Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.839
Filter
1.
Heliyon ; 10(19): e38302, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39386817

ABSTRACT

Background: The gut microbiota thrives in a complex ecological environment and its dynamic balance is closely related to host health. Recent studies have shown that the occurrence of various diseases including prostate inflammation is related to the dysregulation of the gut microbiome. Objective: This review focus on the mechanisms by which the gut microbiota induces prostate inflammation and benign prostatic hyperplasia and its therapeutic implications. Materials and methods: Publications related to gut microbiota, prostate inflammation, and benign prostatic hyperplasia (BPH) until April 2023 were systematically reviewed. The research questions were formulated using the Problem, Intervention, Comparison/Control, and Outcome (PICO) frameworks. Results: Fifteen articles covering the relationship between the gut microbiota and prostate inflammation/BPH, the mechanisms by which the gut microbiota influences prostate inflammation and BPH, and potential therapeutic approaches targeting the gut microbiota for these conditions were included. Conclusion: Short-chain fatty acids (SCFAs), which are metabolites of the intestinal microbiota, protect the integrity of the intestinal barrier, regulate immunity, and inhibit inflammation. However, dysregulation of the gut microbiota significantly reduces the SCFA content in feces and impairs the integrity of the gut barrier, leading to the translocation of bacteria and bacterial components such as lipopolysaccharide, mediating the development of prostate inflammation through microbe-associated molecular patterns (MAMPs).

2.
World J Gastrointest Oncol ; 16(9): 3932-3954, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39350988

ABSTRACT

BACKGROUND: Cancer is one of the most serious threats to human health worldwide. Conventional treatments such as surgery and chemotherapy are associated with some drawbacks. In recent years, traditional Chinese medicine treatment has been increasingly advocated by patients and attracted attention from clinicians, and has become an indispensable part of the comprehensive treatment for gastric cancer. AIM: To investigate the mechanism of Xiaojianzhong decoction (XJZ) in the treatment of gastric cancer (GC) by utilizing network pharmacology and experimental validation, so as to provide a theoretical basis for later experimental research. METHODS: We analyzed the mechanism and targets of XJZ in the treatment of GC through network pharmacology and bioinformatics. Subsequently, we verified the impact of XJZ treatment on the proliferative ability of GC cells through CCK-8, apoptosis, cell cycle, and clone formation assays. Additionally, we performed Western blot analysis and real-time quantitative PCR to assess the protein and mRNA expression of the core proteins. RESULTS: XJZ mainly regulates IL6, PTGS2, CCL2, MMP9, MMP2, HMOX1, and other target genes and pathways in cancer to treat GC. The inhibition of cell viability, the increase of apoptosis, the blockage of the cell cycle at the G0/G1 phase, and the inhibition of the ability of cell clone formation were observed in AGS and HGC-27 cells after XJZ treatment. In addition, XJZ induced a decrease in the mRNA expression of IL6, PTGS2, MMP9, MMP2, and CCL2, and an increase in the mRNA expression of HOMX1. XJZ significantly inhibited the expression of IL6, PTGS2, MMP9, MMP2, and CCL2 proteins and promoted the expression of the heme oxygenase-1 protein. CONCLUSION: XJZ exerts therapeutic effects against GC through multiple components, multiple targets, and multiple pathways. Our findings provide a new idea and scientific basis for further research on the molecular mechanisms underlying the therapeutic effects of XJZ in the treatment of GC.

