensitize osimertinib in clinical application. In this study we assessed the efficacy of brigatinib, a second-generation of anaplastic lymphoma kinase (ALK)-TKI, as a novel AXL inhibitor, in overcoming acquired resistance to osimertinib induced by AXL activation. We established an AXL-overexpression NSCLC cell line and conducted high-throughput screening of a small molecule chemical library containing 510 anti-tumor drugs. We found that brigatinib potently inhibited AXL expression, and that brigatinib (0.5 µM) significantly enhanced the anti-tumor efficacy of osimertinib (1 µM) in AXL-mediated osimertinib-resistant NSCLC cell lines in vitro. We demonstrated that brigatinib had a potential ability to bind AXL kinase protein and further inhibit its downstream pathways in NSCLC cell lines. Furthermore, we revealed that brigatinib might decrease AXL expression through increasing K48-linked ubiquitination of AXL and promoting AXL degradation in HCC827OR cells and PC-9OR cells. In AXL-high expression osimertinib-resistant PC-9OR and HCC827OR cells derived xenograft mouse models, administration of osimertinib (10 mg·kg-1·d-1) alone for 3 weeks had no effect, and administration of brigatinib (25 mg·kg-1·d-1) alone caused a minor inhibition on the tumor growth; whereas combination of osimertinib and brigatinib caused marked tumor shrinkages. We concluded that brigatinib may be a promising clinical strategy for enhancing osimertinib efficacy in AXL-mediated osimertinib-resistant NSCLC patients.


Acrylamides , Aniline Compounds , Antineoplastic Agents , Axl Receptor Tyrosine Kinase , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms , Mice, Nude , Organophosphorus Compounds , Protein Kinase Inhibitors , Proto-Oncogene Proteins , Pyrimidines , Receptor Protein-Tyrosine Kinases , Animals , Female , Mice , Acrylamides/pharmacology , Acrylamides/therapeutic use , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Indoles , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Mutation , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Xenograft Model Antitumor Assays
20.
Plant Dis ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38468140

Morel mushrooms (Morchella spp.) are highly regarded globally for their distinctive texture and savory flavor. In 2022, the cultivation area for morel mushrooms in China reached nearly 20,000 hectares, with predominant cultivars including M. sextelata, M. importuna and M. exima (Bian et al., 2024). In March 2022, however, deformities of friting bodies were observed in M. importna at morel mushroom farms in Huaihua city (28.43°N, 110.47°), China, with an incidence rate ranging from 5% to 10%. The disease symptoms begin with the invasion of the hymenium of morel mushroom by white cotton-like mycelia, ultimately resulting in halted fruiting body growth and the manifestation of anomalous fruiting body morphology. Infected samples were collected from the morel growers. Following sterilization with 75% ethanol of the surrounding tissue of infected samples, the white hyphae from the morel lesions were picked out using a dissecting needle, and incubated onto potato saccharose agar medium supplemented with 60 mg/L streptomycin at 25°C. Studies showed that seven out of nine fungal isolates exhibiting identical morphological features rapidly grew on the same culture medium described above, reaching a length of 75 mm in 4 to 5 days at 25°C. The white and thick hyphal colonies of these isolates gradually filled with brown spore powder. Generally, the conidia of the hyphal colonies were polyblastic with protrusions at the tips, measuring 75 to 165 × 36 to 50 µm (n = 30) in width and length, displaying colors varying from light reddish brown to grayish brown, and possessing one or five septa. To confirm the identity of the pathogen, the region of the internal transcribed spacer region (ITS), 28S nuclear ribosomal large subunit (LSU), and RNA polymerase II second largest subunit (rpb2) genes of the representative isolate H2 were amplified by PCR (Taguiam, et al. 2021). The generated ITS (OR338304), rpb2 (OR452112) and LSU (OR338334) from the isolate H2 had 98-100% similarity to the Alternaria alternata strains ATCC 6663 and CBS 880.95 in BLASTn analysis. ITS, rpb2 and LSU sequences were assembled using Sequence Matrix, and their homogeneity was assessed with PAUP (Vaidya et al., 2011). Bayesian (MrBayes-3.2.7a) and maximum-likelihood (RAxML1.3.1) methods, utilizing the best fit GTR+G+I model obtained from MrModeltest 2.3, were employed for phylogenetic analysis (Aveskamp et al. 2010). Based on morphological characteristics and phylogenetic analysis, the isolate H2 was identified as A. alternata. In the second year post-disease, disease-free morels, with a height of 3 cm, were cultivated in field greenhouses and used for test. A 15 ml suspension (1 × 106 conidia/ml) was applied to 15 young fruiting bodies and their corresponding substrate soil. The results showed that the reappearance of white cotton-like mycelia and deformed M. importuna fruiting bodies within 7 days post-inoculation with the spore suspension, as opposed to the controls. The isolates (H2-1, H2-2 and H2-3) were reisolated from the infected tissues and identified as A. alternata based on its morphological features and phylogenetic analyses. In this study, a similar investigation was previously conducted on cultivated quinoa (Chenopodium quinoa) in Eastern Denmark (Colque-Little et al., 2023). This study marks the first documentation of A. alternata causing deformities in M. importuna fruiting bodies. These deformities occur under conditions of high-temperature (>22°C) and high humidity (>88%). Our findings provide crucial insights for managing A. alternata in M. importuna cultivation in China.

...