3.
Cell Stem Cell ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39353428

ABSTRACT

Acute myeloid leukemia (AML) is a malignant cancer characterized by abnormal differentiation of hematopoietic stem and progenitor cells (HSPCs). While chimeric antigen receptor T (CAR-T) cell immunotherapies target AML cells, they often induce severe on-target/off-tumor toxicity by attacking normal cells expressing the same antigen. Here, we used base editors (BEs) and a prime editor (PE) to modify the epitope of CD123 on HSPCs, protecting healthy cells from CAR-T-induced cytotoxicity while maintaining their normal function. Although BE effectively edits epitopes, complex bystander products are a concern. To enhance precision, we optimized prime editing, increasing the editing efficiency from 5.9% to 78.9% in HSPCs. Epitope-modified cells were resistant to CAR-T lysis while retaining normal differentiation and function. Furthermore, BE- or PE-edited HSPCs infused into humanized mice endowed myeloid lineages with selective resistance to CAR-T immunotherapy, demonstrating a proof-of-concept strategy for treating relapsed AML.

4.
ACS Nano ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39364666

ABSTRACT

The performance and robustness of electrodes are closely related to transformation-induced nanoscale structural heterogeneity during (de)lithiation. As a result, it is critical to understand at atomic scale the origin of such structural heterogeneity and ultimately control the transformation microstructure, which remains a formidable task. Here, by performing in situ studies on a model intercalation electrode material, anatase TiO2, we reveal that defects─both preexisting and as-formed during lithiation─can mediate the local anisotropic volume expansion direction, resulting in the formation of multiple differently oriented phase domains and eventually a network structure within the lithiated matrix. Our results indicate that such a mechanism operated by defects, if properly harnessed, could not only improve lithium transport kinetics but also facilitate strain accommodation and mitigate chemomechanical degradation. These findings provide insights into the connection of defects to the robustness and rate performance of electrodes, which help guide the development of advanced lithium-ion batteries via defect engineering.

5.
J Adv Res ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362333

ABSTRACT

BACKGROUND: Leaf senescence (LS), the final phase in leaf development, is an important and precisely regulated process crucial for plant well-being and the redistribution of nutrients. It is intricately controlled by various regulatory factors, including WRKY transcription factors (TFs). WRKYs are one of the most significant plant TF families, and several of them are differentially regulated and important during LS. Recent research has enhanced our understanding of the structural and functional characteristics of WRKY TFs, providing insights into their regulatory roles. AIM OF REVIEW: This review aims to elucidate the genetic and molecular mechanisms underlying the intricate regulatory networks associated with LS by investigating the role of WRKY TFs. We seek to highlight the importance of WRKY-mediated signaling pathways in understanding LS, plant evolution, and response to varying environmental conditions. KEY SCIENTIFIC CONCEPTS OF REVIEW: WRKY TFs exhibit specific DNA-binding activity at the N-terminus and dynamic interactions of the intrinsically disordered domain at the C-terminus with various proteins. These WRKY TFs not only control the activity of other WRKYs, but also interact with either WRKYs or other TFs, thereby fine- tuning the expression of target genes. By unraveling the complex interactions and regulatory mechanisms of WRKY TFs, this review broadens our knowledge of the genetic and molecular basis of LS. Understanding WRKY-mediated signalling pathways provides crucial insights into specific aspects of plant development, such as stress-induced senescence, and offers potential strategies for improving crop resilience to environmental stresses like drought and pathogen attacks. By targeting these pathways, it may be possible to enhance specific productivity traits, such as increased yield stability under adverse conditions, thereby contributing to more reliable agricultural outputs.

6.
J Mater Chem B ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373469

ABSTRACT

Guided bone regeneration (GBR) is an extensively used technique for the treatment of maxillofacial bone defects and bone mass deficiency in clinical practice. However, to date, studies on membranes for GBR have not achieved the combination of suitable properties and cost-effective membrane production. Herein, we developed a polycaprolactone/human extracellular matrix-like collagen (PCL/hCol) membrane with an asymmetric porous structure via the nonsolvent-induced phase separation (NIPS) method, which is a highly efficient procedure with simple operation, scalable fabrication and low cost. This membrane possessed a porous rough surface, which is conducive to cell attachment and proliferation for guiding osteogenesis, together with a relatively smooth surface with micropores, which allows the passage of nutrients and is unfavorable for the adhesion of cells, thus preventing fibroblast invasion and overall meeting the demands for GBR. Besides, we evaluated the characteristics and biological properties of the membrane and compared them with those of commercially available membranes. Results showed that the PCL/hCol membrane exhibited excellent mechanical properties, degradation characteristics, barrier function, biocompatibility and osteoinductive potential. Furthermore, our in vivo study demonstrated the promotive effect of the PCL/hCol membrane on bone formation in rat calvarial defects. Taken together, our NIPS-prepared PCL/hCol membrane with promising properties and production advantages offers a new perspective for its development and potential use in GBR application.

7.
Oncogene ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369166

ABSTRACT

Treatment with androgen-ablative therapies effectively inhibited androgen receptor (AR)-positive (AR+) prostate cancer (PCa) cell subtypes, but it resulted in an increase in AR-negative (AR-) PCa cell subtypes. The present study aimed to investigate the debated mechanisms responsible for the changing proportion of cell types, identifying CXCL8 as a synthetic essential effector of AR- PCa cells. AR- PCa cells were found to be susceptible to CXCL8 depletion or inhibition, which impaired their survival. Mechanistically, androgen-ablative therapies resulted in the suppression of AR signaling, leading to the upregulation of CXCL8 gene transcription. CXCL8, in turn, activated the mTORC1 pathway, which increased de novo cholesterol synthesis by activating sterol regulatory element-binding protein-2 (SREBP2). Together, these results suggested that the CXCL8-mTORC1-SREBP2 axis contributed to the exacerbation of tumorigenicity in AR- PCa cells under androgen-ablative therapies.

8.
Neural Netw ; 181: 106782, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39388995

ABSTRACT

Magnetic resonance imaging (MRI) plays a pivotal role in diagnosing and staging prostate cancer. Precise delineation of the peripheral zone (PZ) and transition zone (TZ) within prostate MRI is essential for accurate diagnosis and subsequent artificial intelligence-driven analysis. However, existing segmentation methods are limited by ambiguous boundaries, shape variations and texture complexities between PZ and TZ. Moreover, they suffer from inadequate modeling capabilities and limited receptive fields. To address these challenges, we propose a Enhanced MixFormer, which integrates window-based multi-head self-attention (W-MSA) and depth-wise convolution with parallel design and cross-branch bidirectional interaction. We further introduce MixUNETR, which use multiple Enhanced MixFormers as encoder to extract features from both PZ and TZ in prostate MRI. This augmentation effectively enlarges the receptive field and enhances the modeling capability of W-MSA, ultimately improving the extraction of both global and local feature information from PZ and TZ, thereby addressing mis-segmentation and challenges in delineating boundaries between them. Extensive experiments were conducted, comparing MixUNETR with several state-of-the-art methods on the Prostate158, ProstateX public datasets and private dataset. The results consistently demonstrate the accuracy and robustness of MixUNETR in MRI prostate segmentation. Our code of methods is available at https://github.com/skyous779/MixUNETR.git.

9.
Mol Ther Oncol ; 32(4): 200872, 2024 Dec 19.
Article in English | MEDLINE | ID: mdl-39377038

ABSTRACT

Malignant tumors of the digestive system have had a notoriously dismal prognosis throughout history. Immunotherapy, radiotherapy, surgery, and chemotherapy are the primary therapeutic approaches for digestive system cancers. The rate of recurrence and metastasis, nevertheless, remains elevated. As one of the immunotherapies, chimeric antigen receptor T cell (CAR-T) therapy has demonstrated a promising antitumor effect in hematologic cancer. Despite undergoing numerous clinical trials, the ineffective antitumor effect and adverse effects of CAR-T cell therapy in the treatment of digestive system cancers continue to impede its clinical translation. It is necessary to surmount the restricted options for targeting proteins, the obstacles that impede CAR-T cell infiltration into solid tumors, and the limited survival time in vivo. We examined and summarized the developments, obstacles, and countermeasures associated with CAR-T therapy in digestive system cancers. Emphasis was placed on the regulatory functions of potential antigen targets, the tumor microenvironment, and immune evasion in CAR-T therapy. Thus, our analysis has furnished an all-encompassing comprehension of CAR-T cell therapy in digestive system cancers, which will generate tremendous enthusiasm for subsequent in-depth research into CAR-T-based therapies in digestive system cancers.

10.
Sci Rep ; 14(1): 23232, 2024 10 05.
Article in English | MEDLINE | ID: mdl-39369070

ABSTRACT

Green consumption is a crucial pathway towards achieving global sustainability goals. Product-oriented green advertisements can effectively stimulate consumers' latent needs and convert them into eventual purchasing intentions and behaviors, thereby promoting green consumption. Given that neuromarketing methods facilitate the understanding of consumers' decision-making processes, this study combines prospect theory and need fulfillment theory, employing event-related potentials (ERPs) as measures to explore changes in consumers' cognitive resources and emotional arousal levels when confronted with green products and advertising information. This enables inference regarding consumers' acceptance of purchasing and their psychological processes. Behavioral results indicated that message framing influences consumers' purchases, with consumers consuming more green in response to negatively framed advertisements. EEG results indicated that matching positive framing with utilitarian green products was effective in increasing consumers' cognitive attention in the early cognitive stage. In the late stage of cognition negative frames stimulated consumers' mood swings more, and the influence of product type depended on the role of message frames, and the consumption motivation induced by the product, whose influence was overridden by external evaluations such as message frames. These research findings provide an explanation for the impact of frame information on consumers' purchasing decisions at different stages, assisting marketers in devising diverse promotional strategies based on product characteristics to foster the development and practice of green consumption. This will further embed the concept of green consumption advocated by organizations such as the United Nations Environment Programme (UNEP), World Wildlife Fund (WWF), and Greenpeace into the public consciousness.


Subject(s)
Consumer Behavior , Decision Making , Evoked Potentials , Humans , Female , Male , Evoked Potentials/physiology , Adult , Young Adult , Electroencephalography , Motivation , Cognition/physiology , Emotions/physiology
12.
Nat Commun ; 15(1): 8578, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39362839

ABSTRACT

Fibroblast growth factor 21 (FGF21) is essential for modulating hepatic homeostasis, but the impact of FGF21 on liver graft injury remains uncertain. Here, we show that high FGF21 levels in liver graft and serum are associated with improved graft function and survival in liver transplantation (LT) recipients. FGF21 deficiency aggravates early graft injury and activates arachidonic acid metabolism and regional inflammation in male mouse models of hepatic ischemia/reperfusion (I/R) injury and orthotopic LT. Mechanistically, FGF21 deficiency results in abnormal activation of the arachidonate 15-lipoxygenase (ALOX15)/15-hydroxy eicosatetraenoic acid (15-HETE) pathway, which triggers a cascade of innate immunity-dominated pro-inflammatory responses in grafts. Notably, the modulating role of FGF21/ALOX15/15-HETE pathway is more significant in steatotic livers. In contrast, pharmacological administration of recombinant FGF21 effectively protects against hepatic I/R injury. Overall, our study reveals the regulatory mechanism of FGF21 and offers insights into its potential clinical application in early liver graft injury after LT.


Subject(s)
Arachidonate 15-Lipoxygenase , Fibroblast Growth Factors , Homeostasis , Hydroxyeicosatetraenoic Acids , Liver Transplantation , Liver , Mice, Inbred C57BL , Reperfusion Injury , Animals , Fibroblast Growth Factors/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Male , Reperfusion Injury/metabolism , Reperfusion Injury/immunology , Mice , Liver/metabolism , Liver/pathology , Liver/injuries , Hydroxyeicosatetraenoic Acids/metabolism , Hydroxyeicosatetraenoic Acids/pharmacology , Mice, Knockout , Humans , Signal Transduction , Fatty Liver/metabolism , Fatty Liver/pathology , Disease Models, Animal , Immunity, Innate , Arachidonate 12-Lipoxygenase
13.
J Biomed Inform ; : 104735, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39393477

ABSTRACT

OBJECTIVE: Medical laboratory testing is essential in healthcare, providing crucial data for diagnosis and treatment. Nevertheless, patients' lab testing results are often transferred via fax across healthcare organizations and are not immediately available for timely clinical decision making. Thus, it is important to develop new technologies to accurately extract lab testing information from scanned laboratory reports. This study aims to develop an advanced deep learning-based Optical Character Recognition (OCR) method to identify tables containing lab testing results in scanned laboratory reports. METHODS: Extracting tabular data from scanned lab reports involves two stages: table detection (i.e., identifying the area of a table object) and table recognition (i.e., identifying and extracting tabular structures and contents). DETR R18 algorithm as well as YOLOv8s were involved for table detection, and we compared the performance of PaddleOCR and the encoder-dual-decoder (EDD) model for table recognition. 650 tables from 632 randomly selected laboratory test reports were annotated and used to train and evaluate those models. For table detection evaluation, we used metrics such as Average Precision (AP), Average Recall (AR), AP50, and AP75. For table recognition evaluation, we employed Tree-Edit Distance (TEDS). RESULTS: For table detection, fine-tuned DETR R18 demonstrated superior performance (AP50: 0.774; AP75: 0.644; AP: 0.601; AR: 0.766). In terms of table recognition, fine-tuned EDD outperformed other models with a TEDS score of 0.815. The proposed OCR pipeline (fine-tuned DETR R18 and fine-tuned EDD), demonstrated impressive results, achieving a TEDS score of 0.699 and a TEDS structure score of 0.764. CONCLUSIONS: Our study presents a dedicated OCR pipeline for scanned clinical documents, utilizing state-of-the-art deep learning models for region-of-interest detection and table recognition. The high TEDS scores demonstrate the effectiveness of our approach, which has significant implications for clinical data analysis and decision-making.

15.
Brain Behav ; 14(9): e3521, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39236078

ABSTRACT

BACKGROUND: Intracranial atherosclerotic stenosis (ICAS) is one of the most important independent risk factors for stroke that is closely related to the occurrence of cognitive impairment. The relationship between ICAS and vascular cognitive impairment (VCI) remains unclear. Cerebral hemodynamic changes are one of the main causes of cognitive impairment. Computed tomographic perfusion (CTP) imaging can quantitatively analyze cerebral blood perfusion and quantify cerebral hemodynamic changes. Previous research on the relationship between hypoperfusion induced by ICAS and cognitive impairment, as well as its underlying mechanisms, remains relatively insufficient. This study is dedicated to elucidating the characteristics and potential mechanisms of cognitive impairment in ICAS patients with abnormal perfusion, utilizing CTP imaging as our primary investigative tool. METHODS: This study recruited 82 patients who suffer from non-disabling ischemic stroke (IS group) and 28 healthy controls. All participants underwent comprehensive neuropsychological assessments both collectively and individually, in addition to CTP imaging. Within the patient group, we further categorized individuals into two subgroups: the ischemic penumbra group (IP, N = 28) and the benign oligemia group (BO, N = 54), based on CTP parameters-Tmax. The correlations between cognitive function and abnormal perfusion were explored. RESULTS: The cognitive function, including the overall cognitive, memory, attention, executive functions, and language, was significantly impaired in the IS group compared with that in the control group. Further, there are statistical differences in the stroop color-word test-dot (Stroop-D) and Montreal Cognitive Assessment (MoCA) sub-items (memory + language) between the BO and IP groups. In the BO group, the score of Stroop-D is lower, and the MoCA sub-items are higher than the IP group. There is no correlation between CTP parameters and cognitive function. CONCLUSION: Cognitive function is significantly impaired in patients with ICAS, which is related to cerebral perfusion. Executive, memory, and language function were better preserved in ICAS patients without IP. Hence, this study posits that managing hypoperfusion induced by ICAS may play a pivotal role in the development of VCI.


Subject(s)
Cerebrovascular Circulation , Cognitive Dysfunction , Intracranial Arteriosclerosis , Tomography, X-Ray Computed , Humans , Male , Female , Middle Aged , Aged , Intracranial Arteriosclerosis/diagnostic imaging , Intracranial Arteriosclerosis/physiopathology , Cerebrovascular Circulation/physiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Tomography, X-Ray Computed/methods , Perfusion Imaging/methods , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/physiopathology , Constriction, Pathologic/diagnostic imaging , Constriction, Pathologic/physiopathology , Cognition/physiology , Neuropsychological Tests
16.
Cardiovasc Diagn Ther ; 14(4): 679-697, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39263485

ABSTRACT

Background and Objective: Immune checkpoint inhibitors (ICIs) have become one of the cornerstones of current oncology treatment, and immune checkpoint inhibitor-related myocarditis (IRM) is the most fatal of all immune checkpoint inhibitor-related adverse events (irAEs). Methylprednisolone pulse therapy (500-1,000 mg/day) is the initial treatment for IRM recommended by almost all relevant guidelines. However, subsequent treatment regimens remain unclear for patients who do not respond to methylprednisolone pulse therapy (who are defined as steroid-refractory patients). We propose a potential treatment approach for steroid-refractory IRM. Methods: The PubMed and the Cochrane Library databases were searched using keywords related to IRM. Relevant English-language articles published from January 2000 to February 2024 were included in this narrative review. Key Content and Findings: Abatacept is the preferred choice for the treatment of isolated steroid-refractory IRM. For rapidly progressive or interleukin-6 abnormally elevated steroid-refractory IRM, alemtuzumab or tocilizumab/tofacitinib are the preferred therapeutic agents, respectively. For steroid-refractory IRM comorbid with myositis or comorbid with myasthenia gravis, abatacept + ruxolitinib/mycophenolate mofetil (MMF)/intravenous immunoglobulin (IVIG), or MMF + pyridostigmine/IVIG are the preferred therapeutic agents, respectively. Conclusions: The pathogenesis of steroid-refractory IRM and the treatment regimen remain unclear. A large number of studies need to be conducted to validate or update our proposed treatment approach.

17.
ACS Nano ; 18(37): 25880-25892, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39236748

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) exhibit promising prospects in becoming large-scale energy storage systems due to environmental friendliness, high security, and low cost. However, the growth of Zn dendrites and side reactions remain heady obstacles for the practical application of AZIBs. To solve these challenges, a functionalized Janus separator is successfully constructed by coating halloysite nanotubes (HNTs) on glass fiber (GF). Impressively, the different electronegativity on the inner and outer surfaces of HNTs endows the HNT-GF separator with ion-sieving property, leading to a significantly high transference number of Zn2+ (tZn2+ = 0.71). Meanwhile, the HNT-GF separator works as an interfacial ion comb to regular Zn2+ flux and realizes multisite progressive nucleation, bringing decreased nucleation overpotential and uniform Zn2+ deposition. Consequently, the HNT-GF separator enables the Zn anode to display an ultralong plating/stripping life of 3000 h and high rate tolerance with a stable long cycle life even under a density of 50 mA cm-2. Moreover, the Zn∥HNT-GF∥MnO2 full cell represents an ultrastable cycling stability with a high capacity retention of 93.4% even after 1000 cycles at a current density of 2 A g-1. This work provides a convenient method for the separator modification of AZIBs.

18.
Environ Sci Technol ; 58(37): 16237-16247, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39241234

ABSTRACT

Life-cycle assessment (LCA) is one of the most widely applied methods for sustainability assessment. A main application of LCA is to compare alternative products to identify and promote those that are more environmentally friendly. Such comparative LCA studies often rest on, explicitly or implicitly, an idealized assumption, namely, 1:1 displacement between functionally equivalent products. However, product displacement in the real world is much more complicated, affected by various factors such as the rebound effect and policy schemes. Here, we quantitatively review studies that have considered these aspects to evaluate the magnitude and distribution of realistic displacement estimates across several major product categories (biofuels, electricity, electric vehicles, and recycled products). Results show that displacement ratios concentrate around 40-60%, suggesting considerable overestimation of the benefits of alternative products if the 1:1 displacement assumption was used. Overall, there have been a small number of modeling studies on realistic product displacement and their scopes were limited. Additional research is needed to cover more product categories and geographies and improve the modeling of market and policy complexities. As such research accumulates, their displacement estimates can form a database that can be drawn upon by comparative LCA studies to more accurately determine the environmental impacts of alternative products.


Subject(s)
Recycling , Biofuels , Models, Theoretical , Environment
19.
Animals (Basel) ; 14(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39272265

ABSTRACT

Rosemary (Rosmarinus officinalis L.) is a natural spice plant with an aromatic flavor and antioxidant properties that can help enhance the flavor and texture of food, as well as be used as an antioxidant source in pet feed. This study explored the effect of rosemary on the growth performance and antioxidant capacity of broiler chickens. In total, 144 healthy 1-day-old Arbor Acres broilers were randomly divided into four groups: The control group was fed a basic diet, while the positive control group was fed a basic diet supplemented with 30 mg/kg kitasamycin, and the treatment groups were fed a basic diet supplemental with 0.5% rosemary, or 2% rosemary. The average daily feed intake of broilers fed with 0.5% and 2% rosemary in 1-42 days was higher than that in the basal diet group (p < 0.05). The pH was lower in the rosemary groups than in the 30 mg/kg kitasamycin group as measured in the thigh muscle tissue (p < 0.05), and the monounsaturated fatty acid C17:1 heptadecanoic acid content of the 2% rosemary group was higher than that of the other groups (p < 0.05). With 0.5% rosemary supplementation, the activities of the serum and liver antioxidant enzymes catalase (CAT) activity and total antioxidant capacity (T-AOC) increased (p < 0.05); malondialdehyde content decreased (p < 0.05). The serum activities of CAT, total superoxide dismutase, and T-AOC increased with 2% rosemary supplementation (p < 0.05). The relative expression of liver antioxidant genes, the nuclear factor E2-related factor 2, glutathione catalase 1, and superoxide dismutase 1 increased (p < 0.05) with 0.5% rosemary supplementation. The addition of rosemary resulted in higher intestinal lactobacilli counts and lower E. coli counts. In summary, adding 0.5% or 2% rosemary to the diet improved the growth performance of Arbor Acres broilers and increased the number of intestinal probiotics, and supplementing with 0.5% rosemary yielded better results than adding 2% rosemary. This study provides valuable insights into the broader application of plant-derived antioxidants in promoting sustainable and health-focused animal farming practices.

20.
Animals (Basel) ; 14(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39272272

ABSTRACT

Culters are a popular and economically important carnivorous freshwater fish, widely distributed in rivers, lakes, and reservoirs in China. An investigation of Myxozoa was conducted to enhance the understanding of Myxozoan diversity in Culters in China, as only 15 Myxosporean species have been previously reported in 6 Culters species. A new species with typical Myxobolus characteristics was discovered exclusively in the gills of Chanodichthys dabryi, Bleeker, 1871, and no other species were found in other Culters fish or organs. The new species elicited whitish plasmodia in the serosa layer of the gill arch, with no distinct inflammatory reaction observed. This species is morphologically different from all reported Myxobolus spp. from Culters, differing in plasmodium and spore size, as well as the coils of polar filaments. Molecular analysis further supports that it does not match any sequences available in GenBank. Therefore, we identified it as a new species and named it Myxobolus dabryi n. sp.

SELECTION OF CITATIONS
SEARCH DETAIL